
Exercise session 2: Wumpus

Guillaume Charpiat, Victor Berger

January 18, 2018

Several questions are in this subject. They are meant to guide you through
the exercise, but do not require a written answer. Only your agent will have to
be submitted to the scoring platform.

Exercise

The Wumpus world is a well-known toy problem in artificial intelligence popu-
larized by the reference book of Russell and Norvig, 2003. The game consists in
a grid world where an agent is looking for a treasure while avoiding the deadly
Wumpus and some holes. We assume that the time is discretized and that the
agent can take only one action per time step. The agent can explore the grid by
moving in the four cardinal directions. Also, it has a flashlight with a limited
number of power units that can be used to kill the Wumpus. For the project,
the Wumpus world will be our benchmark problem for studying reinforcement
learning (RL) algorithms. Moreover, these algorithms are general enough to be
applied to different problems (environment).

In the RL framework, we define an environment, which specifies the informa-
tion to be used by the agent to take some actions. For the Wumpus world, the
environment is partially observable since the locations of the holes, the Wumpus
and the treasure are unknown to the agent. However, the environment provides
some signals to the agent:

• if the agent is adjacent to the Wumpus, it receives a smell signal

• if the agent is adjacent to the hole, it receives a breeze signal

• the location of the agent is deterministically determined by the initial
position and the actions

• the number of power units is known

At each time step, the agent can choose one of 8 different actions: Up, Down,
Left, Right, FlashUp, FlashDown, FlashLeft and FlashRight. Attempting
to move through the bounding walls of the arena results in nothing happening.

1

Each time step can lead to 5 different outcomes, in terms of reward for your
agent:

• The treasure is found: reward +100 and the game ends

• You kill the Wumpus: reward +10

• The Wumpus catches you: reward −10 and the game ends

• You fall into a hole: reward −10 and the game ends

• Nothing happens: reward −1

Question 1 Why is it interesting to give a negative reward for the ”nothing
happens” event ?

The observations available to the agent can be summed up as the following
observation space:

O = (X,Y, S,B, F)

where X and Y are the coordinates of the location of the agent, S is a
boolean value indicating the presence of the smell signal, B is a boolean value
indicating the presence of the Breeze signal, and F the number of remaining
charges for the flashlight.

This observation and some previously saved information by your agent can
form its state s.

Question 2 Run the provided random agent. You can activate the --verbose
flag to see a map of the world printed to observe the dynamics. What do you
observe on its cumulative reward?

During this exercise, we will study RL algorithms for learning the optimal
policy that maps each state to an action. For a given state s, we are interested
in the expected reward Ep(r|s,a)[r] where p(r|s, a) is the probability to obtain a
reward r given that the agent takes action a in state s. However, p(r|s, a) is
unknown to the agent, but we can still approximate it with empirical averages.
For this, each time the agent is in state s, it chooses an action a, records the
observed reward (history) and updates the average Q(s, a).

In the contextual bandit framework, each state s is considered as a different
context, leading (in the simplest framework) to as many independent bandit
problems as there are states. The arms of the bandit s are the possible actions
the agent can perform in that state s.

2

Question 3 Implement a contextual bandit algorithm with one of the poli-
cies we studied (optimistic, ε-greedy, softmax or UCB), and display its cumula-
tive rewards. What is the limitation of modeling the problem with contextual
bandits? Possibly consider different state spaces such as S = (B,S, F), S =
(Aprevious, B, S, F) (i.e. remembering the previous action) and S = (X,Y,B, S, F)
and study the relation between the grid size, the number of states, the amount
of history, ... and the performance of the policy. In order to obtain statistics
on the performances, you can run the training algorithm many times using the
--batch argument.

Question 4 Implement the Q-learning algorithm. Compare with the contex-
tual bandits. When you are satisfied with it, upload your agent on the platform
using the link provided on the website.

Template description

The template is a zip file that you can download on the course website. It
contains several files, two of them are of interest for you: agent.py and main.py.

agent.py is the file in which you will write the code of your agent, using
the RandomAgent class as a template. Don’t forget to read the documentation
it contains. Note that you can have the code of your several agents in the same
file, and use the final line Agent = MyAgent to chose which agent you want to
run.

main.py is the program that will actually run your agent. You can run
it with the command python main.py. It also accepts a few command-line
arguments:

• --ngames N will run your agent for N games against in the same environ-
ment (the same initial grid setup) and report the total cumulative reward

• --niter N maximum number of iterations allowed for each game

• --batch B will run B instances of the game (B different Wumpus worlds,
i.e. with the same rules but different initial grid setups)

• --verbose will print details at each step of what your agent did. In
particular, it will show in ASCII art its current location on the grid as
well as the one of the Wumpus (which is moving).

The running of your agent follows a general procedure that will be shared
for all later practicals:

• The environment generates an observation

• This observation is provided to your agent via the act method which
chooses an action

3

• The environment processes your action to generate a reward

• this reward is given to your agent in the reward method, in which your
agent will learn from the reward

This 4-step process is then repeated several times, either until the end of the
game, or until a maximum number of steps (N) has been performed.

Grading

The final performance of your agent will be evaluated by running the following
command on a pseudo-random1 testbed:

python main.py --ngames 1000 --niter 100 --batch 200

Once you think your implementation is good, create a zip file containing
your agent.py file and the metadata file provided in the template, and upload
it to the platform. Your score will be computed and you can compare yourself
to the rest of the class using the leaderboard. Your grade for this exercise will
be based on this score.

Note: for each game, your agent will be trained over 1000 episodes (with
the same setup); but the score will be computed on the last 100 episodes only.
Thus, you might want to switch from an exploration mode to an exploitation
mode at the 900th episode (or continue training, depending on your approach).

1This means that uploading two times the exact same code will generate the exact same
score

4

