Counting over Unranked Trees
internship L3 .

Lehrstuhl fiir Informatik 7, RWTH Aachen, Germany

benoit.grozQdptinfo.ens-cachan.fr

November 25, 2006

Introduction

Context of the Internship This report is relative to the internship fo-
cussing on tree automata I made with W.Thomas and W.Karianto in Aachen.
Prof. Thomas’s interests are generalized automata, automata over infinite
objects, links between automata and logics, verification and infinite games.
The chair in which this internship took place: ”Logic and Theory of Dis-
crete Systems”, consists in a little less than twenty members, mostly young
researchers(post-docs and Phd students). Amusing is the occasionnal stay in
this chair of several former student of the ENS Cachan during my stage.This
chair regularly organizes little talks in which members and visitors present
thei current researches, which was especially interesting.

Subject of the Internship Unranked trees can be seen as a generali-
sation of the "first-order terms” trees, in which the number of sons for the
vertices is still finite, but unbounded. Such trees appear in many fields like
logic and XML-data processing. In this document, we will study various
models of automata over unranked trees where counting conditions enter the
definition of successful run. Counting conditions are especially relevant for
XML-document queries. They have been studied over the past few years in
various directions such as (and mainly) Parikh automata and Presburger
formulas.

We extend the idea of Presburger counting proposed by Seidl, Schwentick
and Muscholl [2], by adding some global constraint over the tree. The aim
of this work is to introduce several types of automata with Presburger or
Parikh counting conditions, applied either locally, or over the whole tree.
We compare their expressive power, and show algorithmic results about the
non-emptiness problem.

1 Definitions, Technical Preliminaries

Let us define first the trees and automata we are going to use.

1.1 Standard Definitions

Definition 1 An unranked tree t over the alphabet X (or unranked X-valued
tree) is a mapping t : dom; — ¥ with dom, (the tree domain of t) a non-
empty, prefiz-closed subset of (N)* that has to verify the following property:
if xi € domy, then Vj with 1 < j <1, xj € domy.

The set of all regular word languages over the alphabet Y will be denoted

Reg(Z).

Exemple 1 We can, for instance, use unranked trees as models for gener-
alized boolean expressions, i.e. expressions where the arities of V and N are
unbounded.

The tree

/ \ /‘&

(with > = {1,0,V, A}, and domy; = {¢,1,11,12,2,21,22,23,24,3}) is a
tree representation of the expression (in infiz-notation) (1vV0)V(1ATA0A0)VO

Definition 2 A non-deterministic bottom-up tree automaton (1 NT A) over
unranked Y-valued trees of = (Q,%, A, F) consists of
a finite set Q) of states,
a finite input alphabet X
a finite set of transitions A C Reg(Q) X ¥ X @
and the set of final states F' C Q).
A run of o/ over a ¥ — valued tree t is a Q-valued tree p with the same
domain than t, such that Vx € dom; with an arity n,
3L, p(z1),...p(zn) € L and (L,t(x), p(x)) € A
o accepts t if it has an accepting run over t, that is: with p(e) € F

Exemple 2 The following t NTA <, again over ¥ = {1 0,V,A} accepts
the trees that are models of valid boolean expressions. = (Q,%,A,9%)
where

e ¥ ={0,1,V,A}
e Q=A{T,F}

e A={(e1,7),(¢,0, F),
(Q*TQ*aVaT): (F*,\/,F), (Q*FQ*a/\aF)a (T*,\/,T)}

o 7 ={T}

Exemple 3 The run of this automaton over the above described tree is the
following:

v, T
|
V’T//\’F\O’F
SN AN
1,T 0,F 1,T 1,T 0,F 0,F

We then define deterministic bottom-up tree automata, in which for a
given tree, the run is uniquely determined. Somehow, it is the translation for
unranked tree of the idea that only one transition can be applied at a time,
but since the number of sons of a vertice is unbounded, we use automata to
describe the transitions.

Definition 3 A deterministic bottom-up tree automaton (1 DT A) is given
by a tuple

o = (Q,5,A,(Dy)ges, F) with Q, 3, and F as for T NTA, and determin-
istic finite automata D, with output defining the transitions of </. FEach
of the D, (with a € X) is of the form D, = (S,, @, 8™, 0a, Na) with a fi-
nite set S, of states, input alphabet Q, initial states s, transition function
0g : Sqg X Q — S,, and output function A\, : Sq — Q. As usual, we define
051 Sex QF — S, by 0%(s,e) = s and 6% (s,uq) = 3(0:(s,u),q).

Let us now define the Parikh automata, that enable us to introduce some
counting on symbols for words.

Definition 4 Let ¥ be an alphabet and n > 1. Further, let D be a finite,
nonempty subset of N™. The extended Parikh mapping ® : (¥ x D)* — D
15 defined by

O(e) = 0™,

®(a,d) =d for all (a,d) € (T x D).

O (uv) = ®(u) + @(v) for each u,v € (¥ x D)*

("+” being the arithmetical addition over N™) and of course we can define
the extended Parikh image of L by: ®(L) = {®(w)|w € L}
We also define the 3. — projection ¥ by
Ue) =€
U(a,d) =a for all (a,d) € (X x D).
U(uv) = ¥(u)¥(v) for each u,v € (¥ x D)*

Definition 5 A set is said to be a semi-linear set if it is the finite union of
some linear set, which are the sets of the following form.:
{vo + k1.v1 + ko.vo + ... + kyvy, | k1, ...k, € N} for some vy, ...v, € N™.
The restriction of L with respect to C(C C N") is
Lo ={Y(w)lw e L and ®(w) € C}

Let us now define Parikh automata over words.

Definition 6 A Parikh automaton of dimension n > 1 over an alphabet ¥
is a system (o/,C) where o = (Q, %X x D, 0, qq, F) is a finite automaton over
¥ X D, for some finite nonempty set D C N™ and C C N™ is a semi-linear
set (called the constraint set). It is deterministic if the transition function §

satisfies Yqcp |0(q, (a,d))| < 1
The language recognized by (27,C) is defined as L(#/,C) = L(#)|c

Exemple 4 For instance, the language L = {a"b™c"a™|n,m € N*} over
Y = {a,b,c} can be recognized by the Parikh automaton (A) = (Q,% X
D, A, qo, F) where

L Q = {qO: q1, 92, Q3}

e A= {(QOa((1,05(),)) a(QO7(b: (071:070)),q1)3
(QI: ((0:]-7 0: 0))) q1)7 (1 (Ca (0: 0) 1,0))a QQ)a (q ((0,03 1a 0)))
(Q2ﬂ ((0 0 Oﬂ 1))’ Q3); (3 (aa (Oa Oa Oa 1)): Q3)}

[) F: {q3}

e and with the constraint set C = {k1.(1,0,1,0) + k2.(0,1,0,1)|k1, ko €
N}

The figure 1 corresponds to this automaton.

The language of Example 4 is recognized by a Parikh automaton but not
definable by a finite automaton with an extra semi-linear constraint.

4

Figure 1: The automaton A.

1.2 Awutomata over unranked trees that count

We have defined the tree automata over unranked trees and a way to do
some counting over words. Let us see now how we can define some counting
over unranked trees, which is what in xml-queries one may find useful: for
instance, one may whish to select in a database the customers who buy more
"classical” CDs than jazz. The customers can be conveniently represented
as the root of trees, their sons being the CD bought, and each CD having a
son describing the type of its data.

Definition 7 Presburger arithmetics is the first-order theory(with equality)
of the natural numbers with addition. In other words, Presburger formula
are the formula built with =, +,V, A, 3,V, the negation, and variables, whose
domain is tmplicitly N. Then, we can use natural integers and inequality
signs as abbreviations, since: 'z = 0 is equivalent to dz1,21 = 21 + 2°, and
r<y’,to dz,x+z=1y"..

By a result of Ginsburg and Spanier, we know that Presburger formulas
define precisely the semi-linear sets C' C N*.

Definition 8 A tree automaton with Presburger transitions on letters is as
a tuple o = (Q, %, A, F,®). with

® : a finite set of Presburger formulas over ¥ (that means formulas with one
variable for each letter of X:

Yw € X ={a,....,an}, wE &1,xn) if d(|W|ay, ..y |W]a,) is valid).

A : the finite set of transitions, with A C Reg(Q) x & x ¥ x Q

A run of such an automaton over a tree ¢ is a function p : dom; — @ such
that Va € domg, there is some regular language L and some Presburger for-
mula ¢ € ® such that

p(z1)p(x2)...p(zn) € L and (L, ¢, t(x), p(x)) € A and t(z1)t(x2)...t(zn) = ¢

That way, we have one Presburger formula over the letters for each tran-
sition.

Definition 9 For an automaton with Presburger transitions on states, the
tdea is similar, but the constraint is set upon the states: This time, the
condition involving ¢ for the run is replaced by : p(x1)p(x2)...p(zn) E ¢

We can also define those counting modes for deterministic bottom-up au-
tomata (1 D tree automata) in the following way: we take usual 1 D tree automata
over unranked trees, and add the constraints in the same way; by consider-
ing it as a non-deterministic automaton; we ask for an accepting run that
Vx € domy, we have t(z1)t(22)...t(xn) = ¢ (resp. p(zl)p(x2)...p(xn) E ¢)...

This is the model described by Seidl, Muscholl and Schwentick [2]. We
can extend it in the following ways:

Definition 10 A tree automaton with global counting is an automaton as
described above, but we add a formula 1 over the whole tree:
g =(Q,%,A, F, &, 1).

and in a run Y has to be satisfied by the tree t,
i.e. Y([t|g, [tlg2s -y [tlgn) holds (resp. Y(|t|a1, |tlazs -, [tlan) if we count over
symbols)

Exemple 5 For instance, the language

L ={ tree t over ¥ = {a,b}| for all vertices = in the tree t,

z has more sons labeled with 'a’ than with 'y,

and the total number of 'a' labels in t is twice the number of 'V labels}

1s accepted by the following automaton with global counting on letters:
o =(Q,%,A, F,®,1)) where

e Q={q}

o & = {p(ng,m) ="ng >ny"}
o A={¢",¢,2,q}

o F={q}

o Y(ng,mp) ="ng =2.1”

Definition 11 For a tree automaton with Presburger Frontier-check, the
conditions are exactly the same as in Def.10, except that the formula 1 must
be satisfied by the frontier instead of the whole tree.

1.3 Another model: Automata with Parikh counting

In the direct application of ”Presburger counting”, the arithmetical con-
straint is applied to the occurrence numbers of letters in a word. A more pow-
erful counting procedure is realized by the ”Parikh automata” of Klaedtke
and Ruess[5]. Such an automaton processes a word like a finite automaton,
and-for some k- updates in each transition a vector from N* by adding a
vector from IN*. Thus the update depends on the current state of the au-
tomaton. Presburger counting is a special case of this, using k¥ = |¥| and
update steps independent of the state(namely, adding (0,...,0,1,0,...,0), with
the ”71” in i-th position when the i-th letter of X is processed).

Definition 12 An automaton with Parikh transitions on states can be de-
fined as a tuple o = (Q, %, A, F,®). with

® : a finite set of Parikh automata over QQ X D for some D.

A : the finite set of transitions, with A C ® x ¥ x)

A run of such an automaton over a tree t is a function p : dom; — @ such
that Vx € dom,, there is some Parikh automaton </ € ® over () x D for
some D such that (7, t(x), p(z)) € A and there are some dy,ds, ...,d, € D
such that

4 accepts (p(.’L‘l), dl)(p(xQ)a d2)(p($n), dn)

That way, we have one Parikh automaton over the states for each transi-
tion.

Definition 13 For an automaton with Parikh transitions on letters, the
tdea s similar, but the constraint is set upon the letters: This time,

- the Parikh automata are over Y.

- the condition for the run is replaced by :
o accepts (t(x1),dy)(t(x2), ds)...(t(zn), dy,)

For 1 Deterministic automata with Parikh counting, we use the usual
definition of 1 Deterministic automata over unranked trees , with Parikh
automata instead of the usual automata in the transitions.

2 Comparing Expressiveness

2.1 Comparison between Parikh automata and Pres-
burger counting

It is known that there are word languages accepted by Parikh automata
but not definable by finite automata and Presburger constraints on the oc-
currence numbers of the letters (see Example 4 above). We show that this
difference is irrelevant when comparing Presburger counting and Parikh au-
tomaton counting in the transitions of tree automata.

First, it is quite obvious that Presburger automata over unranked trees
can be simulated by automata over unranked trees with Parikh transitions.

Proposition 1 Automata over unranked trees with Parikh transitions can be
simulated by Tree Automata with Presburger over unranked trees with Pres-
burger transitions.

Proof: The main idea is to simulate the vectors of the Parikh automaton
into the states of the automaton with Presburger constraints: if, in the Parikh
automaton, we have a transition leading to the state ¢, using the vector d;,
we say that this transition will lead to the state (g, d;) in the automaton with
Presburger constraint.

In this proof, o7, Z... will denote tree automata, while o7.o7"... will
denote word automata used in the transitions. Let </ be an automaton over
unranked trees with Parikh transitions: & = (Q,X, A, F, ®).

We define a Presburger automaton % over unranked trees as follows:

1. @ = (QBaZaZB;FB’\II)

2. V(A ,d,a,q9) € A, with o = (Sy,Q x D,0,i, F), (&, ¢) being a
Parikh automaton over) x D,
we define &' by &' = (S,y x D,Q x D, 0,4, F') with

(a) @' =1 x {0}
(b) F'=F x D
(c) for all (a (2t B) € 0., we add, for all d, € D, the following rule:
iydj
(o, di) %) (8, d))) to ,0.

From the formula ¢ of the Parikh automaton o7, we define a formula
V(T1, Ty ey Tp) = O(d1171 +d1@o+ ... + dp1Zns -, A1 + do T + ... +
dnmxn); where D = {dl,dg, ,dn} and dZ = (dih dig, adzm)

Then we define the formula 9’ over the states of % such that

V(g dj)ig) = (lgu, di| + g2, di| + -4 gn, di, @1, do| + | g2, do| + .., ...)
And we add, for all dy, (Z('),9',a,(q,d;)) to Ag. Or quite so,
because in fact, there are other transitions in A to be considered, with
-a priori- different sets D of vectors. So that &/’ and 1 have to be
"extended” to those additional vectors. They should not be relevant
in the run of &', so we can impose the values of the vectors to be 0
over those dimensions corresponding to the former” counting vectors”,
except that in the formula giving Ap, ”all the di” really means all of
them, so there the other components have to span over the whole sets
of vectors, in order to enable the next transition to ”choose/guess” the

input vectors it will need.

3. We define Qp as Q x (the cartesian product of the D that appear
in the Parik automata of A)

4. Fg = F X (the cartesian product of the D that appear in the
Parikh automata of A)

Lemma 1 The language accepted by the tree automaton o with Parikh tran-
sitions is the same as the language accepted by the tree automaton % with
Presburger transitions.

Proof:

a) Let t € (), let us prove that t € Z(%).
For all transition (gi, ...¢,, @, q) in the run of &7, there is some (&7, ¢, q) € A
such that 3(dy, ...dy), (q1,d1), -..(n, dp) € L(A).

Then, there are some states oy, ag, ...ci, 11 such that in &7 we have:

Q1,d (I2;d q ’d : -
o 9 e 2 Ay, With a, € F) and g € 1

Therefore, in «7’; (a1,0) € i’ and we can have a run
(a1, 0) 28 (qg, di) 28 . 2% (a1, dn),
and (ay,d,) € F so this run is an accepting one. Then, the Presburger
constraint is satisfied by the states since the Parikh constraints was satisfied
by the vectors.
Therefore, we can have, for any d we wish, a transition
((q1,d1), (g2, d2)...(qn, dn), a, (q,d)) in Ap. o
By induction on the size of the tree, this proves that ¢ is accepted by 4.
b) Let t € £(%), let us prove that t € £ ()
For all transition ((q1, d1), (g2, d2)...(qn,dy), a, (g, d)) in the run of A,
there is some word automaton.’ and some Presburger formula ¢ such that
(g(ﬂl)a ¢7 a, (qa d)) € AB and %’accepts(ql, dl)a (QZa d2)(Qn> dn)a

and (ql, dl), (QQ, d2)---(Qn> dn)): ¢

So, there are some o4, ...c,, such that in .&7’:
7d ’d n,d
(011, 0) n (OfQ, dl) L u ((l/n_|_1, dn),
Therefore, in 7 (the automaton used to define <7’),
(03] ad (60) a4 M Qni1,

Furthermore, the Parikh constraint is satisfied since ¢ is satisfied in the run

of Z(9A).

Hence t € Z(<7), by induction over the size of the tree. Q.E.D
,From this lemma, the claim is self-evident.
Therefore, both counting modes are equivalent over trees.

2.2 Local vs Frontier vs Global counting

Let us now study the expressivity of the different models proposed for Pres-
burger counting.

Proposition 2 Automata counting in transitions are strictly less expressive
than automata counting in transition with an additional Presburger counting
over the frontier.

Proof: a) The inclusion claim is obvious.

b) To separate the two models, consider the language L of all the trees that
have as many ’a’s as ’b’s in the leaves. It is easy to see that this language is
recognized by an automata that counts over the frontier.

Let us assume that it is recognized by an automaton .7 that counts only
in the transitions. Then we obtain a contradiction as follows. let us consider
an infinite set of trees ¢; such that the number of a-leaves of ¢; is the number
of its b-leaves plus i. Since ./ has only a finite number of states, there are
two integers i1 and iy such that the (possible) states at the root in a run of
A over t;, are the same that those in a run over ¢;,. Hence, since &/ must
accept the tree formed by some root-vertex whose two sons are t;, and t_;,,
it has to accept the tree formed by some root whose two sons are ¢;, and t_;, ,
which proves that 7 can’t recognize L. Q.E.D

Proposition 3 Automata counting over frontier are strictly less expressive
than automata counting over the whole tree.

Proof: a) Automata counting over frontier can be simulated by automata
counting over the whole tree as follows. We create new states ¢; that are
”copies” of the ¢;. For all transition (L,4,a,q;) € A,

if ¢ € L, then we replace the transition(s) (L,p,a,q;) by (L — €,a, ¢;)
and we add the transition (e, @,a, ¢;') to A. Then we replace in all the

10

Presburger formula of the transitions ¢; by (¢; + ¢;)(¢ is thereby generalised
to 2n variables) .

Finally, if we had a frontier-check formula ¢(|g1], |g2], ---, |¢n|), We replace
it by the global-constraint formula ¢(|q}l,|g/, ..., |¢,|) The new automaton
thus defined recognizes the same language as the initial one.

b) To separate the two models, consider the language of all trees-let us even
restrain to all unary trees- over ¥ = {a, b} that have as many ”a”s than "b”s
in the internal labels. This language is clearly not recognizable by frontier-
check, while recognizable by global counting.

We therefore have (also) proved that counting in transitions is strictly less
expressive than ”counting over transitions + over whole tree”.

In a nutshell: for the expressiveness of counting over different domains in
trees we have:

transitions < transition + frontier < transition + wholetree

The next proposition is interesting, though:

Proposition 4 When considering unranked proper trees(that is; with no
unary internal vertez), countings over the frontier and over the whole tree
have the same expressive power.

Proof: a)The first part of the above proof still holds. b)However, we can’t
distinguish between the models. On the contrary, we can code the internal
vertices on the frontier with the following injection: given some internal
vertex, we move ”one step right” to its rightmost son, then move ”left” unto
this son’s leftmost heir: we put in this leaf the information over the state of
the node.

More formally; let o = (Q,%, A, F, ®,1) be an automaton with Pres-
burger counting over the whole tree. We define an automaton
o = (Q, %, A", F',®' ') with Presburger counting over the frontier as fol-
lows:

«Q=QxQ

e Even if it means spliting transitions in two, we can suppose that all the
languages in the transitions which are not of the form e, ¢, a,q) don’t
contain €, and therefore that their words are at least two letters long.

For each such L with (L,¢,a,q) € A, Vg; € Q, let L; be the regular
language over @ X @ such that L; € (Q X ¢;) X (@ X 0)* X (Q X ¢) and
the projection of L; over its first component is L. (0 is a kind of ”sink
state: it is won’t be taken into account at hte time of the counting)

11

Then, for all i, we take (L;, ¢, a, (¢, g;)) for A’, where ¢' is the formula
that counts only over the first components, as ¢ would do)

We then add to A’, for each €,¢,a,q) € A, for all i,the transition
(6, ¢Ia a, (qa QZ))

o V'((ni,n;)) = ®((n1,n1) + (n1,n2) +.o.(n1, m) + (n1,m1) + (ng, 1) +
(M, 1)y ey (M, 1) + oo+ (R, 1))

o F'=F x {0}
It is easy to see that £ (") = L ()

The figure next represents the encoding of the internal vertices on the
frontier.

q,0
<\
T, q
O\
0 .0 -

~q . x

.0

Proposition 5 Automata counting in transitions over symbols are strictly
less expressive than those counting over states.

Proof: a) We can simulate the symbols with the states in the following way:
Given an automaton counting over symbols, we define a new automaton by:
RQ=QxX
For all transitions (L,a,q;) € A, if € € L, then we replace the transition(s)
(L,a,q;) by(L —€,a, ¢;) in A and we add the new transition (€,a, (g;,a)) to A’

For all transitions (L, a,q;) € A (which no longer deals with leaves; only
with internal vertices), we add all the transitions (L', a, (¢;,a)) to A’, where
L' is one of the language obtained from L by subtituting some (g;, a;) for g;.
There is only a finite number of such L'.

Then we replace the symbol-counting formula ¢ (a1, as, ..., a,) by the state-
counting formula
#'((q1,01), (g1, a2), ---(q1, Am), (G2, A1), (@2, A2), --(qns Om))
= ¢((q1,a1) + (g2, 01) + . + (Gn; a1), (q1, A2) + (g2, a2) -, --)

The new automaton thus devised recognizes the same tree-language as
the initial one.
b) These two countings aren’t equivalent. Let us consider the tree language
formed by all trees over ¥ = {a} such that you have more often two sons than
three sons. Counting over symbols won’t help very much! But if one has a

12

state ql for the vertices having one son or more than four, q2 for those that
have two sons, g3 if they have three sons, then one can just ask |¢3| < |g2|.
This justifies the claim.

3 Algorithmic results: Non emptiness

At last, we study the decision problems regarding our models of automata,
namely: membership, emptiness and universality.
The membership problem:

Given a tree t and an automaton <7, is t in L(</)?

can be solved by an exhaustive search of the transitions that would give an
accepting run.

The emptiness problem:
given an automaton <f | is L(</) empty?

will be studied in this paragraph.

The universality problem:
given an automaton </ over ¥, do all the trees over ¥ belong to L(<f)?

is not decidable for automata with Presburger constraints in the transitions
[2]. So of course it isn’t for the two other models either.

Proposition 6 The emptiness problem is decidable for all the models de-
scribed above: counting over the whole tree, over the frontier, or only in the
transitions.

We just need to prove it for counting over the whole tree, since the other
models can be reduced to it.

Definition 14 An Extended Context-Free Grammar (ECFQG) is a tuple G =
(N,%, P, S) with

e N : nonterminals
e X : terminals, such that N N is empty

o S X start symbol

13

o P set of rules of the form N — « where « is a reqular expression over
(NUYX)

Proposition 7 If G is an ECFG, then L(G) is context-free.

Proof: We construct a CFG G’ from G as follows: for all N — « in P,
a (being a regular set) is context-free(this result can be proved by induction
over «). So there is a CFG G, = (N,, X, P, S,) that generates a. Now,
we take for G’ all the rulesin P, and N — S,.
G’ generates L(G).

Definition 15 A word w = (¢yq1.--g,) € (XU N)* can be ~ —derived into
w' € (XU N)* iff there is some i € [0..n] such that ¢; — v and some © € vy
such that w' = qo...¢; _12Gi11.--Gn

We then write w ~— w'.

The derivation relation of G is S ~—* w, where ~—* 1is the reflexive and

transitive closure of S ~—.
L(G) = {w € ¥*|S ~—* w}

Let us prove now that the emptiness problem is decidable for automata
counting over the whole tree.

Let f be the Parikh mapping over @ x @', that is, given w € (@ x @)%,
fw) = (lwlgra)s 1@larg)s - 1Wlgnap)-

For each regular language L and Presburger formula ¢ over a given alpha-
bet, f(L) is semi-linear. Therefore, by closure under intersection and union,
f(L) N Ly is also effectively semi-linear, which means they are definable by
regular expressions. We will note ajyr)nr, one such expression, arbitrarily
chosen.

Proof: Given some automaton & = (Q, %, A, i, F, ®,1)). Let us define an
ECFG G = (N, %, P, S) as follows:

e N=Q
o X =, where @ is a”copy” from @ : Q" ={d¢|¢ € Q}
e for each g € F, we put a rule S — ¢ in P.

e for all ¢ € (), we add the following rule in P :

g— U o, (1)
(L’¢7a’q)eA

14

G being an ECFG, it follows that L(G) is context-free. Then, Parikh’s
theorem states that f(L(G)) is effectively semi-linear.
We can then decide wether f(L(G)) N Ly (¢ being checked over the (g;)!) is
empty or not.

Lemma 2 (f(L(G)) N Ly) is empty iff L (<) is.

Proof: a)If &7 accepts some t in a run p, then we can build the following

derivation in G: if we consider the run in a ”top down” order, each time
that a transition (p(z1)p(22)...p(zn), ¢,t(x), p(x)) is encountered, there ex-
ists some permutation o such that p(zo(1))p(z0(2))...p(xo(n)) € apr)ng
for the L corresponding to p(z1)p(22)...p(zn).
We can use the derivation: p(x) — p(z)'p(zo(1))p(zo(2))...p(zco(n)) to
simulate the states of the tree in prefix-order. As a matter of fact, it doesn’t
really give the states of the tree in prefix-order because of the permutation,
but it would if o was the identity. The last non terminal symbols will disap-
pear when simulating the leaves, since transitions of the form (e, ¢, t(x), p(z))
will then be encountered, which leads to a simulation by rules of the form:
p(x) — p(z)".

That way, we have some w € L(G) that satisfies 1(over the (g}))

b) Reciprocally, if there is some w in f(L(G)) N Ly, w being obtained by
a derivation :

S — Gy — 4,29,y — ¢, 2q;, 2y — ... — w, then we can find a tree in
Z (&) from that derivation in the following way:

We first put g;, at the root of the tree.

Then we look for the next step of the derivation. since we have a ¢;, —
,7¢;,y rule in G, there exists some word u over (Q, some letter a in the
tree-alphabet, and some formula ¢ such that (u,¢,a,q;,) € A and f(u) =
f(th y)

We replace ¢;, with ‘a’ at the root of the tree, and add some sons to a so that
they form the word u. We go on running over the derivation from the left to
the right, doing the same, that is;

whenever a rule ¢;, — qgk Sqigk+1)t corresponding to some (v, ®,b,¢;,) € A
is applied, we replace one of the g;, (no matter which) with 'd’, and give him
for sons the states of v, in the same order as in v.

When this will have been completed, we will dipose of a tree that is accepted
by .o/, since the states that have been replaced by letters simulate the state
in an accepting run over this tree. Q.E.D.

Perspectives and Acknowledgement So, this stage made me discover
and define a new kind of tree automata. I would like to thank especially
W.Thomas for his kindness and his good advices, as well as W. Warianto

15

for his great availability, his precise explanations, and his correcting all my
definitions and proofs. Many thanks also to all the members of the chair that
helped me tackle software and technical difficulties...and made this internship

pleasant.
References
[1] J.Cristau, C.Léding, W.Thomas Deterministic Automata on Un-

2]

3]

[4]

[5]

(6]

[7]

ranked TreesProc.15th Symp on Foundations of computational Theory,
FCT2005, Springer LNCS 3921 (2005).

H.Seidl, A .Muscholl, T.Schwentick Numerical ~ Document
Queries.Proceedings PODS 2003.ACM Press(2003) 681-696

W.Karianto Parikh automata with pushdown stack. Diploma thesis,
RWTH Aachen,Germany(2004).

F.Klaedtke Automata-based decision procedures for weak arithmeticsPhd
Thesis, Univ. Freiburg 2004.

F.Klaedtke, H.Ruess Parikh Automata and Monadic Second-Order Log-
1cs with Linear Cardinality Constraints. Technical Report 177, Institute
of Computer Science at Freiburg University, 2002.

E.Jurvanen, A.Potthoff, W.Thomas Tree Languages Recognizable by
Regular Frontier Check.Bericht Nr.9311, juni 1993, Christian-Albrechts-
Universitat Kiel.

R.J.Parikh On Context-Free Languages, Journal of the ACM, 13(1966)
pp-570-581.

16

