Problem 1 (Gibbs’ inequality). Let p and q two probability measures over a finite alphabet \mathcal{X}. Prove that $\text{KL}(p \parallel q) \geq 0$

Hint: for a concave function f and a random variable X, we have the Jensen’s inequality $\mathbb{E}[f(X)] \leq f(\mathbb{E}[X])$. \ln is a strictly concave function.

Problem 2 (Evidence Lower bound (ELBO)). Prove the following inequality\(^1\):

\[-\ln p(D) \leq -\mathbb{E}_{\theta \sim \beta} [\ln p(D|\theta)] + \text{KL}(\beta \parallel \alpha)\] (1)

where D is a dataset, $p(D)$ is the probability of the dataset, $p(D|\theta)$ is the likelihood probability of the dataset given the model parameters θ, β is a distribution over the model parameters approximating the posterior distribution $\pi(\theta) := p(\theta|D)$ and α is the prior distribution over the model parameters.

(a) Write down the natural logarithm of the Bayes’ rule in an expanded form:

\[\pi(\theta) = \frac{p(D|\theta)\alpha(\theta)}{p(D)}\] (2)

(b) Introduce a new density function β and rewrite the expression in terms of expectation w.r.t. β

(c) Use the Gibbs’ inequality and write down the ELBO

(d) Interpret the ELBO in a machine learning framework

\(^1\)Further information can be found at http://www.yann-ollivier.org/rech/pubs/mdltalks.php
Problem 3 (Entropy). Compute the differential entropy of the following distributions:

(a) univariate Normal distribution

\[N(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma}} \exp \left[-\frac{(x - \mu)^2}{2\sigma^2} \right] \]

(3)

(b) multivariate Normal distribution

\[N(x|\mu, C) = \frac{1}{\sqrt{(2\pi)^d|C|}} \exp \left[-\frac{1}{2} (x - \mu)^\top C^{-1} (x - \mu) \right] \]

(4)

where \(x, \mu \in \mathbb{R}^d \) and \(C \) is a covariance matrix (assumed to be symmetric positive-definite).

Problem 4 (Mutual information). We are interested in computing the mutual information between a multivariate Normal distribution \(\beta = N(x|\mu, C) \) where \(x, \mu \in \mathbb{R}^d \) and a product of identical univariate Normal distributions \(\alpha = \prod_{i=1}^d N(x_i|\mu, \sigma) \).

(a) Express the KL divergence in terms of entropy and expectation w.r.t. \(\beta \)

(b) Compute the exact expression of \(-E_{x \sim \beta} \ln \alpha(x)\).

(c) Compute \(KL(\beta||\alpha) \)

(d) Suppose that \(\mu_i = \mu \) and \(C_{ii} = \sigma^2 \) for all \(i \). Simplify the previous expression.

Programming exercises (beginning of next session’s exercises)

Problem 5 (Text entropy). In the following, we are interested in estimating the entropy of different texts. We will work with the novel Crime and Punishment by Fyodor Dostoyevsky. Other books in different languages are also available.\(^2\). To do so, we compute the entropy of different models:

1. Compute the entropy of a model based on the frequency of each single symbol in the chosen book (i.i.d. model).

\(^2\)The chosen books are available at https://www.lri.fr/~gcharpia/machinelearningcourse/2018/5/texts.zip, thanks to the Gutenberg project https://www.gutenberg.org/
2. Use this model to compute the cross-entropy of the distribution from another book. Compare this value with the previous entropy by computing the KL-divergence.

3. Compute the entropy of a model based on the frequency of pairs of symbols, and compare it with the previous model. Explain the difference.

4. Compute the entropy rate of a Markov chain where each state is a symbol, and transition probabilities are estimated from the chosen book.