
Exercise session 4: Policy gradient

Guillaume Charpiat, Victor Berger

January 25, 2018

Preamble

This exercise session is a followup of the previous one.

Exercise

In this project, you are asked to solve a variation of the mountain car problem,
using a policy gradient algorithm.

We are considering an environment similar to the one of last week. Once
again, this is a mountain car problem, however we have changed some parts of
the problem:

• The possible actions for your car are now continuous: any force value in
[−Fmax;Fmax] (if you output values outside of this range they will be
clamped).

• You receive at each time step a reward of −0.1 − λ|Ft|2, where Ft is the
force you last applied.

• λ and Fmax are parameters of the environment that you do not know in
advance (and will be randomized on the test bed).

• You receive a reward of 100 for reaching the top of the hill.

This means your agent must find an appropriate balance between getting
out of the valley as quickly as possible and not accelerating too much (to save
fuel).

Given the action space is now continuous, using an approximate Q-learning
algorithm like last time becomes difficult. A possibility would be to discretize
the force values, but this does not combine well with the fact that Fmax and λ
are unknown. Instead, we will use a policy gradient method, which can easily
model continuous action spaces.

1

We suggest the following model:

• The policy πθt(at|st) is always a normal distribution, of mean µt and
standard deviation σt;

• µt is a linear function of pre-defined descriptors of the state:
µt = µθt(st) =

∑
i,j θ

t
i,jφi,j(st),

where φi,j is the same kernel basis as for previous exercise;

• σt is annealed: it starts with a rather high value (to encourage exploration)
and decreases over time as the model µθt gets better.

(The following questions are here to guide you though the implementation,
and do not require a written answer.)

Question 1: What is the expression of log πθt(at|st) ? Of ∇θ log πθ(at|st) ?

We consider implementing the actor-critic policy gradient algorithm to solve
this problem. For this, we also need an estimation of the value function V (st).
We will learn it using a linear parametric model as well:

Vψt(st) =
∑
i,j

ψti,jφi,j(st)

Question 2: What is the update rule for the parameters ψi,j of Vψ ?

Question 3: What is the update rule for the parameters θi,j of πθ ?

Question 4: How does the value of σ impact the update of θi,j? Design an
annealing rule for σ appropriately.

Question 5: Seeing the update rule for θi,j , would it make sense to do
an ε-greedy-like version of this algorithm (acting completely randomly with
probability ε)?

Question 6: Then, how can we go into ”exploitation mode” with this
policy? What else should we take care of when doing so?

Implement the actor-critic policy gradient for this problem and submit your
solution on the platform.

Template description

The template is a zip file that you can download on the course website. It
contains several files, two of them are of interest for you: agent.py and main.py.

agent.py is the file in which you will write the code of your agent, using
the RandomAgent class as a template. Don’t forget to read the documentation

2

it contains. In particular, note that for this exercise, at the beginning of a new
game, the reset function called returns to the agent information about the
range of possible x coordinates. As usual you can have the code of your several
agents in the same file, and use the final line Agent = MyAgent to choose which
agent you want to run.

main.py is the program that will actually run your agent. You can run
it with the command python main.py. It also accepts a few command-line
arguments:

• --ngames N will run your agent for N games against in the same environ-
ment and report the total cumulative reward

• --niter N maximum number of iterations allowed for each game

• --batch B will run B instances of your agent in parallel, each against its
own bandit, and report the average total cumulative reward

• --verbose will print details at each step of what your agent did. This
can be helpful to understand if something is going wrong.

• --interactive will train your agent ngames times, then run an interac-
tive game displaying informational plots. You need to have matplotlib

installed to use it.

The running of your agent follows a general procedure that will be shared
for all later practicals:

• The environment generates an observation

• This observation is provided to your agent via the act method which
chooses an action

• The environment processes your action to generate a reward

• this reward is given to your agent in the reward method, in which your
agent will learn from the reward

This 4-step process is then repeated several times.

Grading

The final performance of your agent will be evaluated by running the following
command on a pseudo-random1 testbed:

python main.py --ngames 200 --niter 400 --batch 10

Once you think your implementation is good, create a zip file containing
your agent.py file and the metadata file provided in the template, and upload
it to the platform. Your score will be computed and you can compare yourself
to the rest of the class using the leaderboard. Your grade for this exercise will
be based on this score.

1This means that uploading two times the exact same code will generate the exact same
score

3

