I - Introduction

- **Goal**: define and estimate the similarity of inputs, as perceived by the neural network
- **Motivation**: strong auto-denoising phenomenon in a multimodal image registration task

 Red: initial dataset annotations
 Blue: aligned annotations round 1
 Green: aligned annotations round 2

 ➞ accuracy far better than label noise!
 ➞ analyze noise averaging effect over labels of similar examples
- **Motivation 2**: better understand neural network decisions
 ➞ display examples considered as similar by the network

II - Building the similarity measure

- **Notations**: \(f_\theta \): trained neural network with parameters \(\theta \); \(x, x' \): possible inputs
- **Similarity def**: influence of \(x \) over \(x' \) i.e. quantify how much an additional training step for \(x \) would change the output for \(x' \) as well.
 1. \(x \) and \(x' \) very different: changing \(f_\theta(x) \) will barely affect \(f_\theta(x') \)
 2. \(x \) and \(x' \) very similar: changing \(f_\theta(x) \) will greatly affect \(f_\theta(x') \)

- Changing \(f_\theta(x) \) by a small quantity \(\varepsilon \) means updating \(\theta \) by \(\delta \theta = \varepsilon \nabla f_\theta(x) \nabla^T f_\theta(x) \)
- After update, new values for \(x \) and \(x' \):
 \[
 f_{\theta+\delta\theta}(x) = f_\theta(x) + \nabla f_\theta(x) \cdot \delta \theta + O(\|\delta \theta\|^2) = f_\theta(x) + \varepsilon + O(\varepsilon^2)
 \]
 \[
 f_{\theta+\delta\theta}(x') = f_\theta(x') + \nabla f_\theta(x') \cdot \delta \theta + O(\|\delta \theta\|^2) = f_\theta(x') + \varepsilon \frac{\nabla f_\theta(x') \cdot \nabla f_\theta(x)}{\|\nabla f_\theta(x)\|^2} + O(\varepsilon^2)
 \]
- The kernel \(\kappa_\theta^0(x, x') = \frac{\nabla f_\theta(x) \cdot \nabla f_\theta(x')}{\|\nabla f_\theta(x)\|^2} \) represents the influence of \(x \) over \(x' \)
- Symmetric kernel bounded in \([-1, 1] \):
 \[
 \kappa_\theta^0(x, x') = \frac{\nabla f_\theta(x) \cdot \nabla f_\theta(x')}{\|\nabla f_\theta(x)\| \|\nabla f_\theta(x')\|}
 \]
- Higher output dimension: \(f_\theta(x) = (f_i(x))_{i \in |d|} \in \mathbb{R}^d \) with \(d > 1 \)
- \(K^0(x', x) \) the \(d \times d \) kernel matrix defined by \(K^0_{ij}(x', x) = \nabla f_j(x') \cdot \nabla f_i(x) \)
- Unitless symmetrized normalized kernel: \(K^0_\theta(x, x') = \frac{1}{d} \text{Tr} K^0_{\theta}(x, x') \)
- Simularity in a single value: \(\kappa_\theta^0(x, x') = \frac{1}{d} \text{Tr} K^0_{\theta}(x, x') \)

III - Estimating density

How many samples \(x' \) are similar to \(x \) according to the network? Many ways to count!

<table>
<thead>
<tr>
<th>hard-thresholding with threshold (\tau \in [0, 1])</th>
<th>soft estimate</th>
<th>less-soft positive-only estimate</th>
<th>(\alpha > 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sum_{x'} \mathbf{1}(\kappa_\theta^0(x, x') > \tau))</td>
<td>(\sum_{x'} \kappa_\theta^0(x, x') = \frac{\nabla f_\theta(x) \cdot \nabla f_\theta(x')}{|\nabla f_\theta(x)|^2}) + (\frac{\nabla f_\theta(x') \cdot \nabla f_\theta(x)}{|\nabla f_\theta(x')|^2})</td>
<td>(\sum_{x'} 2 \kappa_\theta^0(x, x') > \alpha)</td>
<td>(\sum_{x'} \mathbf{1}(\kappa_\theta^0(x, x') > \tau))</td>
</tr>
</tbody>
</table>

IV - Self-denoising experiment

Source | Closest neighbor matches

Similarity: Perceptual

- true (unknown) label: \(y_i \)
- (unknown) noise: \(y_i + \varepsilon_i \) (iid, centered)
- noisy (available) label: \(y_{\tilde{i}} = y_i + \varepsilon \)
- predicted label: \(\tilde{y}_i = f_\theta(x_i) \)
- training loss: \(L(\theta) = \sum_j \|y_j - \tilde{y}_j\|^2 \)
- at convergence \(\nabla_\theta E = 0 \Rightarrow E_L[\tilde{y}_{\tilde{i}}] = E_L[y_i] \)
- \(E_L[\tilde{y}_i] := \sum_j a_j y_{\tilde{i}}(x_j, x_i) \) : mean value around \(x_i \)
- \(\sum_j (\tilde{y}_i - E_L[\tilde{y}_{\tilde{i}}] = E_L[\varepsilon] + (\tilde{y}_i - E_L[\tilde{y}_{\tilde{i}}]) \)
- Denoising factor: \(\|K_\theta \|_2 \leq 0.02 \)
- Shift: \((\tilde{y}_i - E_L[\tilde{y}_{\tilde{i}}]) : 4.4 \text{ px} \)

V - Discussion

- Opens the door to underfit/overfit/uncertainty analyses and control during training
- Similarity enforced during training: dataset-dependent boosting effect (see paper)
- Extended Noise2Noise to the case of non-identical inputs: expressing self-denoising effects as a function of inputs similarities
- Future work: analyse and improve robustness to adversarial attacks
- Code is available on GitHub: github.com/Lydorn/netsimilarity (or scan the QR code)