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Preamble

This exercise session is adapted from a project of the EPFL Unsupervised and
Reinforcement Learning in neural networks course.

Exercise

In this project, you are asked to solve the mountain car problem, using the
approximate Q-Learning algorithm and its TD(λ) generalization. The mountain
car problem is that of a car stuck amidst two mountains. A left or right constant
thrust can be applied to the car. The goal is to make the car climb the mountain
to its right. The thrust that can be applied is not sufficient for the car to directly
go uphill. Momentum has to be gathered to climb high enough.

You are provided with an implementation of the mountain car problem. The
state space of the agent consists of the x coordinate of the car, and its horizon-
tal velocity vx. x lies in [−dmin; 0] (this range is provided to your agent at the
beginning of a game) and vx lies in [−20; 20]. The class of approximating func-
tions you are strongly advised to use proceeds as follow. It maps points (x, vx)
into a high dimensional representation and consider the class of linear functions
in this high dimensional space. When the high dimensional space considered
is well chosen, this considerably increases expressiveness when compared to di-
rectly considering linear functions on the state space. Consider s0,0...sp,k nodes
of a discretization of the state space. Typically, dividing both axes evenly into
respectively p and k intervals gives (p+ 1)× (k+ 1) points si,j with coordinates

si,j = (−dmin + i
dmin

p
,−20 + j

40

k
) (1)

Each coordinate of the (p+ 1)× (k+ 1) dimensional representation vector φ
only depends on the closeness of (x, vx) and si,j . Typically, φi,j is 1 if (x, vx) =
si,j and tends to zero the farther (x, vx) is to si,j . Formally

φi,j = e−(x−si,j1 )2e−(vx−si,j2 )2 (2)

The Q-function approximation then takes the form
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Q((x, vx), a) =
∑
i,j

W a
i,jφi,j (3)

where the W a
i,j are real numbers.You are asked to design a Q-Learning and

a TD(λ) algorithms that learn parameters W a
i,j to solve the mountain car task.

(p, k) are to be tunable hyperparameters of your algorithm, along with any other
hyperparameter of interest. The provided code gives you access to facilities to
visualize your learning progresses.

Template description

The template is a zip file that you can download on the course website. It
contains several files, two of them are of interest for you: agent.py and main.py.

agent.py is the file in which you will write the code of your agent, using
the RandomAgent class as a template. Don’t forget to read the documentation
it contains. In particular, note that for this exercise, at the beginning of a new
game, the reset function called returns to the agent information about the
range of possible x coordinates. As usual you can have the code of your several
agents in the same file, and use the final line Agent = MyAgent to choose which
agent you want to run.

main.py is the program that will actually run your agent. You can run
it with the command python main.py. It also accepts a few command-line
arguments:

• --ngames N will run your agent for N games against in the same environ-
ment and report the total cumulative reward

• --niter N maximum number of iterations allowed for each game

• --batch B will run B instances of your agent in parallel, each against its
own bandit, and report the average total cumulative reward

• --verbose will print details at each step of what your agent did. This
can be helpful to understand if something is going wrong.

• --interactive will train your agent ngames times, then run an interac-
tive game displaying informational plots. You need to have matplotlib

installed to use it.

The running of your agent follows a general procedure that will be shared
for all later practicals:

• The environment generates an observation

• This observation is provided to your agent via the act method which
chooses an action

• The environment processes your action to generate a reward
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• this reward is given to your agent in the reward method, in which your
agent will learn from the reward

This 4-step process is then repeated several times.

Grading

The final performance of your agent will be evaluated by running the following
command on a pseudo-random1 testbed:

python main.py --ngames 1000 --niter 100 --batch 200

Once you think your implementation is good, create a zip file containing
your agent.py file and the metadata file provided in the template, and upload
it to the platform. Your score will be computed and you can compare yourself
to the rest of the class using the leaderboard. Your grade for this exercise will
be based on this score.

1This means that uploading two times the exact same code will generate the exact same
score
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