
i-LATEX: Manipulating Transitional Representations
between LATEX Code and Generated Documents

Camille Gobert

gobert@lri.fr

Université Paris-Saclay, CNRS, Inria

Laboratoire Interdisciplinaire des Sciences du Numérique

91400 Orsay, France

Michel Beaudouin-Lafon

mbl@lri.fr

Université Paris-Saclay, CNRS, Inria

Laboratoire Interdisciplinaire des Sciences du Numérique

91400 Orsay, France

Transitional Representation

1
PDF

Code

2

4

3

Figure 1: Three representations of the same table in i-LATEX (adapted fromZhou et al. [51]). 1 The code of the table is compiled
into a static PDF element. 2 The table can be clicked in the PDF (as suggested by the blue halo) to display its transitional—
here, the code organised in a grid. 3 The user can interact with the transitional to modify the structure and the content of
the table. 4 The transitional and the code are synchronised, so that every change in either one of them instantly updates the
other representation (e.g., inserting a new column in the grid adds cell separators in the code).

ABSTRACT
Document description languages such as LATEX are used extensively

to author scientific and technical documents, but editing them

is cumbersome: code-based editors only provide generic features,

while WYSIWYG interfaces only support a subset of the language.

Our interviews with 11 LATEX users highlighted their difficulties

dealing with textually-encoded abstractions and with the mappings

between source code and document output. To address some of

these issues, we introduce Transitional Representations for docu-
ment description languages, which enable the visualisation and

manipulation of fragments of code in relation to their generated

output.We present i-LATEX, a LATEX editor equippedwith Transitional

Representations of formulae, tables, images, and grid layouts. A

16-participant experiment shows that Transitional Representations

let them complete common editing tasks significantly faster, with

fewer compilations, and with a lower workload. We discuss how

Transitional Representations affect editing strategies and conclude

with directions for future work.

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA
© 2022 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not

for redistribution. The definitive Version of Record was published in CHI Conference
on Human Factors in Computing Systems (CHI ’22), April 29-May 5, 2022, New Orleans,
LA, USA, https://doi.org/10.1145/3491102.3517494.

CCS CONCEPTS
• Human-centered computing→ User studies; Graphical user
interfaces; • Applied computing→ Markup languages.

KEYWORDS
LATEX document, Code editor, Transitional Representation

ACM Reference Format:
Camille Gobert and Michel Beaudouin-Lafon. 2022. i-LATEX: Manipulating

Transitional Representations between LATEXCode andGeneratedDocuments.

In CHI Conference on Human Factors in Computing Systems (CHI ’22), April
29-May 5, 2022, New Orleans, LA, USA. ACM, New York, NY, USA, 16 pages.

https://doi.org/10.1145/3491102.3517494

1 INTRODUCTION
Document preparation systems are digital systems for authoring

documents. They are often divided into two categories: document

description languages, such as LATEX, Markdown, Asciidoc and

HTML; and WYSIWYG software, such as Microsoft Word, Apple

Pages and LibreOffice Writer. Document description languages re-

quire to code the document using a special markup language that

must be transformed to generate an output document. This two-step

process enables some of these languages to offer powerful reuse

and customisation mechanisms, e.g., through scripting, but their

textual format and the dualism between the code of a document

https://doi.org/10.1145/3491102.3517494
https://doi.org/10.1145/3491102.3517494

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Camille Gobert and Michel Beaudouin-Lafon

and its output make them less user-friendly and more error-prone.

By contrast, WYSIWYG software present documents in their final

form at all times, and enable users to directly edit their content

and style. While this makes them more accessible, it also hinders

the usage of abstractions and limits the control they offer over the

structure of the document. As a result, both approaches are widely

used, and neither seems to supplant the other.

In this work, we focus on LATEX, an advanced document descrip-

tion language. Our goal is to understand the needs and difficulties

encountered by LATEX users and create novel tools to address them.

LATEX was created by Leslie Lamport in 1984 [29] and is based on

TEX, a document composition system developed by Donald Knuth

in the late 1970s [26]. LATEX offers powerful abstraction mechanisms

and a high level of control over the generated document, at the

cost of long compilation times and high complexity. Generating

a PDF document from LATEX code often takes seconds to minutes,

and according to Knauff & Nejasmic, even expert users may “ex-
perience a loss of productivity when LATEX is used, compared to other
document preparation systems” [24]. Yet, nearly four decades after

its inception and despite its flaws, LATEX is still widely used to write

scientific and technical documents.

This paper introduces the concept of Transitional Representation
(transitional for short) and presents i-LATEX, a LATEX editor featuring

four types of transitionals. Transitionals are interactive visualisa-

tions of fragments of source code that can be displayed and edited

by clicking on the output they generate (Figure 1).

Our contribution is empirical, theoretical, and technical. After

reviewing related work, we present the results of an interview study

of 11 LATEX users and formulate recommendations to improve the

design of LATEX editors. We introduce the concept of transitional

and explain how LATEX editors can benefit from it. We then present

i-LATEX and describe its user interface, features, implementation,

limitations, and extension capabilities. Finally, we report on an

evaluation study of transitionals in i-LATEX. We conclude with a

discussion of the effects of transitionals on the editing of LATEX

documents and present directions for future work.

2 RELATEDWORK
Very few studies have addressed the usability of LATEX. Therefore,

we first examine existing tools for authoring LATEX documents and

their limits. We then present relevant previous work on augmented

documents and hybrid programming environments and discuss

how they could be adapted to improve LATEX editors.

2.1 LATEX editing tools
LATEX has been reported to be one of the few authoring systems

that is extensively used in the world of academic research, along

with Microsoft Word [24]. Overleaf
1
, a popular online LATEX editor,

recently reported a user base of 6 million users, as well as partner-

ships with scientific venues—such as ACM CHI—to provide their

users with appropriate templates for writing papers [43].

Since LATEX is a command language, most LATEX editors look and

work like code editors. Some of them try to provide a user expe-

rience closer to that of WYSIWYG systems, but to the best of our

knowledge, they either provide basic source code formatting, e.g.,

1
https://www.overleaf.com

AUCTeX
2
or Overleaf’s rich text mode, or a fully WYSIWYG inter-

face that hides the code and only supports a limited set of features,

e.g., Compositor
3
. LyX

4
represents documents in an intermediate

format that focuses on the content and the structure rather than

the final layout and style—a paradigm referred to asWhat You See
Is What You Mean (WYSIWYM) by its authors. However, it uses

its own document format, and the use of the LATEX language is re-

stricted to importing/exporting the document as LATEX and inserting

short pieces of code, e.g., for mathematical formulae.

LATEX code can also also be synthesised, either using a program-

ming language or an interactive code generator. As an example,

LATEX code for tables can be generated both programatically, e.g.,

using the pandas data-science library5 in Python, and interactively,

e.g., using the tablesgenerator.com web application. The caveat of

both approaches is their unidirectionality: once the code has been

generated, changes made to the code will not be processed by these

tools, and re-generating the code will overwrite these changes.

Finally, certain tools address the lack of mapping between the

code and its output. Some LATEX editors or plugins such as LaTeX-

Tools
6
for Sublime Text enable to preview mathematical formulae

and images by hovering on the code. Gliimpse [9] animates the

transition between the LATEX code and generated PDF. SyncTEX [31]

helps find which region of the code corresponds to a part of the

PDF—and vice-versa. However, none of them facilitate the edition

of the code.

In summary, current tools for editing LATEX documents focus on

either the code or the output, with limited support for mapping

one to the other or synthesising code from more appropriate user

interfaces. We believe instead that both the code and the generated

document can be useful to author LATEX documents. We therefore

explore how these two representations of the same document can

be improved and better connected.

2.2 Augmented documents
In his 2011 essay Explorable Explanations7, Bret Victor argues in
favor of making traditionally static documents more interactive.

Since then, several systems have been presented that augment docu-

ments with interactive features. Dragicevic et al.’s multiverses [10]

let readers explore multiple visualisations and analyses of experi-

mental data in a single document. SpaceInk [45] lets users interact

with documents by making space for hand-written annotations.

ScolarPhi [19] augments scientific papers with overlays that pro-

vide definitions and context for technical terms and symbols. The

technical challenge of creating more interactive documents has

also been addressed by libraries such as Tangle
8
, specialised tag

languages such as Idyll [8], and computer vision-based systems

such as Chameleon [34].

In addition, the recent surge in popularity of literate comput-
ing [15] such as computational notebooks (e.g., Jupyter notebooks

9
)—

a modern take on Knuth’s literate programming [25]—has fostered

2
https://www.gnu.org/software/auctex/

3
https://compositorapp.com/

4
https://www.lyx.org/

5
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_latex.html

6
https://latextools.readthedocs.io/en/latest/

7
http://worrydream.com/ExplorableExplanations/

8
http://worrydream.com/Tangle/

9
https://jupyter.org/

https://www.overleaf.com
tablesgenerator.com
https://www.gnu.org/software/auctex/
https://compositorapp.com/
https://www.lyx.org/
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_latex.html
https://latextools.readthedocs.io/en/latest/
http://worrydream.com/ExplorableExplanations/
http://worrydream.com/Tangle/
https://jupyter.org/

i-LATEX: Manipulating Transitional Representations between LATEX Code and Generated Documents CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

the development of more interactive systems for editing documents

that interweave text and code. mage [23] and B2 [49] display objects

encoded as text in code cells (such as dataframes) as interactive

widgets. Users can use them to visualise the data they manipulate in

their documents, and the systems synthesise code that reify the in-

teractions of the users into code so they can be reused.Wrex [11] is a

similar system that synthesises data table transformations inferred

from user-provided examples. Sketch-n-Sketch [20] blurs the line

between code and graphics even more, as it generates vector graph-

ics images using a functional language and lets the user modify the

code by interacting with the image. It illustrates Chugh et al.’s idea

of output-directed programming [7], which consists in editing the

source code of a program by directly manipulating its output.

With the exception of Sketch-n-Sketch, all these systems are

either (1) designed for readers rather than authors or (2) focused on

facilitating themanipulation of the code that is part of the content of

the document—not the code that generated it. While the techniques

they use may be adapted to LATEX editors, none of them currently

facilitates the authoring of code-based textual documents.

2.3 Hybrid programming environments
Programming has become an increasingly visual task since the

1970s. Smalltalk-80 [16], one of the first object-oriented languages,

reified abstract objects into GUI elements. More recently, block lan-

guages such as Scratch [44] have become popular tools for teach-

ing programming to children. Yet, visual programming has not

replaced textual languages and code editors, which remain the pri-

mary means for creating software today. Instead, following early

work such as Avrahami et al.’s FormsVBT system [3] and Erwig

& Meyer’s heterogeneous languages [14], programming environ-

ments have becomemore andmore hybrid over the last two decades.
We present some examples following Myers’ taxonomy [36] that

distinguishes between visual languages, which enable to create pro-

grams by combining graphical elements, and code visualisations,

which represent programs or data primarily encoded as text.

On the one hand, visual programming languages have been

increasingly connected to textual languages. Recent work suggests

that both students and professionals could benefit from hybrid block

languages that combine blocks and text [4, 47]. Droplet
10

and Pencil

Code
11

already support this dual view of programs. Frame-based

editors [28] unify both views by supporting direct manipulation

of blocks of code—a modern take on structured editors [46]. Data-

flow oriented languages follow a similar trend, as illustrated by

programming environments such as Nodes
12

and Enso
13
, which

combine data-flow graphs with textual programming.

On the other hand, code editors have been augmented with vari-

ous types of code visualisations. They have been used to present

data to programmers, including raw values [32], small inline vi-

sualisations [21, 33], or large schematic data structures [17, 22,

41]. They have also been used to manipulate the underlying code.

Codelets [39] and Graphite’s palettes [38] support the insertion

of code snippets through specialised interfaces. Livelits [37] push

10
https://droplet-editor.github.io/

11
https://pencilcode.net/

12
https://nodes.io/

13
https://enso.org/

this approach further by enabling to manipulate textual expres-

sions as GUI elements even after they have been inserted. Similarly,

Clint [53] displays nested loops as diagrams that can be manipu-

lated to transform and optimise the code of parallelised programs.

Projectional editors, such as Envision [2] and those generated by

Barista [27] and JetBrains MPS
14
, can display any node of an ab-

stract syntax tree as raw text, structured text, e.g., nested conditions

as two-ways tables, or graphics, e.g., state machines as graphs.

Recent work suggests that the convergence of textual and visual

programming towards hybrid environments facilitates code com-

prehension [1], code manipulation [52], and error finding [40]. Yet,

in spite of LATEX’s similarity with “regular” programming languages,

and with the exception of pre-rendering formulae and images, we

are not aware of any hybrid LATEX editor that eases document au-

thoring in LATEX.

3 INTERVIEWS OF LATEX USERS
Given the scarcity of previous studies of LATEX users, we conducted

a series of interviews and performed a thematic analysis of the

difficulties they encounter. We present the methodology, the gener-

ated themes, and our recommendations for designing better LATEX

editors, which informed our design of i-LATEX.

3.1 Methodology
Participants. We interviewed 11 participants (5women and 6men,

age 21 to 40), recruited via an internal lab mailing list and a post on

a Facebook group of university students. They did not receive any

compensation for their participation. Eight were MSc students, the

others were a PhD student, a high-school teacher, and an associate

professor. Most of them were neither beginners nor experts with

LATEX. Each of them had used LATEX in the weeks or months prior

to the interview, usually with Overleaf (5/11) or Texmaker (5/11).

Additional details are available in Appendices A and B.

Setup. All the interviews were conducted remotely via screen

sharing. They lasted about one hour in average.

Procedure. The interviews were semi-structured: we used a list

of predefined questions to guide the participants, but they were

invited to speak freely about each problem they encountered. We

adjusted the duration and the questions with three pilot interviews

with colleagues.We started each interview by asking the participant

to show us the last LATEX document they worked on (both the code

and the generated PDF). We first asked them questions related to

the document itself (the type of document, the editor they used,

etc). We then asked them to describe the different problems they

faced, whether they eventually solved them or not and how, and to

show us the related parts of the code when it was relevant. We also

invited them to tell us about problems they encountered in other

LATEX documents. We concluded each interview with a few more

general questions about the participants’ experience with LATEX.

Data collection. We recorded the screen and the audio of the

participants. We also took notes of the problems they faced and the

solutions they used.

14
https://www.jetbrains.com/mps/

https://droplet-editor.github.io/
https://pencilcode.net/
https://nodes.io/
https://enso.org/
https://www.jetbrains.com/mps/

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Camille Gobert and Michel Beaudouin-Lafon

Data analysis. We conducted a thematic analysis [6] of the col-

lected data. The first author manually transcribed the first eight

interviews, including descriptions of the screen content and partic-

ipants’ actions when it was relevant. He generated more than 650

codes from the transcripts. Codes that conveyed the same idea with

different phrasings were merged, resulting in about 80 different

codes, that we then used to generate three sets of themes: a first

set that grouped sub-themes by topic; a second set that grouped

sub-themes by problem (independently of the context in which

they appeared); and a third set that mixed the first two based on

discussions with colleagues, with the goal of identifying the most

relevant themes within the first two sets. This analysis eventually

resulted in five themes. In addition, we also listened to the three

interviews that were not transcribed to (1) ensure that they fit with

the final set of themes and (2) extract quotes from them to both

reinforce and contrast what had already been highlighted in the

other interviews.

3.2 Results
We present the five themes, summarised as follows: the code must

be editable by the users (T1), users struggle with the language (T2),

plain text is sometimes inappropriate (T3), abstractions are difficult

to visualise (T4), and the code-PDF duality slows users down (T5).

3.2.1 T1 — The code must be editable by the users. While most par-

ticipants were comfortable using graphical text processors, P2 com-

plained that the documents are not properly structured and both P4

and P11 highlighted the quality of documents produced with LATEX.

No participant was aware of or interested in WYSIWYG LATEX

editors, and no participant who used Overleaf actively used its rich
text mode. When she had a look at it, P8 criticised that hiding the

code made it harder to make certain changes, such as transforming

a section into a subsection, therefore requiring “more manipulation,
more movement on the screen” (P8) to regularly go back to the code.

P7, the only participant who used it once to write a document,

explained that it was because she only had to write plain text to take

notes during a history class, without any kind of structured content.

Some participants (5/11) needed the ability to write code to

program features that did not exist out of the box. Most notably,

P10 created a template for a collection of hundreds of high-school

philosophy exams. It enabled him to generate multiple indexes (by

author, by topic, by type of philosophical question, etc.) that are

automatically updated when he adds new exams later on—a level

of automation he could not achieve with his usual text processor:

“with LibreOffice, you can only have an alphabetical index for one
category” (P10). The separation between content and style also

enabled him to generate two PDFs with very different layouts by

switching a single parameter in the code: one for teachers with

extra metadata, and one for students that mimicked the official

exam’s layout.

Several participants (7/11) explained that they appreciate reusing

code. The most expert ones make extensive use of custom com-

mands to reuse mathematical expressions or duplicate a parame-

terised drawing. P5 explained that having access to the code makes

it possible to easily copy-paste snippets found on the internet (by

contrast with having to follow the steps listed in a tutorial) and to

reuse the code of his scientific papers to create presentations for

conferences with Beamer. It also enables him to generate documents

from scratch. When he was responsible for creating several hun-

dred similar badges for a Go contest, he wrote a Python program to

generate the appropriate LATEX code: “If you ask me to make you two
hundred badges in Word, you’re on your own; I’m not doing it” (P5).

Most participants (9/11) reported using comments within the

code. They rely on them for different purposes: (1) remembering

the role of a package or command; (2) discussing with co-authors;

(3) keeping unused pieces of code that might be useful later; (4)

commenting off lines to find the source of an error; (5) reusing parts

of an old piece of code to write a new version; or (6) planning what

to write in each part of the document.

3.2.2 T2 — LATEX users struggle or avoid learning the language. Five
participants explained that they only learn LATEX when they need to

solve a problem they face. Yet, several of them also pointed out that

this often happens in moments of rush, such as before a deadline,

therefore leaving them no opportunity to take the time to under-

stand the code that caused or solved a problem. As a consequence,

fixing specific problems was often described as time-consuming

when there was no ready-made solution. For this reason, P2 and P4

regretted not taking a course on LATEX. P6, on the other hand, said

that he would not make such an effort: “You find a document that
works, you copy and paste it, and you iteratively change it. [. . .] I will
not learn the structure of the code.” (P6).

Instead of trying to learn the language or reading the documenta-

tion of the packages they use, all the non-expert participants (8/11)

reported that they would rather search for solutions to specific

problems: creating a particular style or layout, adjusting a certain

margin, fixing an error, etc. In addition, most participants (9/11)

seem to forget or ignore the exact names of some commands or the

order and the meaning of their parameters, even when they use

them on a regular basis: “I know I had to use a minipage, but I still
had to look for how to use it” (P3). However, all but one participant
reported that is was not always easy to find a solution to their

problems. When she had to insert ancient Greek into her docu-

ment, P8 “looked into stuff for linguists and historians”, but could
not find an answer.

3.2.3 T3 — Plain text is inappropriate for structured content. Many

participants (8/11) complained about the difficulty of describing

structured elements such as tables, sub-figures, and chemical for-

mulae. In particular, creating or editing tables was often described

as “really annoying” (P1). According to P7, because of the syntax of

the code of a table, “forgetting a column is hell” because “for every
row I must count to put [the cursor] in the right place” (P7).

In response to these difficulties, more than half the participants

(6/11) use third-party tools. Both P2 and P4 started to create sub-

figures by combining several images in LATEX before switching to

Inkscape or Adobe Illustrator because it gave them “more control
on the layout” (P2). P8 reported that one of her co-authors used

Paint to annotate a photography they used in their LATEX document,

something that would have been directly “feasible with Word” (P8).
To create tables from data stored inMicrosoft Excel spreadsheets, P7

exported them as CSV files that she loaded into tablesgenerator.com,

an online table editor that generates LATEX code. However, because

of the complexity of the generated code, she had to repeat the whole

process every time she modified the data in Excel. P1, P7 and P9 also

tablesgenerator.com

i-LATEX: Manipulating Transitional Representations between LATEX Code and Generated Documents CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

reported using this website to create tables from scratch. In addition,

P7 also complained about not being able to export the LATEX code

of the molecules she created in ChemDraw, a professional tool for

chemists, because the textual syntax of the chemfig package was
“the hardest thing I’ve ever used in LATEX” (P7).

3.2.4 T4 — Abstractions are difficult to visualise and formalise.
Many commands in LATEX require specifying dimensions, such as

the size of an image or the margin around an element. However,

according to several participants (7/11), it is difficult to express a

length that they picture in their head as a value with a unit, and it

is difficult to picture what a numeric length represents. P8 faced

this issue when she inserted images into her document: “I don’t
necessarily know the exact size I want the image to be, but [I know] I
want it to be that size in my head” (P8). P1 complained about having

to try several dimensions to find the right one—a time-consuming

strategy, “especially when you have a lot of figures, as it takes a long
time to compile.” (P1). To overcome these difficulties, some partic-

ipants (4/11) mentioned using commands they are more familiar

with in an alternative way. For example, P3 inserted white text in his

document to skip several lines of text: “I suppose there was a simpler
way to do it, but since I was in quite a hurry, that’s how it is” (P3).

Unlike dimensions, LATEX often determines the positions of vari-

ous elements for the user. This can result in a lack of control that

is not always desirable. P1 explained that her way of positioning

figures was “not very rational”, and P2 complained about the diffi-

culty of displaying an image next to a paragraph that refers to it

when LATEX places it elsewhere. These difficulties were sometimes

caused by a lack of understanding of positioning parameters, such

as those of figure environments, which were often copied with

the rest of a piece of code. Even the more expert participants strug-

gled with positioning. In spite of reading about “how the compiler
positions images” to better control the process, P4 admitted that

she still had to lower her expectations concerning the positions of

her figures. P5 explained that even though he felt comfortable with

the drawing commands of the TikZ package, he would prefer to

be able to directly manipulate some of the elements that compose

his drawings instead of “trying to guess” the correct coordinates or
doing “some kind of trigonometry” to calculate them.

3.2.5 T5 — The code-PDF duality causes errors and slowdowns. Par-
ticipants who wrote a lot of mathematical formulae (3/11) com-

plained about the difficulty of relating regions or symbols in the

PDF to the code that generated them. When writing mathematical

papers, both P5 and P9 have trouble (1) locating the code of the

mathematical formula displayed in the PDF and (2) finding the

symbol they want to edit within the code of the formula. To solve

the first problem, they often search for a few words from the text

located just above or below the formula in the code editor, although

P5 admitted that this technique regularly fails. This approach is

not unrelated to the lack of support for SyncTeX in the LATEX editor

that P5 uses, and he even explained that he considers switching

to another editor for that reason. Neither P5 nor P9 have found

a solution to the second problem: every time they want to edit a

formula, they have to read the code to find the part to change.

Two participants complained about the time required to compile

the code into a PDF, which not only increases the cost of trying

alternative layouts, but also makes errors very time-consuming: “if

I get it wrong it costs me a minute” (P5). Both of them developed

strategies to minimise this cost. In order to compile less often, P1

distinguishes between writing and formatting phases: “when I’m
in a writing phase [. . .] I just write [. . .] but when I’m formatting, I
always open [the code editor and the PDF] on the side, to compile
regularly.” (P1). P5, on the other hand, gave the example of a package

that caches images created with TikZ: as long as the code is not

modified, it “re-injects the image instead of the TikZ code” (P5). In
addition, P4 mentioned that compilation time was an important

factor for choosing a LATEX editor.

3.3 Recommendations for design
This analysis reveals a variety of problems faced by LATEX users

and suggests several opportunities to improve the design of LATEX

editors. We summarise them in four recommendations, R1 to R4.

First, always give access to the code to the users (R1) to enable
them to modify, reuse, or generate parts of their documents in ways

that may be unsupported by the rest of the user interface. Second,

facilitate specific and common actions (R2), especially for less

experienced and intermittent users of LATEX, such as organising sub-

figures and editing tables. Third, provide visual representations
of abstractions used in LATEX (R3) to facilitate the constitution of

mental representations of the document, and therefore reduce the

number of compilation cycles. Fourth,make the links between
the code and the PDF more visible and specific (R4) to aid the

identification and modification of the piece of code responsible for

a particular PDF element, and conversely.

4 TRANSITIONAL REPRESENTATIONS
Most document authoring systems rely on a single editable repre-

sentation of the document—whether it is plain text for document

description languages
15
, structured content for WYSIWYM, or the

final output forWYSIWYG.While this reduces the cost of switching

among multiple representations, it also constrains users to visualise

and interact with every element of every document through a single

type of representation.

We argue that a single editable representation of the code of a

LATEX document is not always sufficient. In order to address this

limitation, we introduce Transitional Representation (transitional for
short) as the reification [5] of abstract concepts that are not readily

accessible in the code into interactive visualisations. We frame the

concept, define its key properties, compare it with related concepts

and systems, and show how it applies to LATEX.

4.1 Definition and properties
We define a transitional as an alternative representation of textual

code that mediates the link between a fragment of the source code

and the part of the output document that it generates.We situate the

concept among existing document authoring paradigms in Figure 2.

A transitional can be used to visualise the code of an element with

a representation that is complementary to the raw code and to the

output, e.g. by showing the grid structure of a table with no visible

cells, as well as to manipulate the code more conveniently than by

editing it directly, e.g. by reordering rows and columns in that grid

using drag and drop (Figure 1). Transitionals are local, bidirectional,
15
We do not consider the generated documents here, as they usually are not interactive.

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Camille Gobert and Michel Beaudouin-Lafon
Le

ve
lo

fa
bs

tr
ac

tio
n

Separate media Coded document Final document

output

code

specification

sketches

schematics

WYSIWYG

Document
description
languagesOutput-directed

programming

WYSIWYM

Transitionals
(update)

Transitionals
(display)

Code generators

Code
inference

Figure 2: Space of document authoring paradigms. Nodes
represent document representations, and arrows represent
authoring paradigms that connect different representations.
Transitionals can be displayed by interacting with the out-
put, and modifying them updates the code—and conversely.
Some other missing connections for coded documents (dot-
ted) have recently been addressed by synthesising code from
sketches [12] or from changes in the output [35].

persistent, and embeddable representations of textual code that are
primarily designed for document description languages.

Locality. Transitionals are local representations of the code
that are specialised for interacting with a single part of the code,

which represents a single element of the document. In contrast with

WYSIWYG systems such as Adobe Dreamweaver and output-direct

programming systems such as Sketch-n-Sketch [20], which require

the whole output to be interactive, transitionals can be used with a

static output, as they can be displayed in addition to the code and

the output—and not instead of them.

Bidirectionallity. Transitionals are bidirectionally linked to
the code they represent, so that every change in the transitional is

reflected in the code, and vice-versa. Unlike code generated once

from a specification or a sketch [12], this approach enables users

to dynamically switch between the code of an element and its

transitional, depending onwhich representation is themost adapted

to their current needs. As an example, a user may use a transitional

to interactively adjust the size of an image, and switch to the code

to fine-tune the width and height parameters.

Persistence. Transitionals are persistent representations of
the code: similar to Livelits [37], they can be hidden and dis-

played again at any time. Unlike code generators and Graphite’s

palettes [38], they are updated when the code is modified.

Embeddability. Transitionals can bedisplayed fromandwithin
the output, where they can be visually embedded, without re-

quiring to write a special command in the code as in mage [23]

or to locate the piece of code responsible for generating a certain

element—with all the challenges it implies, as discussed in theme T5.

4.2 Related concepts
The concept of Transitional Representation bridges the gap between

projectional editing [27], where fragments of code can be displayed

as alternative representations when needed, and output-directed
programming [7], where manipulating the output of a program

transforms its source code. Transitionals address the following two

limitations of these concepts by enabling a form of “output-directed

projectional editing”.

The first limitation is conceptual: the content of the code or

the output alone may not be sufficient or adapted for performing

certain edits. As an example, Mozilla Firefox’s developer tools in-

clude an alternative representation of the value of a CSS timing

function property that may be hard to interpret and edit as code,

even though the webpage is updated after each modification of

the CSS (Figure 3). The authors of Sketch-n-Sketch make a similar

observation regarding the usage of output-directed programming

in non-trivial documents: “manipulation of the final output alone
will be insufficient”, and therefore, “some of the intermediate process
should be exposed on the canvas for manipulation” [20]. Transitionals
address this limitation by design, as a transitional can include more,

less or different information, to make up for what is missing in the

output or help the user focus on what is important. In addition,

by providing multiple transitionals for a single element, users can

choose the representation that fits their current need.

The second limitation is technical: depending on the document

description language, evaluating the code may be too slow for real-

time code synthesis and document rendering. As an example, non-

trivial LATEX documents are usually too slow to compile to enable

real time updates of the output when the code is modified—let alone

turning the static output generated by the LATEX compiler into a fully

interactive document [30]. By displaying a projection of the code

of a single element of interest, the compiler can be traded for an ad-

hoc static analysis that extracts all the information required by the

transitional in real-time. In addition, by choosing a projection that is

visually similar to the generated element, transitionals enable a form

of local live programming—not unlike what Projection Boxes [32]

offer in the code editor—where users can see the effects of the

changes made in a specific region of the code on the projection in

real time, and vice-versa.

Transitionals are further inspired by recent work on GUIs for

code such as Graphite [38], mage [23], and Livelits [37], which

enable users to use GUIs to write or edit specific pieces of code

more conveniently while letting them edit the code directly for

all the other edits. However, unlike these systems, transitionals

are the only alternative representations of code to satisfy the four

properties presented earlier: there is no bidirectionality in Graphite,

no persistence in mage, and no embeddability in Livelits. We are

not aware of other concept of GUI for code tailored for real-world

document description languages as conceptually and technically

challenging as LATEX.

4.3 Application to LATEX
The properties of transitionals and the concepts they build upon

make them conceptually and technically adapted to support the

edition of LATEX documents. Our thematic analysis shows that while

editing the code of LATEX documents is sometimes preferred or re-

quired (T1), plain text is ill-adapted for working with structured

content (T3) and abstract values (T4). It also highlights two areas

where current LATEX editors fall short: supporting specific actions

on common types of elements (T2), and connecting the code with

its output (T5). We argue that transitionals are a good option for

i-LATEX: Manipulating Transitional Representations between LATEX Code and Generated Documents CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Figure 3: Alternative representation for timing functions of
CSS animations in Mozilla Firefox. The curve on the right
represents the function that controls an animation that runs
in the webpage. Manipulating the two handles transforms
the curve and updates both the numeric parameters of the
CSS property’s value (shown below) and the animation run-
ning in the webpage (not shown).

improving LATEX editors, as they adhere to the four recommenda-

tions presented earlier: they complement code editing (R1), they

are designed to facilitate specific tasks in specific elements (R2),

they can visualise structures and abstractions (R3), and they help

linking a piece of code and its output (R4).

5 THE i-LATEX EDITOR
Informed by the results of the thematic analysis, we selected four

candidates for Transitional Representations in LATEX and created

i-LATEX, a LATEX editor featuring interactive code visualisations for

mathematical formulae, tables, images, and grid layouts. We present

the design of i-LATEX’s user interface, the four transitionals, the

key points of the implementation, and its current limitations and

possible extensions.

5.1 User interface
The interface of i-LATEX resembles that of most traditional i-LATEX
editors, with the source code on the left and the generated PDF on

the right. However, some elements in the PDF have a blue outline,

indicating that they are interactive. Clicking on one of them displays

an interactive visualisation of the piece of code that generated

the element (Figure 4). These transitionals let users (1) visualise

invisible structures and abstractions and (2) modify the source code

of the document in a more interactive way.

Depending on the position of the clicked element on the screen,

the transitional is displayed in a panel either above or below it so

as to leave the rendered element as visible as possible. The rest of

the document output is darkened until the transitional is closed by

clicking on the cross at the top-right of the panel or anywhere on

the darkened document. Closing the transitional also recompiles

the LATEX document and updates the PDF.

The title bar of each transitional displays the name of the file and

the range of the code that is visualised. Clicking on it displays the

code in the code editor by opening the appropriate file if needed and

scrolling to the relevant section of the code. The user can edit the

code directly in the code editor. The code is re-parsed after every

keystroke, to update the visualisation. If an error is introduced,

the piece of code is highlighted in red in the code editor, and the

visualisation is replaced by an error message that invites the user

to fix the problem. The visualisation is restored as soon as the error

is fixed.

5.2 Transitionals
We have implemented four kinds of transitional in i-LATEX (Figure 5):

three for standard LATEX structures (mathematics, images, tables),

and one for a custom grid layout.

5.2.1 Mathematics. Interactive mathematical formulae can be

added to the document with the imaths environment, a wrapper

around the align* environment
16
. The interactive visualisation of

a formula (Figure 5a) displays an editable copy of the code of the

formula along with the typeset formula. Hovering over a symbol

or a group of symbols in the typeset formula—such as a fraction—

highlights the piece of code that produced it, and clicking on it

selects that piece of code. Editing the copy of the code instantly

updates the typeset formula in the transitional. If an error is de-

tected, an error message is instantly displayed in the visualisation,

so that the user can fix the code of the formula without having to

recompile the whole document. This transitional provides a strong

link between the code of a formula and its output (R4), while ac-

knowledging that many users prefer to edit the code rather than

directly manipulate formulae (R1).

5.2.2 Tables. Interactive tables can be added with the itabular
environment, with the same syntax as the standard tabular envi-

ronment. The interactive visualisation of a table (Figure 5b) displays

the code of the table in a grid, as well as the type of each column

in the header row. The raw content of each cell can be selected in

the code by clicking and edited by double-clicking. Columns and

rows can be inserted and deleted via a contextual menu as well as

reordered by dragging their respective headers. This transitional

lets users see and manipulate the table structure that is usually only

visible in the PDF (R3), making common transformations such as

inserting and rearranging rows and columns much easier than with

a code editor (R2). By displaying the raw content of the table, the

user is free to use arbitrary LATEX code within each cell (R1).

5.2.3 Images. Interactive images can be added with the

\iincludegraphics command, with the same syntax as the stan-

dard \includegraphics command
17
. The interactive visualisation

of an image (Figure 5c) displays it at the same size as in the PDF.

The image can be resized by dragging one of the handles. Clicking

a button displays a cropper that lets the user select the region of

the image to display. These manipulations automatically update the

parameters of the command by inserting, modifying, or deleting the

width, height, trim and clip options. This transitional facilitates

visualising and formalising dimensions (R3) and helps discover and

use lesser-known command options such as cropping (R2).

16
As provided by the amsmath package (https://ctan.org/pkg/amsmath).

17
As provided by the graphicx package (https://ctan.org/pkg/graphicx).

https://ctan.org/pkg/amsmath
https://ctan.org/pkg/graphicx

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Camille Gobert and Michel Beaudouin-Lafon

1

4 3

2

Figure 4: User interface of i-LATEX when a transitional has been displayed. 1 Code editor. 2 Generated PDF. 3 Transitional
representation of the code of a table displayed on top of the PDF, just below the table that has been clicked. 4 Raw ver-
sion of the code displayed in the transitional. The document was adapted from Xiong et al. [50] by replacing all the tabular
environments by itabular.

(a) Mathematical formula (b) Table

(c) Image (d) Grid layout

Figure 5: User interface of the four transitionals available in i-LATEX, showing examples of how they can be used. (a) Hovering
over the ∇ symbol highlights the corresponding command in the code. (b) Right-clicking a cell displays a contextual menu
that enables to insert and delete rows and columns. (c) Dragging a handle resizes the image while preserving the same aspect
ratio. (d) Hovering over a cell displays buttons for inserting adjacent cells or deleting the cell.

i-LATEX: Manipulating Transitional Representations between LATEX Code and Generated Documents CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

5.2.4 Grid layouts. Interactive grid layouts can be added using the

gridlayout environment, a custom environment we developed

specifically for i-LATEX. It consists of minipage environments ar-

ranged in a fixed-size area made up of rows of cells parameterised

with relative dimensions to support local positioning of various

types of content (text, images, tables, etc). The interactive visuali-

sation of a grid layout (Figure 5d) displays the otherwise invisible

grid-like structure. Cells can be resized by dragging a separator

between two cells, reordered by dragging a cell, as well as inserted

and deleted by clicking the appropriate button while hovering over

a cell. Rows can be resized in a similar fashion, and a new row

can be appended at the end of the grid by clicking a button. As

with interactive tables, each cell displays its raw LATEX content. It

cannot be edited directly from the visualisation in the current ver-

sion, but clicking on a cell selects its content in the code editor.

This transitional supports the editing of structured content (R3)

and the concrete representation of abstractions such as relative

dimensions (R4). It also illustrates that transitionals may foster the

development of new LATEX environments that would otherwise be

too difficult to use with raw code only.

5.3 Implementation
i-LATEX is implemented as an extension for Visual Studio Code

18
that

consists of approximately 11,000 lines of TypeScript code, along

with HTML and CSS. We open-sourced the code of the extension

at https://github.com/exsitu-projects/ilatex. We present the key

aspects of the implementation below.

5.3.1 Providing custom commands and environments. In order to

use the special commands and environments presented above to cre-

ate elements that can be visualised and manipulated through transi-

tionals, a custom ilatex package must be included in the preamble

of the document. Each use of one of these commands/environments

is associated with a unique identifier that is written to an external

file of code mappings, along with other metadata such as the loca-

tion in the code (file path and line number) and the current values

of several length macros such as \textwidth, so that lengths using
them can be evaluated by i-LATEX. In addition, a PDF annotation

containing the same unique identifier is added to the generated

PDF, with the same bounding box as the element produced by the

command/environment. While we decided to create custom com-

mands and environments for the sake of simplicity, the existing

ones we rely upon—such as \includegraphics—could be patched

to behave in the way we just described, therefore enabling LATEX

users to benefit from transitionals without having to learn new

commands/environments.

5.3.2 Extracting the code to visualise. Unlike most programming

languages, LATEX has no predefined grammar [13]. Instead, it uses

some unique features, such as TEX’s category codes [26, ch. 7], which

enable to modify the lexical meaning of every character (such as \
denoting the start of a macro) anywhere in the document—therefore

making LATEX theoretically impossible to parse using conventional

parser generators
19
. Nevertheless, certain conventions are very

commonly used, such as the structure of environments. In order to

18
https://code.visualstudio.com/

19
See https://tex.stackexchange.com/a/4205 for more details on this limitation.

extract the pieces of code to visualise, we developed a LATEX parser

that accepts a reasonable proportion of documents that follow these

conventions. Every time the document is compiled, i-LATEX reads

and parses every file whose path exists in the file of code mappings

into an abstract syntax tree (AST). For each code mapping, it then

attempts to find the corresponding piece of code in the given file,

at the given line and of the given type, and creates a model of the

transitional with the matching AST node. The parser is designed

to be simple enough to minimise the number of parsing errors and

the execution time. Each transitional model can perform a more

thorough analysis of its own AST node if necessary.

5.3.3 Displaying the augmented PDF. Once the document has been

compiled into an annotated PDF, it is displayed using a custom

PDF renderer
20
. The renderer extracts all the annotations inserted

by the custom commands/environments along with their unique

identifiers and uses them to add a blue halo to every element of the

PDF whose code can be visualised. When one of these elements is

clicked, i-LATEXmatches the unique identifier of the element with the

correct model. If a matching model is found, it is used to populate

the view of the transitional with the appropriate data that was

extracted by the model, such as the content of each cell of a table.

When the user interacts with a transitional, the view notifies the

controller of every action of interest. The latter forwards them to

the model, which is responsible for modifying the code of the LATEX

document. Every time the code is modified by a visualisation model

or by the user, the AST of the file is updated, and every model

whose AST is modified updates its internal representation of the

code and provides new data to the view.

5.4 Limitations
5.4.1 Features. A first limitation of i-LATEX is the fact that transi-

tionals cannot interpret certain pieces of code even though their

syntax may be valid and they may produce the expected result

in the PDF. Such limitations could be addressed by (1) improving

the static analysis of the code performed by the transitionals to

extract more information and (2) developing new features in these

transitionals to exploit that information. As an example, while

merged cells are currently not supported by the transitional for

tables, its model could be modified to process the \multirow and
\multicolumn commands and the view could be modified to enable

users to merge/unmerge cells interactively. However, because of

LATEX’s extensible nature, there is no way to ensure that all the fea-

tures available as code will be available in a particular transitional.

5.4.2 Abstraction. A second limitation of i-LATEX is the absence of

support for transitionals that represent PDF elements generated by

custom commands. Supporting this type of abstraction in i-LATEX is

challenging, because it requires to (1) identify the provenance [48]

of all the pieces of code that, put together, generate a certain PDF

element and (2) deal with situations where a custom macro is used

in multiple places, such as resizing an image inserted by a custom

macro that is also used to insert the same image in other places.

While some research prototypes make use of custom language

interpreters designed to track the provenance of every value they

compute, we could not readily use this approach in i-LATEX since

20
The renderer is based on PDF.js (https://github.com/mozilla/pdf.js/).

https://github.com/exsitu-projects/ilatex
https://code.visualstudio.com/
https://tex.stackexchange.com/a/4205
https://github.com/mozilla/pdf.js/

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Camille Gobert and Michel Beaudouin-Lafon

no LATEX compiler currently tracks such information
21
. There is no

consensus on how to solve the second challenge, which remains an

open question for future work.

5.4.3 Performance. A third limitation of i-LATEX is the lower per-

formance on large LATEX files. Since i-LATEX updates the AST of a

file that contains at least one transitional every time it is modified,

transformations to perform in the code of a large file can accumulate.

When too many edits are performed in a short amount of time, e.g.,

when an image is being rapidly resized, this accumulation can make

i-LATEX look jerky. In practice, performance is excellent for small to

medium-size files, and larger documents can be split into multiple

LATEX files. For example, we could fluidly edit the source code of

several long papers using i-LATEX on a 2GHz MacBook Pro, such as

the 750-lines long LATEX file of the paper shown in Figure 4 [50]. In

addition, the propagation of changes could be optimised to better

support large ASTs.

5.5 Extensibility
i-LATEX has a modular design that facilitates extension. Creating a

new transitional requires creating (1) a model that can extract the

information to be visualised from the AST node and make the neces-

sary changes when it is modified, and (2) a view that represents the

data provided by the model in the desired format. We provide con-

trollers with an API for exchanging messages between the model

and the view and registering callbacks for various events, as well

as a number of utilities, such as a class for parsing, converting and

manipulating LATEX lengths and an API for operating on the AST.

In addition, the ilatex package for LATEX must also be modified

to create—or patch—the LATEX command or environment that will

benefit from the new transitional so that every time they are used,

they behave as described in section 5.3.1. Creating transitional for

pieces of code that are neither a command nor an environment is

also possible but not as straightforward, as it may require adapting

i-LATEX’s parser to create new types of AST nodes.

6 EVALUATION
We conducted a controlled experiment with i-LATEX. Our main goal

was to evaluate whether transitionals would improve the perfor-

mance of LATEX users on several specific editing tasks that i-LATEX’s
transitionals were designed to facilitate. In addition, we were in-

terested in the effects of transitionals on the workload and the

strategies used by the participants. We also collected feedback to

improve i-LATEX. We present the methodology and the results of

this study and discuss its outcomes.

6.1 Methodology
6.1.1 Participants. We recruited 16 participants (2 women and 14

men, age 20–65) by posting a message on the mailing lists of several

computer science labs and a group of HCI practitioners, and on a

Facebook group of university students and alumni. They did not

receive any compensation for their participation. All participants

had used LATEX before. 5 participants had used it for less than 5

years, 8 participants for 5 to 10 years and the other 3 for more than

21
The difficulty of tracking the provenance of PDF elements generated by LATEX is

further discussed by Laurens [30], who faced the same limitations regarding custom

commands when developing SyncTEX [31, sec. 5].

Table 1: Description of the tasks. The tasks are grouped by
type of content to edit: mathematics , tables , images .

Task Type of instruction

T1 Insert a term in a multi-line formula

T2 Remove several parentheses in a multi-line formula

T3 Modify a term in one formula among six

T4 Sort the rows of a table by a certain column

T5 Modify the values of several cells of a table

T6 Remove a column from a table

T7 Resize an image to make it as wide as another element

T8 Remove the whitespace that surrounds an image

T9 Hide a part of an image

Counterbalanced across participants

D₁ T1→ T2 →…→ T9 Q₁

D₁ T1→ T2 →…→ T9 Q₁

D₂ T1→ T2 →…→ T9 Q₁

D₂ T1→ T2 →…→ T9 Q₁ D₁ T1→ T2 →…→ T9 Q₂

D₁ T1→ T2 →…→ T9 Q₂

D₂ T1→ T2 →…→ T9 Q₂

D₂ T1→ T2 →…→ T9 Q₂

Figure 6: The four configurations of the experiment. The
colour of the blocks represent whether transitionals are
■ enabled or ■ disabled. D1 and D2 represent the two doc-
ument sets. Q

1
and Q

2
represent the two workload question-

naires.

10 years. 3 participants had never used mathematical formulae and

1 had never used tables in LATEX before. Slightly less than half the

participants (7/16) self-ranked their overall expertise with LATEX as

4 or 5 on a 5-point Likert scale.

6.1.2 Setup. The study was carried out remotely. Participants used

i-LATEX on their own computers and shared their screen. The study

lasted between one and two hours per participant, including setup

and debriefing.

6.1.3 Procedure. We used a 2×2 within-participant design with

two independent variables, Transitionals (Enabled, Disabled) and
Document (D1, D2). We adjusted the design of the study to ensure

it was understandable and not too long to complete with two pilot

participants. Before starting each experiment, we explained the

steps of the study to the participant, asked them to read and sign

the consent form, and helped them install the i-LATEX extension in

Visual Studio Code.

We started the experiment by asking participants to open, read,

and edit an introductory LATEX document with i-LATEX. The docu-
ment presented the features of i-LATEX and the three transitionals

used in the study (mathematics, tables, and images), with one inter-

active example per transitional. We also invited participants to ask

questions about i-LATEX or the study.

i-LATEX: Manipulating Transitional Representations between LATEX Code and Generated Documents CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Once they felt ready, we asked participants to perform a series

of 9 tasks (T1–T9), as fast as possible, on one of two similar LATEX

document sets, D1 and D2. Participants had to perform the 9 tasks

with the first document set in one of the Transitionals conditions,

and again with the other document set in the other Transitionals

condition. Each document set consisted of three LATEX documents

(one for each type of tasks). The first document contained tasks

T1–T3 (maths); the second document tasks T4–T6 (tables); and the

third document tasks T7–T9 (images). In the condition where tran-

sitionals were enabled, we explicitly told the participants that they

were not required to use them, and could always edit the code di-

rectly if they believed it was faster. After completing all the tasks in

a document set, participants had to fill in a workload questionnaire

based on the NASA-TLX
22
. We counterbalanced the order of the

two document sets and the two conditions across participants. The

four configurations of the experiment are presented in Figure 6.

Once all the tasks were completed, we asked the participants to

fill in a post-study questionnaire. We debriefed them about their

experience with i-LATEX, answered their questions, and asked them

to give us feedback on the transitional for grid layouts using a LATEX

document that we provided.

6.1.4 Tasks. The nine tasks were similar in each of the two docu-

ment sets (Table 1). Each task fits on a single page of the generated

PDF that contains (1) the instructions and (2) the current output of

the code to modify. The tasks were designed so that they could be

completed in at most a few minutes. In order to move to the next

task, participants had to compile the document with no error, and

the generated PDF had to contain the expected result. Participants

were allowed to use external resources to complete the tasks, in-

cluding online searches and other programs, as long as they did

not reuse LATEX code from other files of the study.

Most of the tasks were inspired by issues mentioned during

the interviews, such as finding symbols in complex formulae and

editing large tables, that we adapted to ensure that all tasks could be

solved with transitionals. We decided not to include tasks with grid

layouts after testing them in a pilot study, as using the gridlayout
environment without transitionals confused participants and made

the study last more than two hours.

6.1.5 Data collection. We recorded the screen and the audio of the

participants, and we took notes of the strategies used and difficulties

faced by the participants. At the end of the study, we collected log

files generated by i-LATEX on the participants’ computers.

6.1.6 Data analysis. For each group of tasks, we measured the task

completion times (TIME) and the number of compilation (COMPI-
LATIONS) by processing the collected files. We also reviewed their

answers to the three questionnaires and watched parts of the record-

ings to compare participants’ behaviours and collect examples of

the strategies they used to solve the tasks.

6.2 Results
6.2.1 Performance. We used Python, R, and SAS JMP to analyse the

logged data. We eliminated data from one participant for tasks with

22
We adapted five out of the six measures, with no weighting process [18].

images, for both conditions, because that participant could not fin-

ish tasks T7–T9 after spending more than 30 minutes trying to solve

them without transitionals as they had to leave (with transitionals,

this participant completed tasks T7–T9 in about 14 minutes).

A mixed ANOVA showed no significant effect of the order of

the two Transitionals conditions (𝐹1,12 = 2.83, 𝑝 = 0.12) nor of

the order of the two document sets (𝐹1,12 = 0.05, 𝑝 = 0.82) on TIME.
Thereafter, we ignore the two order factors. To compare both con-

ditions, we report the results of paired t-tests on log-transformed

data for TIME and Wilcoxon signed-rank tests for COMPILATIONS.
We also report effect sizes using Cohen’s d for t-tests and Rank-

biserial correlation (RBC) for Wilcoxon signed-rank tests. The ratio-

nale for these tests and the full results are available in Appendix C.

Regarding task completion time (Figure 7a), we found a sig-

nificant effect of Transitionals on TIME for tasks with tables

(𝑡15 = −4.95, 𝑝 < 0.001, 𝑑 = 1.39) and images (𝑡14 = −3.75,
𝑝 = 0.002, 𝑑 = 1.17), but not for mathematics (𝑡15 = −1.45, 𝑝 = 0.17,

𝑑 = 0.34). According to mean task completion times, tasks were

performed 44% faster when transitionals were enabled (42% faster

for tasks with tables, 58% faster for tasks with images). We fur-

ther analysed the results for tasks with mathematics by comparing

the 6 most efficient participants with the others (Appendix D ex-

plains how we identified these groups). We found a significant

effect of Transitionals on TIME for the least efficient participants

(𝑡9 = −2.37, 𝑝 = 0.04, 𝑑 = 0.64), but not for the most efficient

participants (𝑡5 = 0.61, 𝑝 = 0.57, 𝑑 = 0.28).

Regarding the number of compilations (Figure 7b), we found

a significant effect of Transitionals on COMPILATIONS for tasks
with tables (𝑊 = 8, 𝑝 = 0.008, RBC = −0.82) and images (𝑊 = 6,

𝑝 = 0.001, RBC = −0.90), but not for mathematics (𝑊 = 38, 𝑝 = 0.97,

RBC = −0.03). According to mean numbers of compilation, partici-

pants compiled 41% less often when transitionals were enabled (26%

less often for tasks with tables, 58% less often for tasks with images).

6.2.2 Workload and feedback. The answers to the questionnaires

are in line with the quantitative analysis. According to the ques-

tionnaires (Figure 8), participants experienced a lower workload

and performed better when they had access to transitionals. A ma-

jority of participants reported that having access to transitionals

to perform the tasks was less mentally demanding (16/16), less

temporally demanding (15/16), less frustrating (13/16), and made

them perform better (13/16). A few participants (3/16) also reported

a slightly higher physical demand when they had access to tran-

sitionals, which some participants related to the increased use of

the mouse required to use the code visualisations. Several partici-

pants qualified the tool as “very impressive”, and all the participants
reported that they would probably (5/16) or certainly (11/16) use

transitionals if they were available in their LATEX editor.

Most participants made positive comments and suggestions to

improve i-LATEX. The suggestions include new features, mainly for

tables, such as merging cells, resizing columns, manipulating row

separators, and enabling multi-row or multi-column selections,

as well as transitionals for other types of elements such as TikZ

drawings and citations. Several participants were frustrated that the

transitional would hide a part of the document they were interested

in, and suggested to let users move transitionals up and down. Some

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Camille Gobert and Michel Beaudouin-Lafon

maths tables images
Type of task

0

3

6

9

12

15

Ta
sk

 d
ur

at
io

n
(m

in
ut

es
)

Transitionals
Enabled
Disabled

(a) Task completion time (TIME).

maths tables images
Type of task

0

5

10

15

20

25

30

N
um

be
r o

f c
om

pi
la

tio
ns

Transitionals
Enabled
Disabled

(b) Number of compilations (COMPILATIONS).

Figure 7: Effect of transitionals on (a) task completion time and (b) number of compilations. Hatched areas in (b) represent
failed compilations. Error bars represent 95% CIs.

participants also suggested to add a way to close a transitional

without recompiling the document.

At the end of the study, all but two participants agreed to try

the transitional for grid layouts. Their reaction was mostly positive.

While some commented that the transitional currently lacks some

features they would like to use, such as grouping cells by column,

previewing the output of the cells’ content, and equally distributing

the available width/height, they also noted that it was already better

than the solutions they use to locally position elements in LATEX.

6.2.3 Strategies. During the study, we noticed changes in the strate-
gies employed for solving tasks when transitionals were available.

When they were only allowed to edit the code, several participants

had to search either online (10/16) or in a document/book (2/16)

to solve some of the tasks. Two participants copy-pasted code into

Emacs to sort table rows in task T4, and four participants used an im-

age editor to crop the images in tasks T8 and T9. Some participants

also tried to come up with elaborate solutions, including computing

the size of an element in LATEX, measuring an image displayed on

their screen with a ruler, and playing with negative whitespace. In

such situations, most participants eventually admitted that they

could not achieve what they had in mind after a few minutes of

trying, and often resolved to simpler solutions and approximation

by trial-and-error.

We did not observe such behaviours when participants were

allowed to use transitionals. In this condition, most participants

(13/16) edited the code directly at some point during the tasks, but

the majority of the edits were performed through a transitional.

Two participants used the code editor to search for values to replace

in T5; four participants approached the expected image width using

the transitional and fine-tuned the value by editing the code in T7;

and seven participants used the code editor to fix errors introduced

by i-LATEX when resizing or cropping images
23

in T7 and T9.

No participants attempted to find “clever” solutions when tran-

sitionals were available, with one exception: a participant who

completed task T4 very efficiently by using both the transitional

23
Due to a bug in the current implementation of i-LATEX, fast successive changes

sometimes cause transitionals to become out-of-sync with the code and result in

erroneous code generation.

and the code editor. He opened the transitional to move the column

with the values to sort by to the left of the table, switched to the

editor to select the code of all the rows in the editor, triggered

a command to sort the selected lines, and switched back to the

transitional to move the column back to its original position.

6.3 Discussion
The results of the study show that participants solved common tasks

with tables and images 44% faster and recompiled the document 41%

less often when they had access to transitionals, with large effect

sizes (d > 0.8 for t-tests, |RBC| > 0.8 for Wilcoxon tests). While the

difference is not significant for tasks with mathematical formulae

overall, it is significant for the least efficient participants. This might

be explained by the higher proficiency and experience with the

syntax of mathematics in LATEX of the most efficient participants,

who might be more used to finding the location of a certain symbol

in the code for tasks T1 and T3, or to remembering to delete both

\left and \right commands along with parentheses for task T2.

In addition to improving performance, transitionals helped par-

ticipants solve tasks with a lower workload, using more straightfor-

ward strategies. We hypothesise that this difference mainly stems

from two characteristics of i-LATEX’s transitionals. The first char-
acteristic is that transitionals enable to modify the code of the

document by interacting with a possible mental model of the code,

without requiring participants to (1) build their own mental model

of the code and (2) map changes in their mental models to changes

in the code. The second characteristic is that transitionals can help

discover and use features that participants were not always familiar

with, such as cropping an image directly via the \includegraphics
command, which reduced the need for searching for tutorials and

documentation. Interestingly, these characteristics may also en-

courage participants to solve tasks in more direct ways, without

resorting to tools designed to automate sub-tasks such as sorting

lines and searching and replacing text.

In summary, this study shows that transitionals can be useful to

beginner and expert LATEX users alike. Transitionals can be used by

beginners to learn about common LATEX commands and environ-

ments and try alternatives for, e.g., mathematical symbols, column

i-LATEX: Manipulating Transitional Representations between LATEX Code and Generated Documents CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

1 2 3 4 5 6 7

Mental
demand

Physical
demand

Temporal
demand

Frustration

Performance

Transitionals
Enabled
Disabled

(a) Post-condition evaluation of the workload.

6%

56%

94%

100%

81%

81%

19%

6%

0%

0%

12%

25%

0%

0%

19%

Best overall
 performance

Most frustrating

Most temporally
 demanding

Most physically
 demanding

Most mentally
 demanding

100 50 0 50 100
Participant answers (%)

Much more Equally Much more

Without transitionals With transitionals

(b) Post-study comparison of the workload of two conditions.

Figure 8: Effect of transitionals on participant workload. (a) Post-condition rating of the workload on 7-point Likert scales (1
= very little, 4 = normal, 7 = very much). (b) Post-study comparison of the workload under each condition. The five measures
are the same as in (a), but we asked participants how much one condition applies more than the other, e.g., “Which condition
was the most mentally demanding for you?”, using symmetrical 7-point Likert scales (1 = much more the 1st condition, 4 =
equally, 7 = much more the 2nd condition).

orders, or image sizes, without the time-consuming burden of re-

compiling after every change. Since transitionals are optional by

design, expert users can freely decide if they prefer to use them or to

edit the code directly. As an example, they could use a transitional

to make changes in a table only when it is large enough, or to find

the command that produced a symbol in a formulae when they

cannot readily find it in the code.

7 LIMITATIONS AND FUTUREWORK
While the study shows that i-LATEX’s transitionals helped partici-

pants perform a number of editing operations, the choice of tasks

and the limits of the current implementation of i-LATEX must be

taken into account when interpreting the results. For instance,

pointing or clicking on a parenthesis in the transitional for math-

ematics only selects its content, excluding \left(and \right)
commands, which still had to be deleted in task T2. In addition,

erroneous code generation slowed down seven participants who

were using transitionals by requiring them to fix the code manually

in tasks T7 and T9. Therefore we do not claim that the results of

this study generalise to arbitrary editing operations—which may

not always benefit from transitionals—nor to the authoring of new

LATEX documents from scratch. Furthermore, the controlled setting

of the experiment does not have the same ecological validity as

longer-term field studies. In light of these observations, we suggest

three directions for future work.

First, i-LATEX could be enhanced by creating transitionals for other

types of content, e.g., TikZ drawings or chemical formulae. Existing

transitionals should support more features, e.g., merging cells in

tables. The overall user interface should also be improved to enable

users to move transitionals and close them without recompiling.

The robustness of i-LATEX could also be improved by supporting

a richer set of documents, both in terms of parsing—recognising

more diverse syntax—and in terms of performance—better handling

large LATEX files and changes within the AST.

Adding transitionals to existing LATEX editors such as Overleaf

would make them accessible to a much wider audience. Doing so

would facilitate the long-term evaluation of transitionals in more

ecological settings, without requiring participants to switch to an-

other LATEX editor. Increasing the availability of transitionals may

also foster the development of new ones by authors and users of

LATEX packages deal with concepts that are hard to visualise and

manipulate as text only. Conversely, it could also enable the devel-

opment of new packages designed to be used with transitionals,

similar to what we did with grid layouts.

Finally, since transitionals are not specific to LATEX, we argue that

other document description languages, such as HTML/CSS, could

also benefit from them. While many other languages than LATEX

can be evaluated fast enough to be used in live programming [42]

or WYSIWYG environments, we argue that they could still benefit

from transitionals. As an example, the sheer number of HTML/CSS

code generators available online provides hints for good candidates

for transitionals, such as CSS gradients, grids and transformations.

8 CONCLUSION
We presented the concept of Transitional Representation, an alterna-

tive and interactive representation of a fragment of code designed

for document description languages. Transitionals facilitate under-

standing and manipulating the code of the document, and can can

be displayed by interacting with the output they generate. We ap-

plied the concept to LATEX by developing i-LATEX, a LATEX editor with

transitionals for mathematical formulae, tables, images, and grid

layouts. We grounded the design in the results of an interview study

of LATEX users, and we evaluated the effects of transitionals with

a controlled experiment. Transitionals enabled the participants to

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Camille Gobert and Michel Beaudouin-Lafon

complete various editing tasks in LATEX documents up to 58% faster,

with fewer compilations and a lower workload. We also observed

that transitionals enabled participants to achieve their goals with

simpler strategies, less LATEX knowledge and fewer trial-and-errors.

Overall, i-LATEX was beneficial to beginner and expert users alike,

who all reported that they would like to use transitionals in their

LATEX editors. We proposed several directions to extend this work,

including improving i-LATEX, facilitating its adoption and evaluation,
and applying transitionals to other document description languages.

We believe transitionals are a powerful concept that improves both

the power and simplicity of document authoring systems.

ACKNOWLEDGMENTS
We thankWendy Mackay for her helpful inputs on the design of the

evaluation and the data analysis. We also thank the interviewees

and the participants of the evaluation study for their time and

valuable feedback. This work was partially supported by European

Research Council (ERC) grant n°695464 ONE: Unified Principles of

Interaction.

REFERENCES
[1] Dimitar Asenov, Otmar Hilliges, and Peter Müller. 2016. The Effect of Richer

Visualizations on Code Comprehension. In Proceedings of the 2016 CHI Conference
on Human Factors in Computing Systems. ACM, 5040–5045. https://doi.org/10.

1145/2858036.2858372

[2] Dimitar Asenov and Peter Muller. 2014. Envision: A Fast and Flexible Visual

Code Editor with Fluid Interactions (Overview). In 2014 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC). IEEE, 9–12. https:

//doi.org/10.1109/VLHCC.2014.6883014

[3] Gideon Avrahami, Kenneth P. Brooks, and Marc H. Brown. 1989. A Two-View

Approach to Constructing User Interfaces. ACM SIGGRAPH Computer Graphics
23, 3 (1989), 137–146. https://doi.org/10.1145/74334.74347

[4] David Bau, Jeff Gray, Caitlin Kelleher, Josh Sheldon, and Franklyn Turbak. 2017.

Learnable Programming: Blocks and Beyond. Commun. ACM 60, 6 (2017), 72–80.

https://doi.org/10.1145/3015455

[5] Michel Beaudouin-Lafon and Wendy E. Mackay. 2000. Reification, Polymorphism

and Reuse: Three Principles for Designing Visual Interfaces. In Proceedings of
the Working Conference on Advanced Visual Interfaces (AVI ’00). Association for

Computing Machinery, 102–109. https://doi.org/10.1145/345513.345267

[6] Virginia Braun and Victoria Clarke. 2019. Reflecting on Reflexive Thematic

Analysis. Qualitative Research in Sport, Exercise and Health 11, 4 (2019), 589–597.

https://doi.org/10.1080/2159676X.2019.1628806

[7] Ravi Chugh, Brian Hempel, Mitchell Spradlin, and Jacob Albers. 2016. Pro-

grammatic and Direct Manipulation, Together at Last. Proceedings of the 37th
Conference on Programming Language Design and Implementation - PLDI 2016
(2016), 341–354. https://doi.org/10.1145/2908080.2908103 arXiv:1507.02988

[8] Matthew Conlen and Jeffrey Heer. 2018. Idyll: A Markup Language for Author-

ing and Publishing Interactive Articles on the Web. In Proceedings of the 31st
Symposium on User Interface Software and Technology - UIST ’18. ACM, 977–989.

https://doi.org/10.1145/3242587.3242600

[9] Pierre Dragicevic, Stéphane Huot, and Fanny Chevalier. 2011. Gliimpse: Animat-

ing from Markup Code to Rendered Documents and Vice Versa. In Proceedings of
the 24th Symposium on User Interface Software and Technology - UIST ’11. ACM,

257–262. https://doi.org/10.1145/2047196.2047229

[10] Pierre Dragicevic, Yvonne Jansen, Abhraneel Sarma, Matthew Kay, and Fanny

Chevalier. 2019. Increasing the Transparency of Research Papers with Explorable

Multiverse Analyses. In Proceedings of the 2019 CHI Conference on Human Factors
in Computing Systems - CHI ’19. ACM, 1–15. https://doi.org/10.1145/3290605.

3300295

[11] Ian Drosos, Titus Barik, Philip J. Guo, Robert DeLine, and Sumit Gulwani. 2020.

Wrex: A Unified Programming-by-Example Interaction for Synthesizing Readable

Code for Data Scientists. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems - CHI’20. ACM, 1–12. https://doi.org/10.1145/

3313831.3376442

[12] Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, and Joshua B. Tenen-

baum. 2018. Learning to Infer Graphics Programs from Hand-Drawn Images.

arXiv:1707.09627 [cs] (2018). arXiv:1707.09627 [cs]
[13] Sebastian Thore Erdweg and Klaus Ostermann. 2011. Featherweight TeX and

Parser Correctness. In Software Language Engineering (Lecture Notes in Computer

Science), Brian Malloy, Steffen Staab, and Mark van den Brand (Eds.). Springer,

397–416. https://doi.org/10.1007/978-3-642-19440-5_26

[14] M. Erwig and B. Meyer. 1995. Heterogeneous Visual Languages-Integrating

Visual and Textual Programming. In 1995 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC). IEEE Comput. Soc. Press, 318–325.

https://doi.org/10.1109/VL.1995.520825

[15] Bjarke Vognstrup Fog and Clemens Nylandsted Klokmose. 2019. Mapping the

Landscape of Literate Computing. (2019), 10.

[16] Adele Goldberg and David Robson. 1983. Smalltalk-80: The Language and Its
Implementation. Addison-Wesley.

[17] Keith Hanna. 2002. Interactive Visual Functional Programming. In Proceedings
of the 7th International Conference on Functional Programming - ICFP ’02. ACM,

145–156. https://doi.org/10.1145/581478.581493

[18] Sandra G. Hart. 2006. Nasa-Task Load Index (NASA-TLX); 20 Years Later. Pro-
ceedings of the Human Factors and Ergonomics Society Annual Meeting 50, 9 (2006),
904–908. https://doi.org/10.1177/154193120605000909

[19] Andrew Head, Kyle Lo, Dongyeop Kang, Raymond Fok, Sam Skjonsberg, Daniel S.

Weld, and Marti A. Hearst. 2021. Augmenting Scientific Papers with Just-in-

Time, Position-Sensitive Definitions of Terms and Symbols. In Proceedings of
the 2021 CHI Conference on Human Factors in Computing Systems. ACM, 1–18.

https://doi.org/10.1145/3411764.3445648

[20] Brian Hempel, Justin Lubin, and Ravi Chugh. 2019. Sketch-n-Sketch: Output-

Directed Programming for SVG. In Proceedings of the 32nd Symposium on User
Interface Software and Technology - UIST’19. ACM, 281–292. https://doi.org/10.

1145/3332165.3347925

[21] Jane Hoffswell, Arvind Satyanarayan, and Jeffrey Heer. 2018. Augmenting Code

with In Situ Visualizations to Aid Program Understanding. In Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems - CHI ’18. ACM,

1–12. https://doi.org/10.1145/3173574.3174106

[22] Hyeonsu Kang and Philip J. Guo. 2017. Omnicode: A Novice-Oriented Live

Programming Environment with Always-On Run-Time Value Visualizations. In

Proceedings of the 30th Symposium on User Interface Software and Technology -
UIST’17. ACM, 737–745. https://doi.org/10.1145/3126594.3126632

[23] Mary Beth Kery, Donghao Ren, Fred Hohman, Dominik Moritz, Kanit Wong-

suphasawat, and Kayur Patel. 2020. Mage: Fluid Moves Between Code and

Graphical Work in Computational Notebooks. In Proceedings of the 33rd Sym-
posium on User Interface Software and Technology - UIST’20. ACM, 140–151.

https://doi.org/10.1145/3379337.3415842

[24] Markus Knauff and Jelica Nejasmic. 2014. An Efficiency Comparison of Document

Preparation Systems Used in Academic Research and Development. PLOS ONE
9, 12 (2014), 1–12. https://doi.org/10.1371/journal.pone.0115069

[25] Donald Ervin Knuth. 1984. Literate Programming. Comput. J. 27, 2 (1984), 97–111.
https://doi.org/10.1093/comjnl/27.2.97

[26] Donald Ervin Knuth. 1984. The TeXbook. Addison-Wesley.

[27] Amy J. Ko and Brad A. Myers. 2006. Barista: An Implementation Framework

for Enabling New Tools, Interaction Techniques and Views in Code Editors. In

Proceedings of the 2006 CHI Conference on Human Factors in Computing Systems -
CHI ’06. ACM, 387–396. https://doi.org/10.1145/1124772.1124831

[28] Michael Kölling, Neil Brown, and Amjad Altadmri. 2017. Frame-Based Editing.

Journal of Visual Languages and Sentient Systems 3, 1 (2017), 40–67. https:

//doi.org/10.18293/VLSS2017-009

[29] Leslie Lamport. 1994. LaTeX: A Document Preparation System: User’s Guide and
Reference Manual. Addison-Wesley.

[30] Jérôme Laurens. 2007. Will TeX Ever Be WYSIWYG or the PDF Synchronization

Story. The PracTeX Journal 3, 3 (2007), 8.
[31] Jérôme Laurens. 2008. Direct and Reverse Synchronization with SyncTeX. TUG-

Boat 29, 3 (2008), 365–371.
[32] Sorin Lerner. 2020. Projection Boxes: On-the-Fly Reconfigurable Visualization for

Live Programming. In Proceedings of the 2020 CHI Conference on Human Factors in
Computing Systems - CHI’20. ACM, 1–7. https://doi.org/10.1145/3313831.3376494

[33] Tom Lieber, Joel R. Brandt, and Rob C. Miller. 2014. Addressing Misconceptions

about Code with Always-on Programming Visualizations. In Proceedings of the
2014 ACM Conference on Human Factors in Computing Systems - CHI ’14. ACM,

2481–2490. https://doi.org/10.1145/2556288.2557409

[34] Damien Masson, Sylvain Malacria, Edward Lank, and Géry Casiez. 2020.

Chameleon: Bringing Interactivity to Static Digital Documents. In Proceedings of
the 2020 CHI Conference on Human Factors in Computing Systems - CHI’20. ACM,

1–13. https://doi.org/10.1145/3313831.3376559

[35] Mikaël Mayer, Viktor Kuncak, and Ravi Chugh. 2018. Bidirectional Evaluation

with Direct Manipulation. Proceedings of the ACM on Programming Languages 2,
OOPSLA (2018), 1–28. https://doi.org/10.1145/3276497

[36] Brad A. Myers. 1990. Taxonomies of Visual Programming and Program Vi-

sualization. Journal of Visual Languages and Computing 1, 1 (1990), 97–123.

https://doi.org/10.1016/S1045-926X(05)80036-9

[37] Cyrus Omar, David Moon, Andrew Blinn, Ian Voysey, Nick Collins, and Ravi

Chugh. 2021. Filling Typed Holes with Live GUIs. In Proceedings of the 42nd
ACM SIGPLAN International Conference on Programming Language Design and
Implementation. ACM, 511–525. https://doi.org/10.1145/3453483.3454059

https://doi.org/10.1145/2858036.2858372
https://doi.org/10.1145/2858036.2858372
https://doi.org/10.1109/VLHCC.2014.6883014
https://doi.org/10.1109/VLHCC.2014.6883014
https://doi.org/10.1145/74334.74347
https://doi.org/10.1145/3015455
https://doi.org/10.1145/345513.345267
https://doi.org/10.1080/2159676X.2019.1628806
https://doi.org/10.1145/2908080.2908103
https://arxiv.org/abs/1507.02988
https://doi.org/10.1145/3242587.3242600
https://doi.org/10.1145/2047196.2047229
https://doi.org/10.1145/3290605.3300295
https://doi.org/10.1145/3290605.3300295
https://doi.org/10.1145/3313831.3376442
https://doi.org/10.1145/3313831.3376442
https://arxiv.org/abs/1707.09627
https://doi.org/10.1007/978-3-642-19440-5_26
https://doi.org/10.1109/VL.1995.520825
https://doi.org/10.1145/581478.581493
https://doi.org/10.1177/154193120605000909
https://doi.org/10.1145/3411764.3445648
https://doi.org/10.1145/3332165.3347925
https://doi.org/10.1145/3332165.3347925
https://doi.org/10.1145/3173574.3174106
https://doi.org/10.1145/3126594.3126632
https://doi.org/10.1145/3379337.3415842
https://doi.org/10.1371/journal.pone.0115069
https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1145/1124772.1124831
https://doi.org/10.18293/VLSS2017-009
https://doi.org/10.18293/VLSS2017-009
https://doi.org/10.1145/3313831.3376494
https://doi.org/10.1145/2556288.2557409
https://doi.org/10.1145/3313831.3376559
https://doi.org/10.1145/3276497
https://doi.org/10.1016/S1045-926X(05)80036-9
https://doi.org/10.1145/3453483.3454059

i-LATEX: Manipulating Transitional Representations between LATEX Code and Generated Documents CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

[38] Cyrus Omar, Young Seok Yoon, Thomas D. LaToza, and Brad A. Myers. 2012.

Active Code Completion. In Proceedings of the 34th International Conference on
Software Engineering - ICSE’12. IEEE, 859–869. https://doi.org/10.1109/ICSE.2012.

6227133

[39] StephenOney and Joel Brandt. 2012. Codelets: Linking Interactive Documentation

and Example Code in the Editor. In Proceedings of the 2012 CHI Conference on
Human Factors in Computing Systems - CHI ’12. ACM, 2697. https://doi.org/10.

1145/2207676.2208664

[40] Jibin Ou, Martin Vechev, and Otmar Hilliges. 2015. An Interactive System for

Data Structure Development. In Proceedings of the 33rd Annual ACM Conference
on Human Factors in Computing Systems. ACM, 3053–3062. https://doi.org/10.

1145/2702123.2702319

[41] Clément Pit-Claudel. 2020. Untangling Mechanized Proofs. In Proceedings of the
13th ACM SIGPLAN International Conference on Software Language Engineering.
ACM, 155–174. https://doi.org/10/ghs5sn

[42] Patrick Rein, Stefan Ramson, Jens Lincke, Robert Hirschfeld, and Tobias Pape.

2018. Exploratory and Live, Programming and Coding: A Literature Study Com-

paring Perspectives on Liveness. The Art, Science, and Engineering of Programming
3, 1 (2018), 1. https://doi.org/10.22152/programming-journal.org/2019/3/1

[43] Paulo Reis, John D Lees-Miller, and Sven Laqua. 2021. Merging SaaS Products In

A User-Centered Way — A Case Study of Overleaf and ShareLaTeX. In Extended
Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems.
ACM, 1–8. https://doi.org/10.1145/3411763.3443455

[44] Mitchel Resnick, JohnMaloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn

Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian

Silverman, and Yasmin Kafai. 2009. Scratch: Programming for All. Commun.
ACM 52, 11 (2009), 60–67. https://doi.org/10.1145/1592761.1592779

[45] Hugo Romat, Emmanuel Pietriga, Nathalie Henry-Riche, Ken Hinckley, and

Caroline Appert. 2019. SpaceInk: Making Space for In-Context Annotations. In

Proceedings of the 32nd Annual ACM Symposium on User Interface Software and
Technology (UIST ’19). Association for Computing Machinery, 871–882. https:

//doi.org/10.1145/3332165.3347934

[46] Tim Teitelbaum and Thomas Reps. 1981. The Cornell Program Synthesizer:

A Syntax-Directed Programming Environment. Commun. ACM 24, 9 (1981),

563–573. https://doi.org/10.1145/358746.358755

[47] David Weintrop and Nathan Holbert. 2017. From Blocks to Text and Back:

Programming Patterns in a Dual-Modality Environment. In Proceedings of the
2017 ACM SIGCSE Technical Symposium on Computer Science Education. ACM,

633–638. https://doi.org/10.1145/3017680.3017707

[48] Jack Williams and Andrew D. Gordon. 2021. Where-Provenance for Bidirectional

Editing in Spreadsheets. In 2021 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC). 1–10. https://doi.org/10.1109/VL/HCC51201.2021.

9576272

[49] Yifan Wu, Joseph M. Hellerstein, and Arvind Satyanarayan. 2020. B2: Bridging

Code and Interactive Visualization in Computational Notebooks. In Proceedings
of the 33rd Symposium on User Interface Software and Technology - UIST’20. ACM,

152–165. https://doi.org/10.1145/3379337.3415851

[50] Bo Xiong, Haoqi Fan, Kristen Grauman, and Christoph Feichtenhofer. 2021. Multi-

view Pseudo-Labeling for Semi-Supervised Learning fromVideo. arXiv:2104.00682
[cs] (2021). arXiv:2104.00682 [cs]

[51] Kaiyang Zhou, Yongxin Yang, Yu Qiao, and Tao Xiang. 2021. MixStyle Neural

Networks for Domain Generalization and Adaptation. arXiv:2107.02053 [cs] (2021).
arXiv:2107.02053 [cs]

[52] Oleksandr Zinenko, Cédric Bastoul, and Stéphane Huot. 2015. Manipulating

Visualization, Not Codes. In International Workshop on Polyhedral Compilation
Techniques (IMPACT). 1–8.

[53] Oleksandr Zinenko, Stephane Huot, and Cedric Bastoul. 2014. Clint: A Direct

Manipulation Tool for Parallelizing Compute-Intensive Program Parts. In 2014
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC).
IEEE, 109–112. https://doi.org/10.1109/VLHCC.2014.6883031

APPENDICES
A LEVELS OF EXPERTISE
In both the interview and the evaluation studies, we refer to three

levels of expertise with LATEX, defined as follows:

Beginner: I do not feel comfortable when I use LATEX and I need

help to use basic features.

Intermediate: I feel comfortable writing basic documents and I

can use the most common features without help.

Expert: I feel comfortable with various kinds of document and I

am able to create or customise commands and environments

when needed.

B INTERVIEWEES
Table 2 reports the details on each participant we interviewed.

C EVALUATION DATA ANALYSIS
Since both task duration times (TIME) and numbers of compilation

(COMPILATIONS) are strictly positive measures, we tested the log-

normality of the distribution of each measure with Kolmogorov’s D

tests. Task completion times fit log-normal distributions for tasks

with tables (𝐷 = 0.127, 𝑝 > 0.15) and images (𝐷 = 0.151, 𝑝 =

0.06), but not for tasks with mathematics (𝐷 = 0.173, 𝑝 = 0.02).

Numbers of compilation fit a log-normal distribution for tasks with

images (𝐷 = 0.15, 𝑝 = 0.07), but not for tasks with mathematics

(𝐷 = 0.266, 𝑝 < 0.01) or tables (𝐷 = 0.219, 𝑝 < 0.01). Given these

results, we performed paired t-tests on log-transformed data for

task duration time and Wilcoxon signed-rank tests for the numbers

of compilations. We report the full results of all tests in Table 3.

D EFFICIENT PARTICIPANTS
In order to look further into the effect of the transitional for mathe-

matics in the controlled experiment, we split participants into two

groups based on their efficiency. We define efficiency as a combina-

tion of high speed (low task completion times) and high precision

(low variance between task completion times), and used those two

criteria to discriminate participants as follows.

We plot the mean task completion time of each participant across

all tasks in both Transitionals conditions against the standard de-

viation of the task completion times. We observe that 6 participants

form a distinct cluster in the bottom-left hand corner of that space

(Figure 9a). We group the 6 participants from that cluster (mean

task completion time shorter than 5 minutes, standard deviation

of task completion times lower than 2 minutes) into the efficient
group (P2, P4, P8, P10, P12, P15, shown in purple), and the 10 others

into the non-efficient group.
As shown in Figure 9b, overall, all the efficient participants solved

the tasks faster than all the non-efficient participant. These groups

are also consistent with the self-assessed levels of expertise with

LATEX collected in the post-study questionnaires (Table 4), where

mean and median values are higher for efficient participants.

https://doi.org/10.1109/ICSE.2012.6227133
https://doi.org/10.1109/ICSE.2012.6227133
https://doi.org/10.1145/2207676.2208664
https://doi.org/10.1145/2207676.2208664
https://doi.org/10.1145/2702123.2702319
https://doi.org/10.1145/2702123.2702319
https://doi.org/10/ghs5sn
https://doi.org/10.22152/programming-journal.org/2019/3/1
https://doi.org/10.1145/3411763.3443455
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1145/3332165.3347934
https://doi.org/10.1145/3332165.3347934
https://doi.org/10.1145/358746.358755
https://doi.org/10.1145/3017680.3017707
https://doi.org/10.1109/VL/HCC51201.2021.9576272
https://doi.org/10.1109/VL/HCC51201.2021.9576272
https://doi.org/10.1145/3379337.3415851
https://arxiv.org/abs/2104.00682
https://arxiv.org/abs/2107.02053
https://doi.org/10.1109/VLHCC.2014.6883031

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Camille Gobert and Michel Beaudouin-Lafon

2 4 6 8 10
Standard dev. of task durations (minutes)

2

4

6

8

10

M
ea

n
of

 ta
sk

 d
ur

at
io

n
(m

in
ut

es
)

2

3

4

5

6

7

8

9

10

11

12

1314

15
1617

(a) Mean speed and precision.

10 4 2 8 12 15 16 17 9 7 3 6 11 13 14 5
Participant ID

0

5

10

15

20

25

30

Ta
sk

 d
ur

at
io

n
(m

in
ut

es
)

(b) Distributions of task completion times.

Figure 9: Details on the performance of each participant. Data points in purple correspond to efficient participants. (a) Plot of
mean task completion time (Y axis) by standard deviation of task completion times (X axis). Each mark is labelled with the
ID of the participant. Efficient participants are faster (low Y value) and more consistent (low X value). (b) Task completion
times of each participant (one data point per group of tasks and per condition). Participants are sorted by their mean task
completion time over both conditions.

Table 2: Details on the participants of the interviews.

Participant Occupation Domain Expertise Main presented document

P1 MSc student Biology Intermediate Internship report

P2 PhD student Data visualisation Intermediate PhD thesis

P3 MSc student Ecology Intermediate Biophysics assignment

P4 MSc student Geology Intermediate Hackathon project

P5 Associate prof. Computer science Expert Mathematics paper

P6 MSc student Complex systems Intermediate Thesis proposal

P7 MSc student Geochemistry Intermediate Internship report

P8 MSc student Archaeology Beginner Internship report

P9 MSc student Computer science Expert Computer science paper

P10 High school teacher Philosophy Intermediate Archive of philosophy exams

P11 MSc student Computer science Expert Mathematics class notes

Table 3: Comparisons of task duration times and number of compilations between the two conditions, for each type of task
and subset of participants. Effect sizes are reported using Cohen’s d and Rank-biserial correlation (RBC). Tests where 𝑝 < 0.05

are marked with asterisks.

(a) Paired t-tests on log-transformed TIME.

Type of tasks Subset #DoF 𝑡 𝑝 𝑑

Mathematics

All 15 −1.45 0.17 0.34

Efficient 5 0.61 0.57 0.28

Non-efficient 9 −2.37 0.04 * 0.64

Tables All 15 −4.95 < 0.001 * 1.39

Images All 14 −3.75 0.002 * 1.17

(b) Wilcoxon signed-rank tests on COMPILATIONS.

Type of tasks Subset W 𝑝 RBC

Mathematics

All 38 0.97 −0.03
Efficient 5 1.00 0.00

Non-efficient 16 0.83 −0.11
Tables All 8 0.008 * −0.82
Images All 6 0.001 * −0.90

Table 4: Statistics on the participants’ self-assessed expertise with LATEX on a 5-point Likert scale (1 = Beginner, 3 = Intermedi-
ate, 5 = Expert).

Mean Median Min. Max.

Efficient participants 3.8 4 3 5

Non-efficient participants 2.8 3 1 5

	Abstract
	1 Introduction
	2 Related work
	2.1 LaTeX editing tools
	2.2 Augmented documents
	2.3 Hybrid programming environments

	3 Interviews of LaTeX users
	3.1 Methodology
	3.2 Results
	3.3 Recommendations for design

	4 Transitional Representations
	4.1 Definition and properties
	4.2 Related concepts
	4.3 Application to LaTeX

	5 The 1.05i-LaTeX editor
	5.1 User interface
	5.2 Transitionals
	5.3 Implementation
	5.4 Limitations
	5.5 Extensibility

	6 Evaluation
	6.1 Methodology
	6.2 Results
	6.3 Discussion

	7 Limitations and future work
	8 Conclusion
	Acknowledgments
	References
	A Levels of expertise
	B Interviewees
	C Evaluation data analysis
	D Efficient participants

