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Introduction
Image Segmentation

I Find a contour in a given image

I The best curve for a given segmentation criterion

I Criterion based on color homogeneity, texture, edge detectors,
etc.

−→

Image Segmentation

Variational Method
Shape Statistics

I Sample set of contours from already segmented images

I Shape variability ?

I Shape prior ?
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Introduction
Image Segmentation

I Find the best contour for a given criterion

Variational Method
I Energy E to minimize with respect to a curve C

I Compute the derivative of the energy

I Gradient descent: ∂tC = −∇E (C )

I Initialization → local minimum

I Other methods: graph cuts (suitable for few energies)

Shape Statistics
I Sample set of contours from already segmented images

I Shape variability ?

I Shape prior ?
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Introduction
Image Segmentation

I Find the best contour for a given criterion

Variational Method
I Minimize criterion by gradient descent with respect to the

contour

I Most criteria: no shape information

Shape Statistics
I Sample set of contours from already segmented images

I Shape variability ?

I Shape prior ?
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Introduction
Image Segmentation

I Find the best contour for a given criterion

Variational Method
I Minimize criterion by gradient descent with respect to the

contour

Shape Statistics
I Sample set of contours from already segmented images

I Shape variability ?

I Shape prior ?
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Introduction
Shapes and Shape Metrics

Set of Shapes
Topological equivalence

Variational Shape Warping
Gradient Descent
Generalized Gradients
Approximation of the Hausdorff distance

Statistics
Mean and Modes of Variation
Examples
Images

Segmentation with prior
Shape prior (shape probability)
Starfish example
Boletus example

SummaryGuillaume Charpiat PhD Defense
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Set of Shapes

I - Shapes and Shape Metrics
Set of Shapes

I A shape: a smooth set of points in Rn

I C2 : seen as a function from its parameterization into Rn

I F(h0) : distance to its skeleton > h0 [D&Z]
I curvature 6 κ0 = 1/h0

I no double point: distance between two different parts > h0

A

Skel(A)

0
> h

[D&Z]: M.C. Delfour & J.-P. Zolésio, Shapes and Geometries, 2000
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Set of Shapes

Shape Metrics
I Explicit

- Implicit - Path-based [T&Y]

dH(Γ1, Γ2) = max

{
sup
x∈Γ1

dΓ2
(x), sup

x∈Γ2

dΓ1
(x)

}

with
dΓ1(x) = inf

y∈Γ1

d(x, y)

Γ

Γ

H Γ
1 2

Γ

1

2

d   (   ,   )
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Set of Shapes

Shape Metrics
I Explicit - Implicit

- Path-based [T&Y]

dW 1,2(Γ1, Γ2)
2 =

∥∥∥d̃Γ1
−d̃Γ2

∥∥∥2

L2(Ω,R)
+

∥∥∥∇d̃Γ1
−∇d̃Γ2

∥∥∥2

L2(Ω,Rn)
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Set of Shapes

Shape Metrics
I Explicit - Implicit - Path-based [T&Y]

arg min
v , v(0, ·) = Γ1

v(1, ·) = Γ2

∫
t

∥∥∥∥ ∂

∂t
v(t, ·)

∥∥∥∥2

H1(Ω,Rn)

dt

[T&Y]: All work by A. Trouvé & L. Younes
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Topological equivalence

Topological equivalence

On the previous set of smooth shapes:
I Hausdorff distance
I L2 or W 1,2 norm between the signed distance functions
I area of the symmetric difference

These metrics are topologically equivalent !

I Same notion of convergence
I Qualitatively different behaviour at greater scales
I Hausdorff distance: more geometrical sense
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Topological equivalence

Topological equivalence

On the previous set of smooth shapes:
I Hausdorff distance
I L2 or W 1,2 norm between the signed distance functions
I area of the symmetric difference

These metrics are topologically equivalent !
I Same notion of convergence
I Qualitatively different behaviour at greater scales
I Hausdorff distance: more geometrical sense
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Gradient Descent

II - Variational Shape Warping
Shape Gradient

Directional derivative: GΓ

(
E (Γ), v

)
= lim

ε→0

E (Γ + ε v)− E (Γ)

ε

Curve Γ

Deformation field v,
in the tangent space of 

Γ + v

Γ

Gradient: field ∇E , ∀ v ∈ F , GΓ

(
E (Γ), v

)
= 〈∇E | v〉F

Usual tangent space: F = L2:

〈f |g〉L2 =

∫
Γ
f (x) · g(x) dΓ(x)
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Gradient Descent

II - Variational Shape Warping
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Gradient Descent

Gradient Descent Scheme

I Build minimizing path:

Γ(0) = Γ1

∂Γ

∂t
= −∇F

Γ E (Γ)

I Change the inner product F =⇒ change the minimizing
path

I −∇F
Γ E (Γ) = arg min

v

{
GΓ

(
E (Γ), v

)
+

1

2
‖v‖2

F

}
I F as a prior on the minimizing flow
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Gradient Descent

Gradient Descent Scheme

I Build minimizing path:

Γ(0) = Γ1

∂Γ

∂t
= −∇F

Γ E (Γ)

I Change the inner product F =⇒ change the minimizing
path

I −∇F
Γ E (Γ) = arg min

v

{
GΓ

(
E (Γ), v

)
+

1

2
‖v‖2

F

}
I F as a prior on the minimizing flow

[C&P]: G. Charpiat, J.-P. Pons, R. Keriven & O. Faugeras, ICCV 2005
[SYM]: G. Sundaramoorthi, A.J. Yezzi & A. Mennucci, VLSM 2005
[T98]: A. Trouvé, IJCV 1998!
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Gradient Descent

Gradient Descent Scheme
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Generalized Gradients

Generalized Gradients: Spatially Coherent
Flows

I L2 inner product

I H1 inner product

I Set of prefered transformations (e.g. rigid motion)

I Example: two different warpings for the Hausdorff distance

I Change an inner product for another one: linear symmetric
positive definite transformation of the gradient

I Gaussian smoothing of the L2 gradient: symmetric positive
definite

〈f |g 〉L2 =

∫
Γ

f (x) · g(x) dΓ(x)
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Generalized Gradients

Generalized Gradients: Spatially Coherent
Flows

I L2 inner product

I H1 inner product

I Set of prefered transformations (e.g. rigid motion)

I Example: two different warpings for the Hausdorff distance

I Change an inner product for another one: linear symmetric
positive definite transformation of the gradient

I Gaussian smoothing of the L2 gradient: symmetric positive
definite

〈f |g 〉L2 =

∫
Γ

f (x) · g(x) dΓ(x)

〈f |g 〉H1 = 〈f |g 〉L2 + 〈∂x f |∂xg 〉L2

∇H1

E = arg inf
u

∥∥∥u −∇L2

E
∥∥∥2

L2
+ ‖∂xu‖2

L2
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Generalized Gradients

Generalized Gradients: Spatially Coherent
Flows

I L2 inner product

I H1 inner product

I Set S of prefered transformations (e.g. rigid motion)
Projection on S : P
Projection orthogonal to S : Q (P + Q = Id)

I Example: two different warpings for the Hausdorff distance

I Change an inner product for another one: linear symmetric
positive definite transformation of the gradient

I Gaussian smoothing of the L2 gradient: symmetric positive
definite

〈f |g 〉S = 〈P(f ) |P(g)〉L2 + α 〈Q(f ) |Q(g)〉L2
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Generalized Gradients

Generalized Gradients: Spatially Coherent
Flows

I L2 inner product

I H1 inner product

I Set of prefered transformations (e.g. rigid motion)

I Example: two different warpings for the Hausdorff distance

∂Γ

∂t
= −∇ΓdH(Γ, Γ2)

usual rigidified

I Change an inner product for another one: linear symmetric
positive definite transformation of the gradient

I Gaussian smoothing of the L2 gradient: symmetric positive
definite

Guillaume Charpiat PhD Defense

Shape Statistics for Image Segmentation with Prior



Introduction Shapes and Shape Metrics Variational Shape Warping Statistics Segmentation with prior Summary
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Generalized Gradients

Generalized Gradients: Spatially Coherent
Flows

I L2 inner product

I H1 inner product

I Set of prefered transformations (e.g. rigid motion)

I Example: two different warpings for the Hausdorff distance

I Change an inner product for another one: linear symmetric
positive definite transformation of the gradient

I Gaussian smoothing of the L2 gradient: symmetric positive
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Generalized Gradients

Extension to non-linear criteria

I −∇F
Γ E (Γ) = arg min

v

{
GΓ

(
E (Γ), v

)
+

1

2
‖v‖2

F

}

I −∇F
Γ E (Γ) = arg min

v

{
GΓ

(
E (Γ), v

)
+ RF (v)

}
I Example: semi-local rigidification

wx : y ∈ Ω 7→ A(x)(y−C (x))⊥+T (x)

v(x) = wx(x)

R(T ,A,C ) = ‖v‖2
L2 +

∥∥‖Dxwx(·)‖L2(Ω)

∥∥2

L2(Γ)
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Approximation of the Hausdorff distance

Differentiable approximation of the Hausdorff
distance

I Hausdorff distance:

dH(Γ1, Γ2) = max

{
sup
x∈Γ1

dΓ2(x), sup
x∈Γ2

dΓ1(x)

}
with dΓ1(x) = inf

y∈Γ1

d(x, y).

I max, sup and inf : not differentiable

I Replace sup
x∈Γ

f (x) by Ψ−1

(
1

|Γ|

∫
Γ
Ψ

(
f (x)

)
dx

)
with Ψ: differentiable, increasing function

I In practice: Ψ(a) = aα. Similar trick for inf and max.

I The approximation tends to the Hausdorff distance.

I The approximation error can be expressed as an analytic
function of the parameters.
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Mean and Modes of Variation

III - Mean and Modes of Variation

I Previous framework: to warp a shape onto another one

I Given a set (Γi )16i6N of shapes: their mean M ?

I center of mass: M minimizes
∑

i=1,··· ,N
dH(M, Γi )

2

I N fields βi = ∇M

(
dH(M, Γi )

2
)

M

Γ

Γ

j

i

I Covariance matrix Λi ,j = 〈βi |βj 〉M
I PCA on instantaneous deformation fields βi :

diagonalize Λ =⇒ characteristical modes mk
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Examples

Mean of eight fish.
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Examples

Example: set of 2D corpi callosi contours
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Examples

First modes of deformation:
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Images

Images
I Same approach for a sample of images (instead of contours)

I Compute the mean and then statistics on deformation

I To each image Ii , associate a diffeomorphism hi

I Warped images: Ii ◦ hi

hi

−→

Ii Ii ◦ hi
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Images

Images
I Same approach for a sample of images (instead of contours)

I Compute the mean and then statistics on deformation

I To each image Ii , associate a diffeomorphism hi

I Warped images: Ii ◦ hi

Ii
hi

−→ Ii ◦ hi

Ij
hj

−→ Ij ◦ hj


LCC (Ii ◦ hi , Ij ◦ hj)
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Images

I Similarity between two images: LCC (Ii ◦ hi , Ij ◦ hj) where:

LCC (A,B) =

∫
Ω

vA,B(x)2

vA(x) vB(x)
dx

with
vA(x): local variance of A in a gaussian neighborhood of x.

A B

− A(x) − B(x)
A,B

v    (x) = ( )( ) xA(y) B(y) K(  ,  )y dy

y y
x x

_ _∫

[HER]: G. Hermosillo, PhD Thesis, 2002

I Find (multi-scale !) best diffeomorphisms which minimize
1

n − 1

∑
i 6=j

LCC (Ii ◦ hi , Ij ◦ hj) +
∑
k

R(hk)
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Images

The first 5 images Ii .

The first 5 warped images Ii ◦ hi .
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Images

The last 5 images.

The last 5 warped images.
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Images

Raw mean (pixel by
pixel) of the previous
ten faces

Mean of the previous
warped ten faces

One of the ten faces
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Images

Characteristic modes of deformation:

I spatial modes (statistics on hi )

I intensity modes (statistics on Ii ◦ hi )

I combined modes (both)
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Images

++

+

0

−

−−

Characteristic modes of deformation (a column = a mode)
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Images

Each column represents a mode, applied to their mean image with
amplitude α = {σk ,−σk}.

Animations for the first two modes:
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Images

Expression recognition task

The learning set.
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Images

Expression recognition task (with J.-Y. Audibert):

I Support vector machine (SVM) on diffeomorphisms from the
computed mean to a new image with expression

I cross-validation error: 24 on 65
(random would give 52)

I comparison: SVM on raw
images: 27 errors

I SVM on diffeomorphisms from a new normal face to the same
new face with expression (after alignment on the mean)

I cross-validation error: 12 on
65

I comparison: SVM on
intensity variations between
normal and expressive faces
(without alignment): 17
errors
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Images

Expression recognition mistakes are labeled.
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Shape prior (shape probability)

IV - Image segmentation

Shape priors

I Rigid registration of the mean: no shape variability.

I PCA on fields αi : gaussian eigenmodes βk

P(C ) = P(α) =∏
k

exp
(
−〈α |βk 〉2 /2σ2

k

)
× exp

(
−‖N(α)‖2/2σ2

n

)
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Shape prior (shape probability)

IV - Image segmentation

Shape priors

I Rigid registration of the mean: no shape variability.

I PCA on signed distance function
[LGF]: M. Leventon, E. Grimson & O. Faugeras, ICCV 2000

[R&P]: M. Rousson & N. Paragios, ECCV 2002

I PCA on fields αi : gaussian eigenmodes βk

P(C ) = P(α) =∏
k

exp
(
−〈α |βk 〉2 /2σ2

k

)
× exp

(
−‖N(α)‖2/2σ2

n

)
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Shape prior (shape probability)

IV - Image segmentation

Shape priors

I Rigid registration of the mean: no shape variability.

I Parzen method: P(C ) =
∑

i

exp
(
−d(C ,Ci )

2/2σ2
)

[CRE]: D. Cremers, T. Kohlberger & C. Schnörr, PR 2003

I PCA on fields αi : gaussian eigenmodes βk

P(C ) = P(α) =∏
k

exp
(
−〈α |βk 〉2 /2σ2

k

)
× exp

(
−‖N(α)‖2/2σ2

n

)
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Shape prior (shape probability)

IV - Image segmentation

Shape priors

I Rigid registration of the mean: no shape variability.

I Parzen method on the fields αi = −∇ME 2(M,Ci )

P(C ) = P(α) =
∑

i

exp
(
−‖α− αi‖2

L2/2σ2
)

I PCA on fields αi : gaussian eigenmodes βk

P(C ) = P(α) =∏
k

exp
(
−〈α |βk 〉2 /2σ2

k

)
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IV - Image segmentation

Shape priors

I Rigid registration of the mean: no shape variability.

I PCA on fields αi : gaussian eigenmodes βk

P(C ) = P(α) =∏
k

exp
(
−〈α |βk 〉2 /2σ2

k

)
× exp

(
−‖N(α)‖2/2σ2

n

)

Guillaume Charpiat PhD Defense

Shape Statistics for Image Segmentation with Prior



Introduction Shapes and Shape Metrics Variational Shape Warping Statistics Segmentation with prior Summary

Shape prior (shape probability)

I Invariance to rigid motion:
Maximization with respect to shape C and rigid motion R

P
(
R(C )

)

I Field priors require the computation of the second
cross-derivative of the distance:
∇C∇ME 2(C ,M)
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Shape prior (shape probability)

I Invariance to rigid motion:
Maximization with respect to shape C and rigid motion R

P
(
R(C )

)
I Field priors require the computation of the second

cross-derivative of the distance:
∇C∇ME 2(C ,M)
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Shape prior (shape probability)

Toy example:
learning set

Significant
modes and
new image

Segmentation
with the
Gaussian
eigenmode
prior
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Starfish example

Learning set of 12 starfish
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Starfish example

The mean of the set of starfish with its first six eigenmodes.
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Starfish example

Segmentation without prior (intensity region histogram criterion).
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Starfish example

Rigid registration of the mean (same criterion).
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Starfish example

without
shape
prior
(for two
different
initializa-
tions)

with the
mean
(without
and with
noise)
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Starfish example

Mean (+ noise)
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Starfish example

Mean + eigenmodes.
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Boletus example

Boletus example

Some of the 14
mushrooms

Automatic align-
ment while com-
puting the mean

−→
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Boletus example

First modes
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Boletus example

Segmentation task
(color region histogram criterion)

Initialization

Result:

without with shape prior
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Summary
I Set of shapes and shape metrics

I Topological equivalence of usual metrics

I Warping via a gradient descent
I Importance of the inner product (priors on minimizing flows)
I Extension to non-linear priors

I Mean and characteristic modes of deformation
I first and second order statistics for shapes and images

I Segmentation with shape prior

References:
I Approximations of shape metrics and application to shape warping and empirical

shape statistics, in Foundations of Computational Mathematics, Feb. 2005.

I Generalized Gradients: Priors on Minimization Flows, in IJCV (already online).

I Image Statistics based on Diffeomorphic Matching, in ICCV 2005.
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Discussion
I Gradient of the approximation of the Hausdorff distance vs.

“gradient” of the distance itself

I Hausdorff distance vs. kernel distances

I Local shape descriptors

I Path-based distances vs. gradient of a distance with special
inner products

I New criterion or minimization method for locally rigid motion

I Shape prior for segmentation vs. object detection

I Image classification vs. shape classification and image
segmentation

Guillaume Charpiat PhD Defense

Shape Statistics for Image Segmentation with Prior



Introduction Shapes and Shape Metrics Variational Shape Warping Statistics Segmentation with prior Summary

Discussion
I Gradient of the approximation of the Hausdorff distance vs.

“gradient” of the distance itself

I Hausdorff distance vs. kernel distances

I Local shape descriptors

I Path-based distances vs. gradient of a distance with special
inner products

I New criterion or minimization method for locally rigid motion

I Shape prior for segmentation vs. object detection

I Image classification vs. shape classification and image
segmentation

Guillaume Charpiat PhD Defense

Shape Statistics for Image Segmentation with Prior



Introduction Shapes and Shape Metrics Variational Shape Warping Statistics Segmentation with prior Summary

Discussion
I Gradient of the approximation of the Hausdorff distance vs.

“gradient” of the distance itself

I Hausdorff distance vs. kernel distances

I Local shape descriptors

I Path-based distances vs. gradient of a distance with special
inner products

I New criterion or minimization method for locally rigid motion

I Shape prior for segmentation vs. object detection

I Image classification vs. shape classification and image
segmentation

Guillaume Charpiat PhD Defense

Shape Statistics for Image Segmentation with Prior



Introduction Shapes and Shape Metrics Variational Shape Warping Statistics Segmentation with prior Summary

Discussion
I Gradient of the approximation of the Hausdorff distance vs.

“gradient” of the distance itself

I Hausdorff distance vs. kernel distances

I Local shape descriptors

I Path-based distances vs. gradient of a distance with special
inner products

I New criterion or minimization method for locally rigid motion

I Shape prior for segmentation vs. object detection

I Image classification vs. shape classification and image
segmentation

Guillaume Charpiat PhD Defense

Shape Statistics for Image Segmentation with Prior



Introduction Shapes and Shape Metrics Variational Shape Warping Statistics Segmentation with prior Summary

Discussion
I Gradient of the approximation of the Hausdorff distance vs.

“gradient” of the distance itself

I Hausdorff distance vs. kernel distances

I Local shape descriptors

I Path-based distances vs. gradient of a distance with special
inner products

I New criterion or minimization method for locally rigid motion

I Shape prior for segmentation vs. object detection

I Image classification vs. shape classification and image
segmentation

Guillaume Charpiat PhD Defense

Shape Statistics for Image Segmentation with Prior



Introduction Shapes and Shape Metrics Variational Shape Warping Statistics Segmentation with prior Summary

Discussion
I Gradient of the approximation of the Hausdorff distance vs.

“gradient” of the distance itself

I Hausdorff distance vs. kernel distances

I Local shape descriptors

I Path-based distances vs. gradient of a distance with special
inner products

I New criterion or minimization method for locally rigid motion

I Shape prior for segmentation vs. object detection

I Image classification vs. shape classification and image
segmentation

Guillaume Charpiat PhD Defense

Shape Statistics for Image Segmentation with Prior



Introduction Shapes and Shape Metrics Variational Shape Warping Statistics Segmentation with prior Summary

Discussion
I Gradient of the approximation of the Hausdorff distance vs.

“gradient” of the distance itself

I Hausdorff distance vs. kernel distances

I Local shape descriptors

I Path-based distances vs. gradient of a distance with special
inner products

I New criterion or minimization method for locally rigid motion

I Shape prior for segmentation vs. object detection

I Image classification vs. shape classification and image
segmentation

Guillaume Charpiat PhD Defense

Shape Statistics for Image Segmentation with Prior



Introduction Shapes and Shape Metrics Variational Shape Warping Statistics Segmentation with prior Summary

Thank you for your attention !

References:
I G. Charpiat, O. Faugeras & R. Keriven, Approximations of shape metrics and

application to shape warping and empirical shape statistics, in Foundations of
Computational Mathematics, Feb. 2005.

I G. Charpiat, P. Maurel, J.-P. Pons, R. Keriven & O. Faugeras, Generalized
Gradients: Priors on Minimization Flows, in IJCV (already online).

I G. Charpiat, O. Faugeras & R. Keriven (& J.-Y. Audibert), Image Statistics
based on Diffeomorphic Matching, in ICCV 2005.
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