
Exercise session 1: Bandits

Guillaume Charpiat, Victor Berger

January 11, 2018

Exercise

We are considering the following problem: a 10-armed bandit for which each arm
is a binomial distribution for which the two possible values and the probability
of each outcome is chosen at random, at the start of the simulation.

Your task is to implement various bandit algorithms against this prob-
lem, using the python template provided on the course website (reminder:
https://www.lri.fr/~gcharpia/machinelearningcourse/ ).

You are provided a random agent, that you can use as a template for your
code. Your task is to implement an epsilon-greedy agent, an optimistic epsilon-
greedy agent, a softmax agent, and a UCB agent1 using this template. Then,
you will compare their performances and upload your best agent on the test
platform for final performance assessment (the link to the platform is on the
course website).

Template description

The template is a zip file that you can download on the course website. It
contains several files, two of them are of interest for you: agent.py and main.py.

agent.py is the file in which you will write the code of your agent, using
the RandomAgent class as a template. Don’t forget to read the documentation
it contains. Note that you can have the code of your several agents in the same
file, and use the final line Agent = MyAgent to chose which agent you want to
run.

main.py is the program that will actually run your agent. You can run
it with the command python main.py. It also accepts a few command-line
arguments:

• --niter N will run your agent for N iterations against the same bandit
and report the total cumulative reward

1As a reminder, the UCBAgent selects its action as argmaxk∈A

[
µsk,k +

√
2 log t
sk

]
with t

the number of iterations, sk the number of times arm k was selected and µsk,k the empirical
estimator of the value of arm k.

1



• --batch B will run B instances of your agent in parallel, each against its
own bandit, and report the average total cumulative reward

• --verbose will print details at each step of what your agent did. This
can be helpful to understand if something is going wrong.

The running of your agent follows a general procedure that will be shared
for all later practicals:

• The environment generates an observation

• This observation is provided to your agent via the act method which
chooses an action

• The environment processes your action to generate a reward

• this reward is given to your agent in the reward method, in which your
agent will learn from the reward

This 4-step process is then repeated several times.
Note that in this first exercise, there are no observations, as the environment

is static. Thus the observation will always be None.

Grading

The final performance of your agent will be evaluated by running the following
command on a pseudo-random2 testbed:

python main.py --niter 1000 --batch 2000

Once you think your implementation is good, create a zip file containing
your agent.py file and the metadata file provided in the template, and upload
it to the platform. Your score will be computed and you can compare yourself
to the rest of the class using the leaderboard. Your grade for this exercise will
be based on this score.

2This means that uploading two times the exact same code will generate the exact same
score

2


