Input Similarity from the Neural Network Perspective

Guillaume Charpiat¹

Nicolas $Girard^2$

Introduction

- Goal: define and estimate the *similarity* of inputs, as perceived by the neural network
- Motivation 1: strong auto-denoising phenomenon in a multimodal image registration task (cf part IV) \implies accuracy far better than label noise!
- \implies analyze noise averaging effect over labels of *similar* examples
- Motivation 2: better understand neural network decisions
- \implies display examples considered as similar by the network

I - Building the similarity measure

Notations:

 f_{θ} : trained neural network θ : network parameters \mathbf{x}, \mathbf{x}' : possible inputs

Similarity definition:

influence of \mathbf{x} over \mathbf{x}' , quantified as: how much an additional training step to push $f_{\theta}(\mathbf{x})$ in a certain direction would change the output for \mathbf{x}' as well.

• If \mathbf{x} and \mathbf{x}' are very different (for the NN): changing $f_{\theta}(\mathbf{x})$ will barely affect $f_{\theta}(\mathbf{x}')$ • If **x** and **x'** are very similar: changing $f_{\theta}(\mathbf{x})$ will greatly affect $f_{\theta}(\mathbf{x}')$

Changing f_θ(**x**) by a small quantity ε means updating θ by δθ = ε ^{∇_θf_θ(**x**)}/_{||∇_θf_θ(**x**)||²}
After update, new values for **x** and **x'**:

$$f_{\theta+\delta\theta}(\mathbf{x}) = f_{\theta}(\mathbf{x}) + \nabla_{\theta} f_{\theta}(\mathbf{x}) \cdot \delta\theta + O(\|\delta\theta\|^2) = f_{\theta}(\mathbf{x}) + \varepsilon + O(\varepsilon^2)$$
$$\nabla_{\theta} f_{\theta}(\mathbf{x}')$$

$$f_{\theta+\delta\theta}(\mathbf{x}') = f_{\theta}(\mathbf{x}') + \nabla_{\theta} f_{\theta}(\mathbf{x}') \cdot \delta\theta + O(\|\delta\theta\|^2) = f_{\theta}(\mathbf{x}') + \varepsilon \frac{\nabla_{\theta} f_{\theta}(\mathbf{x}')}{\|\nabla_{\theta} f_{\theta}(\mathbf{x}')\|}$$

• Symmetric kernel bounded in [-1,1]: $k_{\theta}^{C}(\mathbf{x},\mathbf{x}') = \frac{\nabla_{\theta}f_{\theta}(\mathbf{x})}{\|\nabla_{\theta}f_{\theta}(\mathbf{x})\|} \cdot \frac{\nabla_{\theta}f_{\theta}(\mathbf{x}')}{\|\nabla_{\theta}f_{\theta}(\mathbf{x}')\|}$

Properties for vanilla neural networks

Theorem. For any real-valued network f_{θ} without parameter sharing, if $\nabla_{\theta} f_{\theta}(\mathbf{x}) = \nabla_{\theta} f_{\theta}(\mathbf{x}')$ for two inputs $\mathbf{x}, \mathbf{x}', \mathbf{x}'$ then all useful activities computed when processing ${f x}$ are equal to the ones obtained when processing ${f x}'$.

Rewriting:
$$k_{\theta}(\mathbf{x}, \mathbf{x}') = \sum_{\text{activities } i} \lambda_i(\mathbf{x}, \mathbf{x}') a_i(\mathbf{x}) a_i(\mathbf{x}')$$
 where $\lambda_i(\mathbf{x}, \mathbf{x}') = \sum_{\text{neuron } j \text{ us}} \lambda_i(\mathbf{x}, \mathbf{x}') a_i(\mathbf{x}, \mathbf{x}') a_i(\mathbf{x}, \mathbf{x}') = \sum_{\text{neuron } j \text{ us}} \lambda_i(\mathbf{x}, \mathbf{x}') a_i(\mathbf{x}, \mathbf{x}') a_i($

 \implies data-dependent importance weights, vs. $\lambda_i(\mathbf{x}, \mathbf{x}') = \lambda_{\text{layer}(i)}$ for the perceptual loss

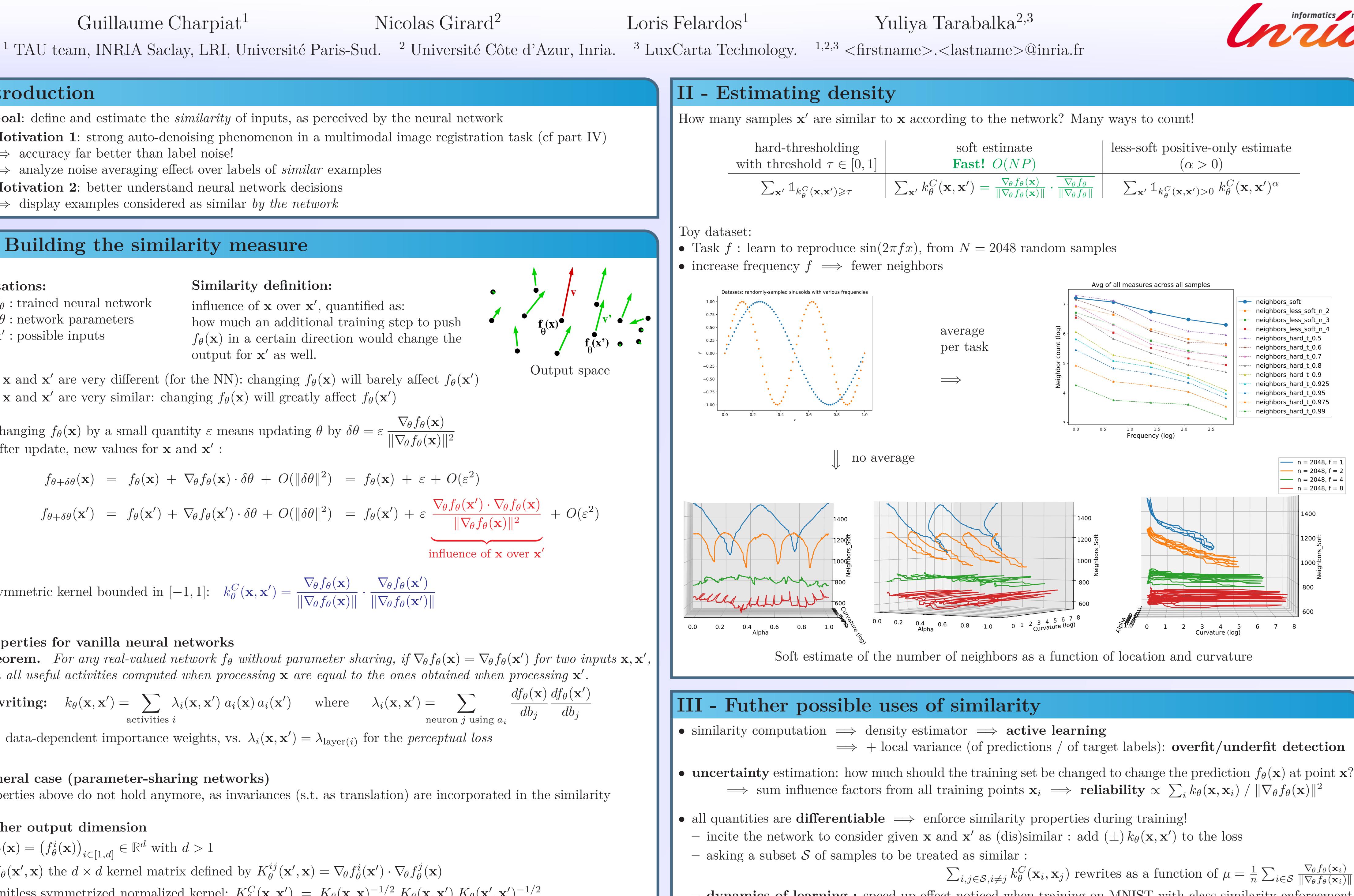
General case (parameter-sharing networks)

properties above do not hold anymore, as invariances (s.t. as translation) are incorporated in the similarity

Higher output dimension

- $f_{\theta}(\mathbf{x}) = \left(f_{\theta}^{i}(\mathbf{x})\right)_{i \in [1,d]} \in \mathbb{R}^{d} \text{ with } d > 1$
- $K_{\theta}(\mathbf{x}', \mathbf{x})$ the $d \times d$ kernel matrix defined by $K_{\theta}^{ij}(\mathbf{x}', \mathbf{x}) = \nabla_{\theta} f_{\theta}^{i}(\mathbf{x}') \cdot \nabla_{\theta} f_{\theta}^{j}(\mathbf{x})$
- Unitless symmetrized normalized kernel: $K_{\theta}^{C}(\mathbf{x}, \mathbf{x}') = K_{\theta}(\mathbf{x}, \mathbf{x})^{-1/2} K_{\theta}(\mathbf{x}, \mathbf{x}') K_{\theta}(\mathbf{x}', \mathbf{x}')^{-1/2}$
- Similarity in a single value: $k_{\theta}^{C}(\mathbf{x}, \mathbf{x}') = \frac{1}{d} \operatorname{Tr} K_{\theta}^{C}(\mathbf{x}, \mathbf{x}')$. • Other metrics possible in output space

e.g. for rotation invariance:
$$k_{\theta}^{C, \text{rot}}(\mathbf{x}, \mathbf{x}') = \frac{1}{2} \sqrt{\left\|K_{\theta}^{C}(\mathbf{x}, \mathbf{x}')\right\|_{F}^{2} + 2 \det K_{\theta}^{C}(\mathbf{x}, \mathbf{x}')}$$

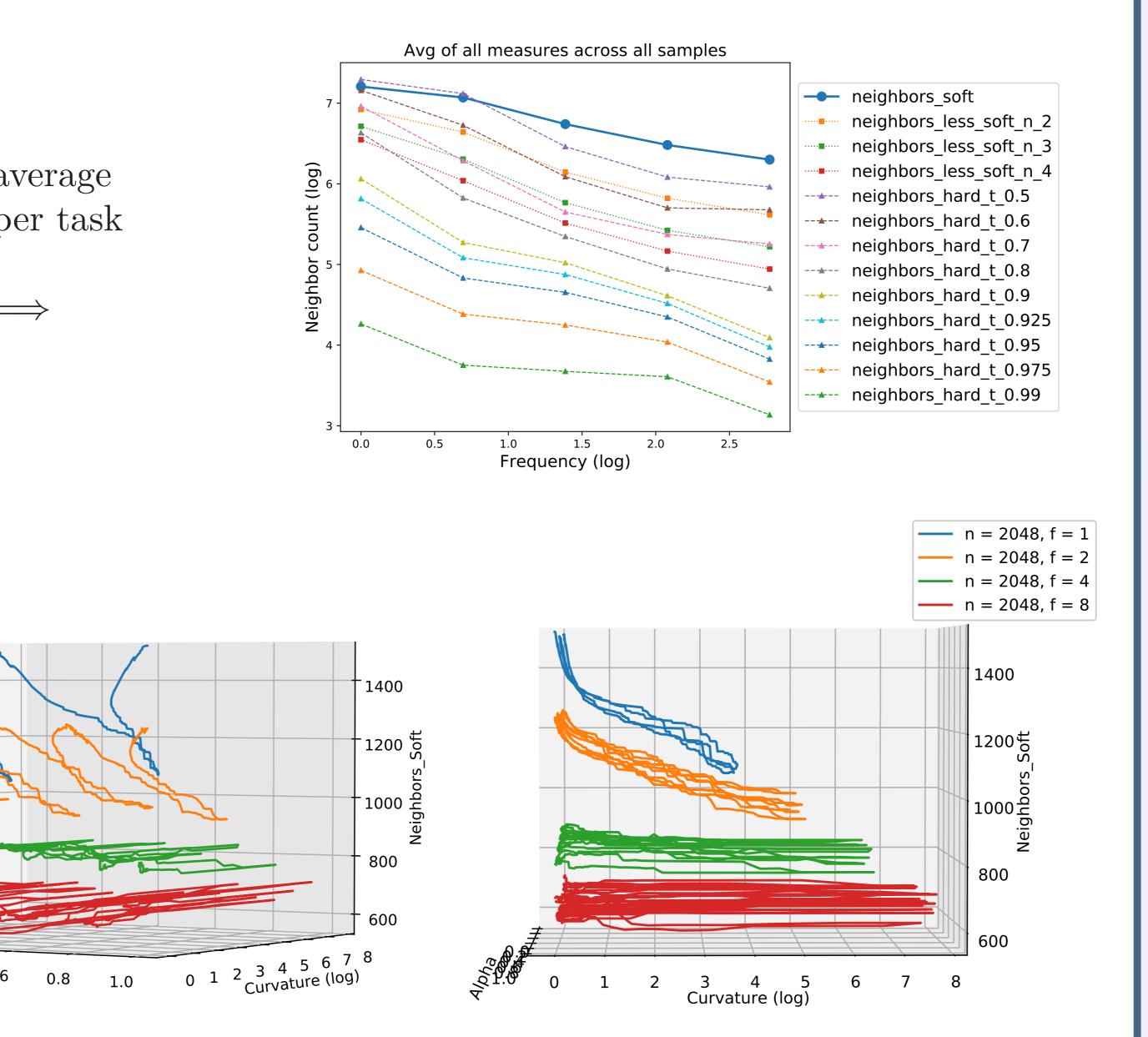


References

N. Girard et al. Noisy Supervision for Correcting Misaligned Cadaster Maps Without Perfect Ground Truth Data. In IGARSS 2019. J. Lehtinen et al. Noise2noise: Learning image restoration without clean data. In *ICML* 2018.

NP	
$rac{f_{ heta}(\mathbf{x})}{\ f_{ heta}(\mathbf{x})\ } \cdot$	$rac{ abla_ heta f_ heta}{\ abla_ heta f_ heta\ }$

less-soft positive-only estimate $(\alpha > 0)$ $\sum_{\mathbf{x}'} \mathbb{1}_{k_{\theta}^{C}(\mathbf{x},\mathbf{x}')>0} k_{\theta}^{C}(\mathbf{x},\mathbf{x}')^{\alpha}$

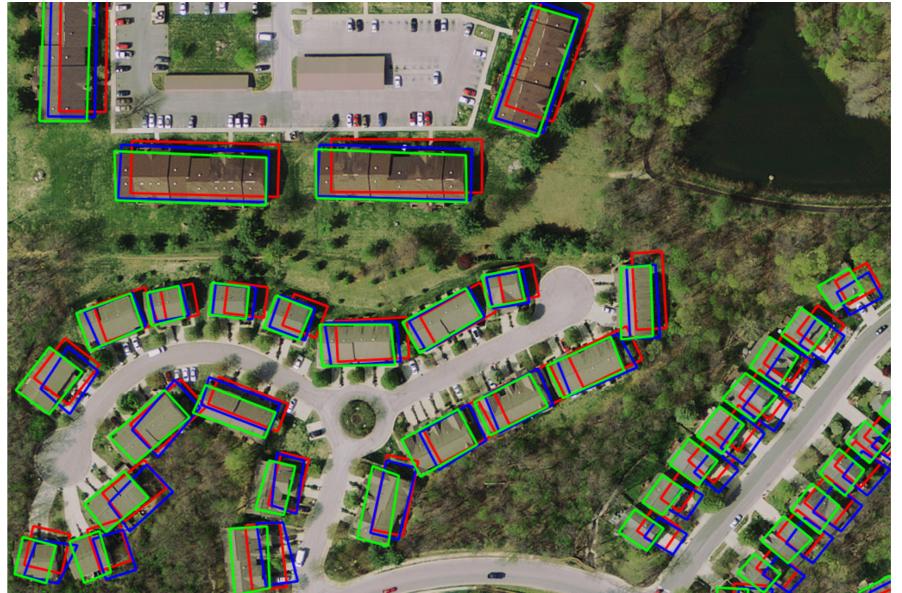


 \implies + local variance (of predictions / of target labels): overfit/underfit detection

 \implies sum influence factors from all training points $\mathbf{x}_i \implies$ reliability $\propto \sum_i k_{\theta}(\mathbf{x}, \mathbf{x}_i) / \|\nabla_{\theta} f_{\theta}(\mathbf{x})\|^2$

 $\sum_{i,j\in\mathcal{S},i\neq j} k_{\theta}^{C}(\mathbf{x}_{i},\mathbf{x}_{j})$ rewrites as a function of $\mu = \frac{1}{n} \sum_{i\in\mathcal{S}} \frac{\nabla_{\theta} f_{\theta}(\mathbf{x}_{i})}{\|\nabla_{\theta} f_{\theta}(\mathbf{x}_{i})\|}$ - dynamics of learning : speed-up effect noticed when training on MNIST with class-similarity enforcement

IV - Analysis of self-denoising phenomena



Red: initial dataset annotations (noisy) Blue: prediction after learning from Red Green: prediction after learning from Blue

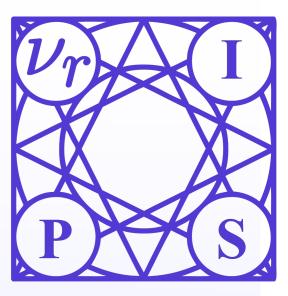
Formalism:

- input : x true (unknown) label : y_i
- (unknown) noise : ε_i (iid, centered)
- noisy (available) label : $\widetilde{y}_i = y_i + \varepsilon_i$
 - predicted label : $\hat{y}_i = f_\theta(\mathbf{x}_i)$
 - training loss : $L(\theta) = \sum_{j} ||\widehat{y}_j \widetilde{y}_j||^2$

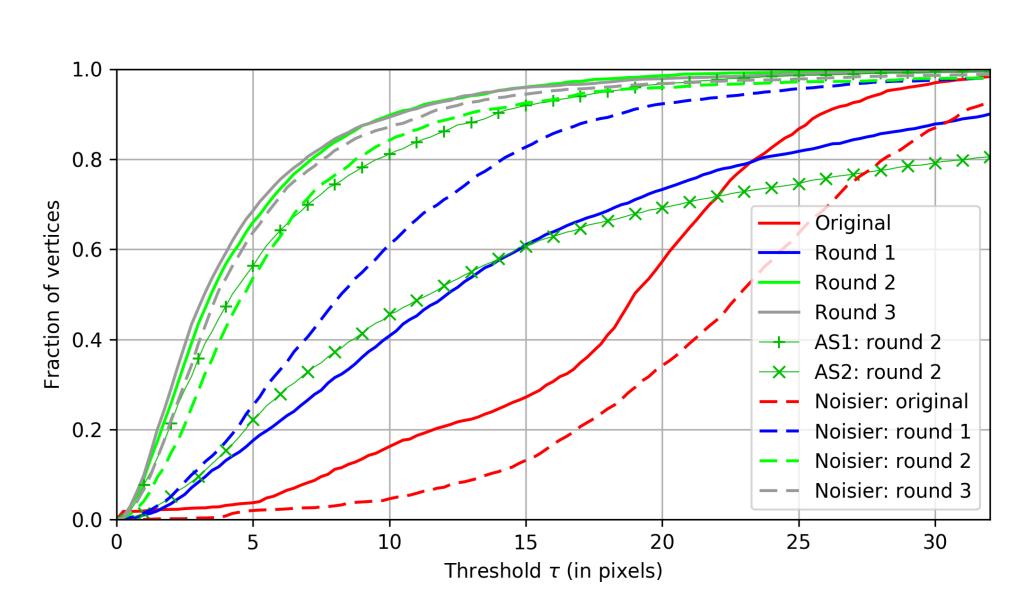
Similar patch retrieval, and comparison with *perceptual loss*:

Discussion

- Future work: analyze and improve robustness to adversarial attacks



Multimodal image registration task (RGB image to cadaster map) from noisy labels [1]



Accuracy cumulative distributions (ground truth from [2]), i.e. fraction of pixels whose registration error \leq abscissa.

 \implies impressive self-denoising effect. Explanation from Noise2Noise [3]: same example x showed N times with noisy labels $\sim \mathcal{N}(y, \sigma_{\varepsilon}) \implies$ best prediction $\hat{y} = y \pm \frac{1}{\sqrt{N}} \sigma_{\varepsilon}$ \implies noise averaging effect over labels of *similar* examples?

- at convergence $\nabla_{\theta} E = 0 \implies \mathbb{E}_k[\widehat{y}] = \mathbb{E}_k[\widetilde{y}]$
- $\mathbb{E}_k[a] := \sum_i a_j k_{\theta}(\mathbf{x}_i, \mathbf{x}_j)$: mean value around \mathbf{x}_i

 $\widehat{y}_i - \mathbb{E}_k[y] = \mathbb{E}_k[\varepsilon] + (\widehat{y}_i - \mathbb{E}_k[\widehat{y}])$

- $\hat{y}_i \mathbb{E}_k[y]$: prediction error to smoothed true labels • $\mathbb{E}_k[\varepsilon] \propto \sigma_{\varepsilon} \|k_{\theta}(\mathbf{x}_i, \cdot)\|_{L^2} \implies \text{denoising factor: } 0.02$
- Shift: $(\widehat{y}_i \mathbb{E}_k[\widehat{y}]) : 4.4 \,\mathrm{px}$

• Fast similarity / density estimation opens the door to underfit/overfit/uncertainty analyses and control • Extended Noise2Noise [3] to non-identical inputs: self-denoising effect as a function of inputs similarities • Links with *Neural Tangent Kernel* [4]: same concept! used differently

• Code available on GitHub: http://github.com/Lydorn/netsimilarity or scan the QR code:

[2] E. Maggiori et al. Can semantic labeling methods generalize to any city? the Inria aerial image labeling benchmark. In IGARSS 2017. [4] A. Jacot et al. Neural tangent kernel: Convergence and generalization in neural networks. In NIPS 2018.