
Designing postmodern substrate architectures
Position paper for ‹Programming› 2025’s Software Substrates workshop

Camille Goberta
a Université Paris-Saclay, CNRS, Inria, Laboratoire Interdisciplinaire des Sciences du Numérique

Abstract Manipulating information with a computer requires reading, transforming and writing that
information using a series of constrained encodings in the computer’s memory—information substrates.
However, to perceive and act upon that information, humans need to interact with representations and
instruments that differ from the encoded information itself—interaction substrates. Reconciling these two types
of substrates is difficult: accessing, observing and transforming the underlying digital data is conceptually and
technically challenging, especially in the major software architectures in use. To address these difficulties,
researchers often suggest replacing various parts of established software with arguably better alternatives,
following a modern view of computing. In this position paper, I critique this approach and argue in favour of a
more postmodern view of computing, which acknowledges the diversity of computing in the 21st century and
encourages research that embraces the constraints that come with it rather than rejecting them altogether.
Following this claim, I give examples of modern failures and postmodern successes and present a few research
directions that I explored recently and would like to explore in the future to foster discussions and future
collaborations on this topic.

ACM CCS 2012
Software and its engineering → Software creation and management; Software organization and
properties;
Human-centered computing → HCI theory, concepts and models;

Keywords information, interaction, substrates, operating systems, postmodernism

The Art, Science, and Engineering of Programming

© Camille Gobert
This work is licensed under a “CC BY 4.0” license
In The Art, Science, and Engineering of Programming; 8 pages.

https://orcid.org/0000-0001-5032-3084
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en


Designing postmodern substrate architectures

Computers are, by definition, apparatuses for manipulating information that we
encode using sequences of symbols stored in the computer’s memory—bits, usually.
In modern computers, this manipulation is both mechanised and programmable. It
is mechanised as, unlike other tools that we can use to encode information using
symbols such as abacuses and paper, moving from one symbolic state to another
is the result of the machine executing hardware-enforced instructions that do not
(necessarily) require any human intervention. It is also programmable, in the sense
that the way symbols are transformed can be changed over time, such as by running
a program rather than another.
A consequence of that definition is that any information that we manipulate with

a computer—such as a piece of text or an image—must be encoded somewhere,
somehow, in some of its memory. Often times, though, a single piece of information
is actually encoded in several locations and formats in parallel—in other words, in
different information substrates. To illustrate this, consider a situation—that I currently
experience myself—in which one writes a text document using the LATEX typesetting
system and renders it as PDF using a web-based editor such as Overleaf1 or Visual
Studio Code with a plug-in for previewing the generated PDF in a webview.
In this situation, each encoding serves a different purpose. The content of the

document typed by the author is first encoded in the array of String-like objects
managed by the text editing component that executes in the webpage. Every time
the text changes, the editor updates the DOM, to which the web browser reacts by
rendering the page as shapes (following CSS rules) and painting them as pixels to
be displayed on the author’s screen. Similarly, whenever the document is saved, its
content is written as text in a LATEX file (either locally or on a remote server). The LATEX
compiler that watches for changes is automatically triggered and produces a new PDF
file on the same filesystem, whose change is notified to the PDF viewer embedded in
the same webpage. The program parses the new PDF into a list of objects, renders
them as shapes in a canvas, possibly updating the DOM to, e.g., add invisible text on
top to make it selectable, and eventually paints the shapes as pixels.
Although each of these encodings contains different data—either because they

encodes the same information in different ways or because some contain extra
information—, they are nonetheless kept in sync by the computer. In other words,
these transformations are used to enforce constraints between substrates. In the above
situation, every time the author modifies the LATEX code, such as by pressing a key on
their keyboard, a series of transformations map the hardware interrupt processed by
the operating system to an event in the DOM, which is itself processed by a function
registered by the text editor’s script in order to update the internal array of String-like
objects. This change triggers a cascade of transformations to update all the other
information substrates that depend on this one, eventually resulting in an updated
image on the author’s screen. Similarly, whenever the document is saved, a similar
series of transformations are automatically performed by the computer to keep the
information substrates used by the PDF viewer updated.

1 https://www.overleaf.com.

2

https://www.overleaf.com


Camille Gobert

Display
substrates

Canvas
substrates

Structural
substrates

Data
substratesLaTeX file PDF file

Frame buffer

String array Object list

Shapes

Frame buffer

DOM

Paint

Render

Tag

Shapes

Paint

Parse

Render

Save

Update

Interact (events)

Load

Compile

Operating systemOperating system
Web browserWeb browser

PDF viewerPDF viewer

Text editorText editor

Figure 1 Graph of substrates of the interactive system described in the text. Rectangles
represent information substrates that users can either interact with (black rectan-
gles) or not (white rectangles). Arrows represent transformations performed by
the machine that maintain constraints between substrates, either automatically
(plain arrows) or when the user performs an additional action (dashed arrows).
Orange frames represent independent systems that manage the substrates they
enclose. Information substrates are vertically arranged according to the type of
interaction substrates that can be used to interact with them, which are listed in
blue on the right.

3



Designing postmodern substrate architectures

Taken together, the information substrates and their inter-dependencies form a
graph, depicted in Figure 1, in which each encoding is a node and each arrow is
a transformation between two encodings. Different encodings (and their related
constraints) are managed by different subsystems running on the computer, shown
as orange rectangles on the diagram. A key characteristic of these subsystems is that
they are usually not aware of the encodings managed by other subsystems, even
when they depend on them. For example, although the web browser is responsible for
managing the memory used by the text editor and the PDF viewer programs, it has no
understanding of the idiosyncratic meaning of the information that the programmer
encodes and manipulates in this memory using JavaScript.
However, when we humans think about and interact with a computer, we usually

only consider a limited subset of this graph of substrates, shown as black rectangles
in Figure 1. There is no inherent reason for only being able to interact with only some
of these substrates; it is only a matter of providing the human user with appropriate
representations and instruments for doing so—or, as Mackay and Beaudouin-Lafon
call them, interaction substrates [15]. Interaction substrates are equally meant to
belong to this graph, but unlike information substrates, they are meant to be used by
humans rather than by computers. As a consequence, we must be able to perceive the
information they contain using output peripherals (such as screens and loudspeakers)
and/or act upon it using input peripherals (such as mice and keyboards). This means
that any information substrate can be exposed to a user as long as the data it contains
can be mapped to the appropriate interaction substrate. In the figure, this is depicted
by classifying each information substrate into one of the four categories of interaction
substrates (shown in blue) proposed by Mackay and Beaudouin-Lafon [15, fig. 8]
according to the type of information it contains.
To use a certain interaction substrate S1 implemented in system X to interact

with the data D contained in and constrained by a certain information substrate S2

implemented in system Y , the underlying systems must exhibit a number of properties:
readability (R), interpretability (I), observability (O) and writeability (W). In order to
present D to the user via S1, X must be able to read the memory that contains D (R),
interpret the format it is encoded in (I) and observe changes that may occur in it (O).
In addition, to let users modify D, S1 must be able to write D in such a way that S2 is
notified of every modification performed by S1 (W + O).

Achieving these properties is easier in certain types of programming systems than in
others [10]. For example, using Smalltalk [9] as an operating system guarantees that
every object is globally accessible by any other object and encoded in the same format.
Since substrates must be implemented as objects, any substrate can read, interpret and
write any other substrate they get a hold onto. In addition, while Smalltalk’s object
properties are not reactive by default, they can be made observable by exploiting
the high level of reflexivity supported by the system. The high level of malleability
permitted by this architecture is well demonstrated in the Glamorous Toolkit,2 a

2 https://gtoolkit.com.

4

https://gtoolkit.com


Camille Gobert

system based on Pharo3 (a modern Smalltalk implementation) that encourages users
to systematically create ad-hoc representations for every piece of digital information
they reason about in their minds, a paradigm called moldable development.
Although they were visionary back in the 1970s and keep being developed and

researched nowadays, this type of system is very different from those that constitutes
most of the computing of the early 21st century. Today, all the major operating systems
in use strongly isolate the different subsystems they execute from each other (think
Unix processes). In these systems, unless two subsystems were specifically designed
to exchange information (using, e.g., an IPC channel provided by the OS), even
achieving readability or writeability has become challenging. Moreover, apart from
a few common file formats, the information processed in these systems is encoded
in very diverse ways, making interpretation not only costly but also extremely case-
specific—and therefore hard to reuse across situations—, as illustrated by the difficulty
to implement mechanisms such as foreign function interfaces, which let a programmer
call a function written in a different language than the one they program in.⁴ Despite
some attempts to break walls between subsystems in a systematic way, as did Apple
with OpenDoc and Microsoft with OLE, no such attempt succeeded. As a result, the
few main ways to let subsystems communicate together that are in use today rely
on mechanisms that are old and standard enough to be available on every major
operating system: file systems and network protocols.
In light of these observations, stances from researchers can be arranged on an

ideological axis ranging between two opposite views of computing: modernism and
postmodernism. Modern computing supports unified visions of what computing should
be and argues in favour of replacing what exists with something designed to be
inherently better: a new programming language, a new data format, a new operating
system, etc. For example, a modern viewpoint may argue that since operating systems
in which everything is an object are more adapted for interacting with any piece of
data with the interaction substrate of our choosing, we shall replace the operating
systems we already use everywhere with something closer to Smalltalk to address
the limitations we currently face. In contrast, postmodern computing, which may be
characterised by the absence of a “grand narrative” [16, p. 8], encourages to adapt
to the computing world as it currently is by designing for—rather than against—the
constraints we inherit from the stack of established practices and technologies we
must deal with, such as programming using plain text and common data formats.
The story of JavaScript is a good example of postmodern computing. Although

it was initially created for simple scripting and designed during a 10 days rush in
1995 [19, §2.2], it has become one of the most popular programming technologies
in use today. Despite its imperfections, JavaScript was never replaced by arguably
“better” alternatives (among which ActiveX, Flash, Silverlight, etc.) that all ceased to
exist. Instead, by accepting that JavaScript was here to stay and by acknowledging

3 https://pharo.org.
4 Polyglot runtime environments such as GraalVM (https://www.graalvm.org) are making this

progressively easier, but they are still far from being used at large.

5

https://pharo.org
https://www.graalvm.org


Designing postmodern substrate architectures

the constraints that came with it, work that we keep benefiting from today was put
into improving—rather than replacing—the user and developer experience, such as by
developing interactive inspectors, faster interpreters and gradual type systems.
Can we learn from this story and put the same kind of work in other things that

are here to stay in order to foster malleability of existing systems, rather than trying
to replace them? More specifically, regarding interaction substrates (and operating
systems), can we, as Kell [11, §7] puts it, “accept the complex reality of existing (‘found’)
software, developed in ignorance of our system, and [shift] our system’s role to constructing
views, including Smalltalk-like ones, of this diverse reality”? This is the research direction
on interaction substrates and their implementations that I want to explore.

In my own doctoral work [6], I worked on augmenting text editors with additional
interaction substrates—that I call projections—to interact with specific fragments of
code that are hard to manipulate as text, such as colours, tables and images. This work
led me to implement two systems, i-LATEX [7] and Lorgnette [8], which respectively
apply this idea to four kinds of LATEX fragments and let users freely map any textual or
syntactic pattern to any projection provided by the text editor using a specification
language. Although I initially believed that complementing text with other notations
was novel, I quickly realised that a myriad of related concepts, techniques and software
had been developed since the mid-1990s, including intentional programming [18],
Barista [13], presentation extension [5], visual syntax [1], mage [12], Livelits [17],
notational programming [2] and visual replacements [3]. Yet, putting this long line of
work in perspective with the rarity of non-textual projections in the main programming
systems in use today [10], as well as my own experience in adding new projections
to existing text editors, made me realise that the biggest challenge is perhaps not to
establish that completing text with projections can be helpful but to find ways to do
so without requiring users and communities to switch to entirely different artifact
ecologies in order to benefit from these projections.

Since then, this challenge has made me interested in evolving OS-level concepts that
currently hinder malleability and richer interaction using a postmodern approach. For
example, the in-memory file system that features real-time collaboration and cross-file
reactivity I am currently working on makes me wonder how it could be mounted on a
traditional OS file system, therefore enabling users to use any program installed on
their system to interact with the files that it contains without having to re-create such
software for yet another data format.⁵ In addition, I am also increasingly interested
in investigating how bringing uni- and bidirectional data format conversion to the
operating system could help programmers and users connect software and data that
were not designed to work together in the first place, a goal that echoes recent work
on lenses and schema evolution [4, 14]. I am looking forward to discuss these ideas
and issues during the workshop which, I hope, will lead to new ways of thinking about
information and interaction substrates and pave the way for fruitful collaborations.

5 This, in turns, questions what are the minimal non-breaking changes to, e.g., the Linux
filesystem API, that are required to make this possible, at least to some extent.

6



Camille Gobert

References

[1] Leif Andersen, Michael Ballantyne, and Matthias Felleisen. “Adding Interactive
Visual Syntax to Textual Code”. In: Proceedings of the ACM on Programming
Languages. Volume 4. ACM, 2020, pages 1–28. doi: 10.1145/3428290.

[2] Ian Arawjo, Anthony DeArmas, Michael Roberts, Shrutarshi Basu, and Tapan
Parikh. “Notational Programming for Notebook Environments: A Case Study
with Quantum Circuits”. In: Proceedings of the 35th Annual ACM Symposium on
User Interface Software and Technology. UIST ’22. ACM, 2022, pages 1–20. doi:
10.1145/3526113.3545619.

[3] Tom Beckmann, Daniel Stachnik, Jens Lincke, and Robert Hirschfeld. “Visual
Replacements: Cross-Language Domain-Specific Representations in Structured
Editors”. In: Proceedings of the 2nd ACM SIGPLAN International Workshop on
Programming Abstractions and Interactive Notations, Tools, and Environments.
PAINT 2023. ACM, 2023, pages 25–35. doi: 10.1145/3623504.3623569.

[4] Jonathan Edwards, Tomas Petricek, Tijs van der Storm, and Geoffrey Litt.
“Schema Evolution in Interactive Programming Systems”. In: The Art, Science,
and Engineering of Programming 9.1 (2024), 2:1–2:33. doi: 10.22152/programm
ing-journal.org/2025/9/2.

[5] Andrew D. Eisenberg and Gregor Kiczales. “Expressive Programs through Pre-
sentation Extension”. In: Proceedings of the 6th International Conference on
Aspect-Oriented Software Development - AOSD ’07. ACM, 2007, pages 73–84.
doi: 10.1145/1218563.1218573.

[6] Camille Gobert. “Projecting Computer Languages for a Protean Interaction”.
PhD thesis. Université Paris-Saclay, 2024.

[7] Camille Gobert and Michel Beaudouin-Lafon. “I-LaTeX: Manipulating Transi-
tional Representations between LaTeX Code and Generated Documents”. In:
CHI Conference on Human Factors in Computing Systems. CHI ’22. ACM, 2022,
pages 1–16. doi: 10.1145/3491102.3517494.

[8] Camille Gobert and Michel Beaudouin-Lafon. “Lorgnette: Creating Malleable
Code Projections”. In: Proceedings of the 36th Annual ACM Symposium on User
Interface Software and Technology. UIST ’23. ACM, 2023, pages 1–16. doi:
10.1145/3586183.3606817.

[9] Daniel Ingalls. “The Evolution of Smalltalk: From Smalltalk-72 through Squeak”.
In: Proceedings of the ACM on Programming Languages 4.HOPL (2020), 85:1–
85:101. doi: 10.1145/3386335.

[10] Joel Jakubovic, Jonathan Edwards, and Tomas Petricek. “Technical Dimensions
of Programming Systems”. In: The Art, Science, and Engineering of Programming
7.3 (2023), pages 1–59. doi: 10.22152/programming-journal.org/2023/7/13.

[11] Stephen Kell. “The Operating System: Should There Be One?” In: Proceedings
of the Seventh Workshop on Programming Languages and Operating Systems.
PLOS ’13. ACM, 2013, pages 1–7. doi: 10.1145/2525528.2525534.

7

https://doi.org/10.1145/3428290
https://doi.org/10.1145/3526113.3545619
https://doi.org/10.1145/3623504.3623569
https://doi.org/10.22152/programming-journal.org/2025/9/2
https://doi.org/10.22152/programming-journal.org/2025/9/2
https://doi.org/10.1145/1218563.1218573
https://doi.org/10.1145/3491102.3517494
https://doi.org/10.1145/3586183.3606817
https://doi.org/10.1145/3386335
https://doi.org/10.22152/programming-journal.org/2023/7/13
https://doi.org/10.1145/2525528.2525534


Designing postmodern substrate architectures

[12] Mary Beth Kery, Donghao Ren, Fred Hohman, Dominik Moritz, Kanit Wong-
suphasawat, and Kayur Patel. “Mage: Fluid Moves Between Code and Graphical
Work in Computational Notebooks”. In: Proceedings of the 33rd Annual ACM
Symposium on User Interface Software and Technology. UIST ’20. ACM, 2020,
pages 140–151. doi: 10.1145/3379337.3415842.

[13] Amy J. Ko and Brad A. Myers. “Barista: An Implementation Framework for
Enabling New Tools, Interaction Techniques and Views in Code Editors”. In:
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
CHI ’06. ACM, 2006, pages 387–396. doi: 10.1145/1124772.1124831.

[14] Geoffrey Litt, Peter van Hardenberg, and Orion Henry. “Cambria: Schema
Evolution in Distributed Systems with Edit Lenses”. In: Proceedings of the 8th
Workshop on Principles and Practice of Consistency for Distributed Data. PaPoC
’21. ACM, 2021, pages 1–9. doi: 10.1145/3447865.3457963.

[15] Wendy E. Mackay and Michel Beaudouin-Lafon. “Interaction Substrates: Com-
bining Power and Simplicity in Interactive Systems”. In: Proceedings of the 2025
CHI Conference on Human Factors in Computing Systems. CHI ’25. Association
for Computing Machinery, 2025, pages 1–16. doi: 10.1145/3706598.3714006.

[16] James Noble and Robert Biddle. “Notes on Postmodern Programming”. In: 17th
Annual ACM Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA’02). ACM, 2002, pages 1–23.

[17] Cyrus Omar, David Moon, Andrew Blinn, Ian Voysey, Nick Collins, and Ravi
Chugh. “Filling Typed Holes with Live GUIs”. In: Proceedings of the 42nd ACM
SIGPLAN International Conference on Programming Language Design and Imple-
mentation. ACM, 2021, pages 511–525. doi: 10.1145/3453483.3454059.

[18] Charles Simonyi. The Death Of Computer Languages, The Birth of Intentional
Programming. Technical report MSR-TR-95-52. Microsoft Research, 1995.

[19] Allen Wirfs-Brock and Brendan Eich. “JavaScript: The First 20 Years”. In: Proc.
ACM Program. Lang. 4.HOPL (2020), 77:1–77:189. doi: 10.1145/3386327.

8

https://doi.org/10.1145/3379337.3415842
https://doi.org/10.1145/1124772.1124831
https://doi.org/10.1145/3447865.3457963
https://doi.org/10.1145/3706598.3714006
https://doi.org/10.1145/3453483.3454059
https://doi.org/10.1145/3386327

	References

