
InputSimilarity fromtheNeuralNetworkPerspective
Guillaume Charpiat1 Nicolas Girard2 Loris Felardos1 Yuliya Tarabalka2,3

1 TAU team, INRIA Saclay, LRI, Université Paris-Sud. 2 Université Côte d’Azur, Inria. 3 LuxCarta Technology. 1,2,3 <firstname>.<lastname>@inria.fr

Introduction
• Goal: define and estimate the similarity of inputs, as perceived by the neural network
• Motivation 1: strong auto-denoising phenomenon in a multimodal image registration task (cf part IV)

=⇒ accuracy far better than label noise!
=⇒ analyze noise averaging effect over labels of similar examples

• Motivation 2: better understand neural network decisions
=⇒ display examples considered as similar by the network

I - Building the similarity measure

Notations:
fθ : trained neural network
θ : network parameters

x,x′ : possible inputs

Similarity definition:
influence of x over x′, quantified as:
how much an additional training step to push
fθ(x) in a certain direction would change the
output for x′ as well.

θ

f (x’)
θ

v

v’
f (x)

Output space• If x and x′ are very different (for the NN): changing fθ(x) will barely affect fθ(x′)
• If x and x′ are very similar: changing fθ(x) will greatly affect fθ(x′)

• Changing fθ(x) by a small quantity ε means updating θ by δθ = ε
∇θfθ(x)
‖∇θfθ(x)‖2

• After update, new values for x and x′ :

fθ+δθ(x) = fθ(x) + ∇θfθ(x) · δθ + O(‖δθ‖2) = fθ(x) + ε + O(ε2)

fθ+δθ(x′) = fθ(x′) + ∇θfθ(x′) · δθ + O(‖δθ‖2) = fθ(x′) + ε
∇θfθ(x′) · ∇θfθ(x)
‖∇θfθ(x)‖2︸ ︷︷ ︸

influence of x over x′

+ O(ε2)

• Symmetric kernel bounded in [−1, 1]: kCθ (x,x′) = ∇θfθ(x)
‖∇θfθ(x)‖ ·

∇θfθ(x′)
‖∇θfθ(x′)‖

Properties for vanilla neural networks
Theorem. For any real-valued network fθ without parameter sharing, if ∇θfθ(x) = ∇θfθ(x′) for two inputs x,x′,
then all useful activities computed when processing x are equal to the ones obtained when processing x′.

Rewriting: kθ(x,x′) =
∑

activities i
λi(x,x′) ai(x) ai(x′) where λi(x,x′) =

∑
neuron j using ai

dfθ(x)
dbj

dfθ(x′)
dbj

=⇒ data-dependent importance weights, vs. λi(x,x′) = λlayer(i) for the perceptual loss

General case (parameter-sharing networks)
properties above do not hold anymore, as invariances (s.t. as translation) are incorporated in the similarity

Higher output dimension
• fθ(x) =

(
f iθ(x)

)
i∈[1,d] ∈ Rd with d > 1

• Kθ(x′,x) the d× d kernel matrix defined by Kij
θ (x′,x) = ∇θf iθ(x′) · ∇θf

j
θ (x)

• Unitless symmetrized normalized kernel: KC
θ (x,x′) = Kθ(x,x)−1/2 Kθ(x,x′) Kθ(x′,x′)−1/2

• Similarity in a single value: kCθ (x,x′) = 1
d TrKC

θ (x,x′) .
• Other metrics possible in output space

e.g. for rotation invariance: kC,rot
θ (x,x′) = 1

2

√∥∥KC
θ (x,x′)

∥∥2
F

+ 2 detKC
θ (x,x′)

II - Estimating density
How many samples x′ are similar to x according to the network? Many ways to count!

hard-thresholding soft estimate less-soft positive-only estimate
with threshold τ ∈ [0, 1] Fast! O(NP) (α > 0)∑

x′ 1kC
θ

(x,x′)>τ
∑

x′ kCθ (x,x′) = ∇θfθ(x)
‖∇θfθ(x)‖ ·

∇θfθ
‖∇θfθ‖

∑
x′ 1kC

θ
(x,x′)>0 k

C
θ (x,x′)α

Toy dataset:
• Task f : learn to reproduce sin(2πfx), from N = 2048 random samples
• increase frequency f =⇒ fewer neighbors

0.0 0.2 0.4 0.6 0.8 1.0
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

Datasets: randomly-sampled sinusoids with various frequencies

average
per task

=⇒

0.0 0.5 1.0 1.5 2.0 2.5
Frequency (log)

3

4

5

6

7

Ne
ig

hb
or

 c
ou

nt
 (l

og
)

Avg of all measures across all samples

neighbors_soft
neighbors_less_soft_n_2
neighbors_less_soft_n_3
neighbors_less_soft_n_4
neighbors_hard_t_0.5
neighbors_hard_t_0.6
neighbors_hard_t_0.7
neighbors_hard_t_0.8
neighbors_hard_t_0.9
neighbors_hard_t_0.925
neighbors_hard_t_0.95
neighbors_hard_t_0.975
neighbors_hard_t_0.99

=⇒ no average

Alpha
0.0 0.2 0.4 0.6 0.8 1.0

Curvature (log)

01234
5678

Ne
ig

hb
or

s_
So

ft

600

800

1000

1200

1400

Alpha
0.0 0.2 0.4 0.6 0.8 1.0 Curvature (log)0 1 2 3 4 5 6 7 8

Ne
ig

hb
or

s_
So

ft

600

800

1000

1200

1400

Al
ph

a 0.00.20.40.60.81.0
Curvature (log)

0 1 2 3 4 5 6 7 8

Ne
ig
hb

or
s_
So

ft

600

800

1000

1200

1400

n = 2048, f = 1
n = 2048, f = 2
n = 2048, f = 4
n = 2048, f = 8

Soft estimate of the number of neighbors as a function of location and curvature

III - Futher possible uses of similarity
• similarity computation =⇒ density estimator =⇒ active learning

=⇒ + local variance (of predictions / of target labels): overfit/underfit detection

• uncertainty estimation: how much should the training set be changed to change the prediction fθ(x) at point x?
=⇒ sum influence factors from all training points xi =⇒ reliability ∝

∑
i kθ(x,xi) / ‖∇θfθ(x)‖2

• all quantities are differentiable =⇒ enforce similarity properties during training!
– incite the network to consider given x and x′ as (dis)similar : add (±) kθ(x,x′) to the loss
– asking a subset S of samples to be treated as similar :∑

i,j∈S,i6=j k
C
θ (xi,xj) rewrites as a function of µ = 1

n

∑
i∈S

∇θfθ(xi)
‖∇θfθ(xi)‖

– dynamics of learning : speed-up effect noticed when training on MNIST with class-similarity enforcement

IV - Analysis of self-denoising phenomena
Multimodal image registration task (RGB image to cadaster map) from noisy labels [1]

Red: initial dataset annotations (noisy)
Blue: prediction after learning from Red
Green: prediction after learning from Blue

Accuracy cumulative distributions (ground truth from [2]),
i.e. fraction of pixels whose registration error 6 abscissa.

=⇒ impressive self-denoising effect. Explanation from Noise2Noise [3]:
same example x showed N times with noisy labels ∼ N (y, σε) =⇒ best prediction ŷ = y ± 1√

N
σε

=⇒ noise averaging effect over labels of similar examples?

Formalism:
input : xi

true (unknown) label : yi
(unknown) noise : εi (iid, centered)

noisy (available) label : ỹi = yi + εi
predicted label : ŷi = fθ(xi)

training loss : L(θ) =
∑
j ||ŷj − ỹj ||2

=⇒

• at convergence ∇θE = 0 =⇒ Ek[ŷ] = Ek[ỹ]
• Ek[a] :=

∑
j aj kθ(xi,xj) : mean value around xi

ŷi − Ek[y] = Ek[ε] + (ŷi − Ek[ŷ])

• ŷi − Ek[y]: prediction error to smoothed true labels
• Ek[ε] ∝ σε ‖kθ(xi, ·)‖L2 =⇒ denoising factor: 0.02
• Shift: (ŷi − Ek[ŷ]) : 4.4 px

Similar patch retrieval, and comparison with perceptual loss:
Source | Closest neighbor patches

Pe
rc
ep

tu
al

Si
m
ila

rit
y

Discussion
• Fast similarity / density estimation opens the door to underfit/overfit/uncertainty analyses and control
• Extended Noise2Noise [3] to non-identical inputs: self-denoising effect as a function of inputs similarities
• Links with Neural Tangent Kernel [4]: same concept! used differently
• Future work: analyze and improve robustness to adversarial attacks
• Code available on GitHub: http://github.com/Lydorn/netsimilarity or scan the QR code:

References
[1] N. Girard et al. Noisy Supervision for Correcting Misaligned Cadaster Maps Without Perfect Ground Truth Data. In IGARSS 2019. [2] E. Maggiori et al. Can semantic labeling methods generalize to any city? the Inria aerial image labeling benchmark. In IGARSS 2017.
[3] J. Lehtinen et al. Noise2noise: Learning image restoration without clean data. In ICML 2018. [4] A. Jacot et al. Neural tangent kernel: Convergence and generalization in neural networks. In NIPS 2018.

http://github.com/Lydorn/netsimilarity

