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This course is about information geometry and Fisher information.

Fisher information Let M6) be a model with parameters 6 and then, we
define the Fisher information:
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To prove the equality, we look at the gradient:
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then, by doing a Taylor expansion and commuting the integral with the partial
derivative, the terms of order superior to 2 equal zero.

Geometry For two probability distribution Py and Py, we define the KL
divergence for defining the notion of metric and distances. To prove the link
between KL and .J(#), we need the following identities:
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If you develop the expression at most order 3, then we obtain naturally the
Fisher metric and its interpretation as a measure of curvature (entropy curva-
ture). Suppose that you have a dataset (z;), we want to find 0 s.t. x ~ py.
Then, we can approximate the expectation with the dataset.

Cramer-Rao bound Suppose that we have observations (x;), wewantto findthebestf.

Let define some properties: For any unbiased estimator : E;..p, [9} = 60, we have

the Cramer-Rao bound:

Var(any unbiased estimator) > —— (7)

J(0)

The proof of the Cramer-Rao bound uses the Cauchy-Schwartz inequality. Let
T =0 — 0, then we have:
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There is a bug with the proof.

Natural gradient descent Recall the iteration scheme of the gradient de-
scent algorithm:

9i+1 =0; — 779f(6) (9)
Let’s look at the directional derivative D f(0)(d0) =<¢ f(6)]|60 >ns (Riesz repre-
sentation theorem). Moreover, we have that the norm is defined with the inner
product ||60]|3, =< 66|66 >,s. Consequently, the gradient step is determined
by the metric M chosen to represent our parameters. We can generalize the
inner product as < §60||60 >y = 00M 6 for a semi-definite matrix M and then
obtain the general gradient:

VM = M_leg (10)

For the natural gradient, we take M = J(#). We can define the metric as the
following:

160113, := [16£1> (11)
where f(0) = —log pg(x). By comparing two gradients, we can easily show that
the natural gradient is invariant.

the case of the exponential family the exponential family is defined as

po() = Z—lgexpw d(x)) (12)

Bernoulli and Gaussian distributions belong to the exponential family.
proposition: for exponential family, we have V,,; = Hessian. (natural
gradient is the newton method) One important point is that 81%;;9(1) does not
depend on z. BUT, Newton is not appropriate for non-convex optimization.
Finally, the estimator trained with V,,; descent can reach the Cramer-Rao

bound.



Model Selection: universal coding We have the model py and we want to
encode the dataset (x;). Remember that we have the Kolmogorov complexity:

K (0, (x:)) = K(0) —log pa((x:)) (13)
There are at least four possible way to approximate the Kolmogorov complexity:

1. go through all data, find best 8, encode 6 and encode z|f. But can we
encode 0 cheaply without losing too much

2. By is predefined, then we observe x; and we choose 6, = argmazxpg(x1),
then we repeat for xo and we choose 02 = argmaxpg(z1,22). The pros
are that there is no encoding of parameter but the cons is that the first
parameters are clearly not optimal.

3. we can define the NM L(x) = ZpbpebSt f;oﬁ X(w()z (Normalized Maximum
=Phest 6 for z
Likelihood)

4. Bayesian: p(x) = [, p(0)p(z|#)dxz NML is not good since we do not have NM L(z,y) #
NML(y)NML(y|z). A better choice is to consider the Bayesian framework
since we have

p(z) = /9 p(0)p((0)d0 (14)
> p(60")p(z|6%) (15)

where 0* is the best parameter to encode our data.

Parameter precision We want to encode fc with k bits s.t. 627% From
Kolmogorov, we have

K(0,7) = K(0) —logpy(x) (16)
= —log epsilon — log pg» 1 (x) (17)

1 ,0%logpy
= —loge — log pe+ (x) — §€2W|9_0*

(18)
By taking the derivative w.r.t. ¢ equals zero, we obtain ¢ = 1,/J(0) For a whole

dataset of size n, we have ¢ = 1,/n14/J(#). This can be related to the Bayesian
Information Criterion (BIC).

Prior by default: Jeffrey’s prior If we do not have any idea on the prior,
we can naturally choose the uniform prior. But, if the parameters lie on the
whole R, this is not defined. According to the previous result on &, we should
sample more over regions where the model varies a lot when the paramters move:
q(0)/1(0). As an example, for a Bernoulli distribution, we have I(8) = (1 —0)
and so, the Jeffrey’s prior is ¢(f) = 1 L

T /0(1-0)"




Context Tree Weighting For text prediction, the CTW gives a probability
for all possible Markov chain orders.
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