
Shape Statistics for Image Segmentation with Prior

Guillaume Charpiat
Odyssée Team

Ecole Normale Supérieure
Paris - France

guillaume.charpiat@ens.fr

Olivier Faugeras
Odyssée Team

INRIA
Sophia-Antipolis - France
faugeras@sophia.inria.fr

Renaud Keriven
Odyssée Team

ENPC - CERTIS
Marne-la-Vallée - France

renaud.keriven@certis.enpc.fr

Abstract
We propose a new approach to compute non-linear, in-

trinsic shape statistics and to incorporate them into a shape
prior for an image segmentation task. Given a sample set of
contours, we first define their mean shape as the one which
is simultaneously closest to all samples up to rigid motions,
and compute it in a gradient descent framework. We con-
sider here a differentiable approximation of the Hausdorff
distance between shapes. Statistics on the instantaneous
deformation fields that the mean shape should undergo to
move towards each sample lead to sensible characteris-
tic modes of deformation that convey the shape variabil-
ity. Contour statistics are turned into a shape prior which
is rigid-motion invariant. Image segmentation results show
the improvement gained by the shape prior.

1. Introduction
Finding the contour of an object in an image is a very

difficult and ill-posed task. We are here interested in the
precise task of finding an object in an image with the knowl-
edge of a set of examples, i.e. a set of already-segmented
images of this object. Usually, the only information re-
trieved from the set of examples comes from statistics on the
intensity of the two regions (the inside of the object and the
background), which does not carry any information about
the shape of the object. Consequently, during an active-
contour based evolution in order to segment a new image,
the only restriction concerning shape is brought by the reg-
ularity term which imposes the smoothness of the contour.

We introduce here a way to take into account intrinsic
shape statistics into the standard active-contour algorithms
for segmentation. The framework is presented in the con-
text of planar curves but can be easily extended to boundary
surfaces of 3D objects. Our approach is also designed to
be rigid-motion invariant. In comparison to already exist-
ing variational techniques, it is mathematically well-posed,
the shape variability is well conveyed, even for very small
datasets, and it is not expensive computationally.

Note that other, non-variational techniques [12, 8, 1] are

appearing and seem very promising; however they do not
deal directly with the intrinsic notion of whole shapes but
rather with some parts or particular representations of them.
Our work initially designed for the variational approach
could also be used in most of these frameworks.

2. Shape statistics
2.1. Empirical mean

The first task is to define and compute the mean of a
set of shapes in a rigid-motion invariant framework. Shape
stands for any smooth contour, independently on its param-
eterization. Here a rigid motion R is a combination of a
translation, a rotation and a scaling centered on the iner-
tial center of the shape. Thus it can be represented by few
real parameters (rotation angle, scaling factor and two trans-
lation parameters). Inspired by the work of Karcher [6],
Kendall [7], and Pennec [11], we provide the following

Definition 1 Given N shapes (Γ1, · · · ,ΓN ), and an en-
ergy E(·, ·) which expresses the distance between any two
shapes, we define their empirical mean as any shape Γ̂ that
achieves a local minimum of the function µ defined by

µ : Γ 7→ 1
N

∑
i=1,··· ,N

inf
Ri

E2
(
Γ, Ri(Γi)

)
where for each shape Γi the infimum is taken over all rigid
motions Ri.

To compute the empirical mean of N shapes, we initial-
ize all rigid motions Ri so that all rigidly-moved shapes
Ri(Γi) have the same center of mass and average radius.
We start from an initial shape Γ(0), and solve the PDEs

∂tΓ(t) = −∇Γ µ
(
Γ, R1(Γ1), · · · , RN (ΓN )

)
(1)

∂tRi = −∇RiE
2
(
Γ, Ri(Γi))

The derivative ∇Γ µ of the energy µ with respect to the
shape Γ is a normal deformation field defined on Γ. The
two PDEs are solved simultaneously. The evolution of Γ
is done in a level-set framework whereas the parameters
of the rigid motions follow a usual gradient descent in R.
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Note that there may exist several means if µ has several lo-
cal minima. In practice however, we have chosen for E the
differentiable approximation of the Hausdorff distance we
described in [4], in which the expression of its gradient is
also given, and the mean appears to be unique.

2.2. Empirical covariance

As in [4], we now define something similar to the co-
variance matrix for a set of N shapes given their mean
Γ̂. Each shape Γi implies thanks to equation 1 a nor-
mal deformation field αi = −∇Γ̂E2

(
Γ̂, Ri(Γi)

)
on Γ̂.

This field αi is the best instantaneous deformation that one
should apply to Γ̂ to make it closer to Ri(Γi). These fields
α1, α2, ...αN belong to the same space, the tangent space of
the mean curve Γ̂, and they can be seen as functions from
the points of Γ̂ to R. The correlation between any two fields

is 〈αi |αj 〉L2 =
∫

Γ̂

αi(x)αj(x) dx. To express statistics

on the deformation fields, we perform principal component
analysis (PCA) on them and obtain new instantaneous de-
formation fields βk (with associated standard deviations σk)
which form an orthogonal basis of the previous set of defor-
mations. As shown in the sequel, these characteristic modes
of deformation are very sensible and convey the shape vari-
ability of the sample set of shapes.

3. Shape Priors
We now propose several shape priors based on differ-

ent ways to introduce a distance to the shape distribution
(Γ1,Γ2, ...,ΓN ).

3.1. Context

Let C be the evolving curve which we would like to fit
the contour of the object in the new given image I . We
can express any energy minimization as a probability maxi-
mization, the two approaches being very similar. We would
like to maximize the probability P (C|I) with respect to C:

P (C|I) = P (I|C)
P (C)
P (I)

' P (I|C) P (C).

Then P (I|C) is given by the standard approach (based
on intensity gradients, statistics on textures and so on),
while P (C) expresses the probability that C has such shape.
In the sequel P (C) will stand for any positive, upper-
bounded energy depending on C, and its total mass will not
necessarily be equal to one.

3.2. Shape Probability

3.2.1 A simplistic method

Given a distance or energy E between shapes, a new dis-
tance between C and the whole shape distributionD = (Γi)
could be defined as

∑
i E2(C,Γi), or better, as:

∑
i

inf
Ri

E2
(
C,Ri(Γi)

)
The global minimum of this energy is the mean shape Γ̂.
Unhappily the shape variations in D are not well taken into
account because, as this energy is based only on distances in
a very high-dimensional space, it cannot easily distinguish
small irrelevant noise around a sample shape from higher-
amplitude characteristic deformations. Cremers et al. [5]
have applied kernel methods to D and have also considered
the Parzen probability

∑
i exp

(
−E2(C,Γi)

2σ2

)
but in case of

low sample density it should suffer from similar problems.

3.2.2 Gaussian Eigenmodes (PCA on gradients)

It is also possible to include second order statistics from
section 2.2 into the design of the shape probability. The
most significant modes βk are the ones with highest asso-
ciated standard deviation σk; therefore you could take only
the very first modes into account. However the issue to de-
termine the number of modes of interest is not fundamental
since the importance of each mode will be related to its stan-
dard deviation and consequently the consideration of some
extra modes with low standard deviation will not change
significantly the distribution.

The PCA decomposition supposes implicitly that the dis-
tribution of the observed instantaneous deformation fields
αi is Gaussian, that is to say, that for any mode βk, the
distribution of the k-th principal component 〈βk |αi 〉L2 is
Gaussian, which implies that the shape probability should
be of the form

P (C) = P (α) =
∏
k

e
−
〈βk|α 〉2

L2
2σ2

k × e
− ‖Rem.(α)‖22

2σ2
noise

where α = −∇Γ̂E2
(
Γ̂, R(C)

)
with R being the best rigid

motion that minimizes E2
(
Γ̂, R(C)

)
and where Rem.(α)

stands for the remaining part α −
∑

k 〈α |βk 〉L2 that can-
not be described by the eigenmodes. The parameter σnoise
stands for a standard deviation associated to this noise and
can be chosen for instance equal to 0.01 times the lowest
eigenvalue (σk). Note that the corresponding distance be-
tween a shape and the shape distribution is:√∑

k

1
σ2

k

〈α |βk 〉2 +
1

σ2
noise

‖Rem.(α)‖2
2.

From a certain point of view, the level sets of this distance
are ellipsoidal. This distance is a variation on the Maha-
lanobis distance.

3.2.3 Eigenmode Histograms

If the distribution is not Gaussian, the modes could be
computed with independent component analysis instead of



PCA, and for each mode k the histogram hk of the observed
components 〈βk |αi 〉 could be drawn. The histograms may
need some smoothing if the density of the distribution is
low. The empirical probability would be given by:

P (C) = P (α) =
∏
k

hk(〈βk |α 〉).

3.3. Pre-Computing

Except for the first prior, α appears in the expression of
the probability to maximize, which implies that the deriva-
tive of α with respect to C will have to be computed:

∇C α = −∇C∇Γ̂ E2
(
Γ̂, R(C)

)
Hence we need to compute the second order cross-
derivative of E. In the case of the approximation of the
Hausdorff distance, the computation was heroic but we
completed it; the resulting formula is too long to be repro-
duced here. It is available in the supplementary material.

The calculations happen to be sometimes much simpler
if the energy is based not on a shape but on its signed dis-
tance function as in [13], that is to say if you consider that
the real object of interest is a function defined on the whole
image and not only its zero level, regardless of whether it
is a distance function or not. The framework would then be
similar to the one of Leventon et al.[9] which consists in the
application of PCA to signed distance functions. However
such an approach is questionable since a linear combination
of signed distance functions is generally not a signed dis-
tance function and has sometimes a really unexpected zero
level. That is why we keep on considering the Hausdorff
distance approximation [4] between shapes.

4. Toy Example
There exist many approaches to image segmentation in

the computer vision literature, for instance geodesic active
contours [3] or region histograms [2, 10]. We have chosen
here a region intensity histogram criterion. The intensity
histograms of the inside hI and outside hO of the contour C
are real-valued functions of an integer which can have 256
possible values; they associate to any grey level the num-
ber of such colored pixels in the corresponding region. The
two histograms are supposed to be relatively homogeneous
and as much different one from the other as possible. The
segmentation criterion to minimize is a weighted sum of the
length |C| of the contour C plus the correlation between a
slightly smoothed version of the intensity probability distri-
butions of the two regions pI = hI/|I| and pO = hO/|O|
(where |I| is the area of the region I):

1
256

∑
a∈J0,255K

(Gσ ? pI) (a) (Gσ ? pO) (a) + |C|

where Gσ? is the Gaussian smoothing with parameter σ.
Starting with a toy example to show the strength of our

approach, a small set of four similar rectangles with two
kinds of outgrowths is considered (figure 1). For this par-
ticular example, there was no optimization concerning rigid
motion. With the Gaussian eigenmode prior, the segmenta-
tion of a new rectangle that combines the two outgrowths as
well as a third new one leads to a shape which can be de-
scribed as a new combination of the two already observed
outgrowths, ignoring the third one. In order to show the in-
terest of the characteristic modes of deformation, the stan-
dard deviation associated to the noise was chosen as 5.10−3

times the standard deviation associated to the highest eigen-
mode, that is to say that a “noisy” deformation field with
null component on each mode costs 200 times more than a
field of same norm but collinear to the first mode. In order
to be coherent, if there exist eigenmodes with eigenvalues
smaller than the one associated to the noise, then they have
to be forgotten and considered as noise. In the case of fig-
ure 1, the first two eigenmodes were found to have nearly
the same eigenvalue and the two others were about a hun-
dred times smaller, and indeed the segmentations with all
modes or only the first two modes were the same.

The qualitative behavior of the shape prior is to “project”
the evolving shape onto a linear combination of the eigen-
modes, in the sense that the gradient of E from the mean Γ̂
to the evolving shape C will progressively reduce its com-

Figure 1. Top row: the four shapes that compose the learning set.
Middle, left: their mean (in blue), with the two first eigenmodes
(in purple), successively. Middle, right: the new image to be seg-
mented, built approximately as a new combination of the previ-
ously observed deformations plus a new non-observed deforma-
tion. Bottom: segmentation with the only knowledge of the mean,
eigenmodes and eigenvalues, under the Gaussian distribution as-
sumption which is obviously not satisfied (left: initialization; mid-
dle: some steps of the evolution; right: result at convergence).



ponents on eigenmodes (and remaining noisy part) accord-
ing to their standard deviation. As the distribution is sup-
posed to be Gaussian, any increasing of the weight of the
shape prior will make the result nearer to the mean shape,
which is the shape with highest a priori probability.

5. Rigid Registration
A set of 12 images of starfish (found via Google Images,

see figure 2) have been segmented by hand. This could
be automatized in the general case if the examples of the
learning set are chosen so that they are easy images to seg-
ment with usual algorithms. The mean curve Γ̂ of the set
of starfish has been computed with the rigid-motion invari-
ant framework proposed in section 2. The mean and its first
eigenmodes are displayed on figure 3 with amplitude pro-
portional to their eigenvalue.

Figure 2. Some examples from the learning set of starfish.

Figure 3. The mean of the 12 starfish with its first six eigenmodes.

We consider the rigid shape prior E2
(
Γ̂, R(C)

)
in a new

image segmentation task, where C is the current evolving
shape and R a rigid motion. The shape C and the parame-
ters of R are estimated simultaneously within a framework
similar to the previous one. The combination of this prior
with the region intensity criterion is shown on figure 4: the
location of the starfish is found, but of course the shape vari-
ability of the sample set has not been taken into account.
This algorithm is simplistic since the prior is a fixed shape
(up to rigid motion), but it helps finding a not-too-varying
object as well as an occluded object (see figure 5 for com-
parison).

Figure 4. Top left: any reasonable initialization for the region in-
tensity histogram criterion. A part of the image has been erased in
order to increase difficulty. Top middle: automatic change for the
mean at the same location with similar size. Rest: some steps of
the segmentation process with knowledge of the mean shape. This
rigid criterion finds the location of starfish but lacks information
about how to adapt the final shape (see section 6). For a smaller
weight of the prior, the result would include the small white balls
connected to the starfish, as in figure 5.

Figure 5. Top left: same initialization as before. Rest: some steps
of segmentation process without any shape prior, for the same re-
gion criterion. The result lacks the global shape of the starfish and
include the small white balls.

6. Gaussian Eigenmodes Examples

The results of the segmentation of the original image for
different shape priors are shown in figure 6. On the top row
are shown typical results for the previous segmentation cri-
terion without any shape prior, for different initializations.
As the region based criterion has many local minima, the
segmentation result depends strongly on the initialization.
Note that the small white balls around the starfish are diffi-
cult to distinguish from the starfish, and the shaded regions
of the starfish have colors similar to the background. On the
middle row (left handside) is shown the result obtained with
the rigid prior (as in figure 4). This result is much more “sta-
ble” in the sense that it can be obtained from any reasonable
initialization. The reason for this is that the minimization



is processed with respect to only few parameters (transla-
tion, orientation, scaling) instead of a whole shape (which
is infinite-dimensioned). Therefore in practice the space to
be explored in order to find the solution is much smaller in
the case of rigid registration. In order to allow some defor-
mations around the registered mean shape, we start from the
result of the rigid registration, and minimize the sum of the
rigid shape prior and the region histogram criterion. This
minimization is computed with respect to both the evolving
shape and the location parameters of the mean. For high val-
ues of the weight of the shape prior, the result is of course
close to the one obtained by only rigid registration. For low
values, the result is close to the one obtained without shape
prior, that is to say to one similar to the ones on the top row.
A typical example is shown (middle row, right handside) for
a middle value of the weight: as there is no prior on the de-
formations applied to the mean shape, the algorithm leads
to outgrowths that are non-sensible for a starfish. For in-
stance it includes the white balls within the starfish and let
a deformation grow far inside the starfish in order to get rid
of the shadow regions.

Finally, still starting from the result of the rigid regis-
tration, we minimize the sum of the Gaussian eigenmode
shape prior and the region histogram criterion. The evolving
shape C is shown in red and the estimated mean shape lo-
cation R−1(Γ̂) in blue. The deformations that are required
for the inclusion of the white balls within the starfish have
a heavy cost for the shape prior since they are not charac-
teristic deformations of the mean shape. Thus the shape of
the starfish is globally found, except for a part of its shad-
owed regions which the region intensity criterion considers
as included into the background (see top row). However the
deformations due to the shadow have been described as best
as possible as resulting from a combination of eigenmodes :
they have been reduced to a reasonable deformation that a
starfish can undergo, and they look far better than the ob-
served ones in the other segmentation results.

Another example with a database of 14 boletus contours
is shown. The mean and eigenmodes are shown on figure
7 and a segmentation task is performed on figure 8. The
segmentation criterion is the similar to the previous one ex-
cept that colors are considered instead of grey levels. Thus
the color histogram is three dimensioned. The segmenta-
tion process of a new image with this criterion is displayed
on the first row of figure 8. With the same initialization
but with also the rigid shape prior we obtain the evolution
shown in the second row. Then the Gaussian eigenmode
shape prior is used and leads to the final segmentation (bot-
tom, right). The difference between the results is striking.

For all presented examples, the added computational cost
due to the shape prior is reasonable. In these experiments,
the total time cost with the prior was found to be about three
to four times the total time cost without prior. Most of the

time cost is due to the computation of a double integration
needed by the approximation of the Hausdorff distance and
could be reduced by optimizations.

7. Conclusion
We have shown that it is feasible to define intrinsic shape

statistics that are relevant even on very small datasets and to
turn them into a rigid-motion invariant shape prior for image
segmentation at a reasonable computational cost. We have
also shown that in practice, usual segmentation results are
outperformed by the additional use of this shape prior.
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