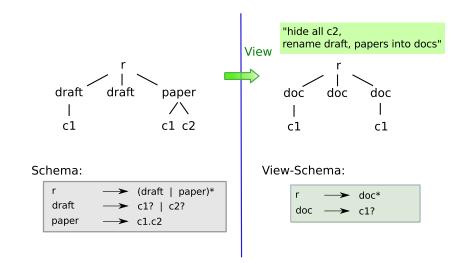
Translating Updates applied on Views

I.Boneva, A-C. Caron, B.Groz, Y.Roos, S.Staworko, S.Tison

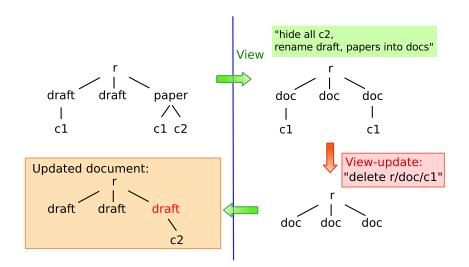
LIFL, Université Lille 1

ICDT, March, 2011

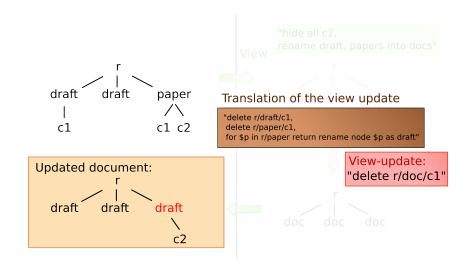
Introduction: example



Introduction: example



Introduction: example



The View-Update pb

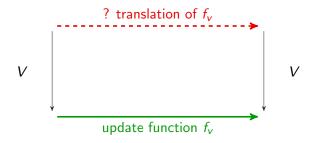


Figure: View update propagation: a synopsis.

Outline

- Tree Alignments for Updates
 - Tree Alignments for Document Transformations
 - Results on Functionality
- Update Translation
 - Polynomial time algorithms
- Update Translation with Constraints
 - Intractability in general
 - A restriction that makes all problems decidable

Outline

- Tree Alignments for Updates
 - Tree Alignments for Document Transformations
 - Results on Functionality
- Update Translation
- 3 Update Translation with Constraints

Tree alignments

We note Σ_{ε} for $\Sigma \cup \{\varepsilon\}$.

Definition

Tree over $(\Sigma_{\varepsilon})^k \setminus \{(\varepsilon, \ldots, \varepsilon)\}$ s.t. :

- label of the root is (r, \ldots, r)
- if node n has ε on i^{th} component, its descendants also.

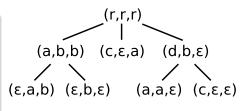


Figure: A tree alignment with k = 3

Projections

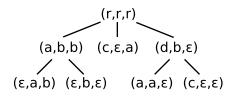


Figure: tree alignment t

Figure: projection $\pi_3(t)$

Projections

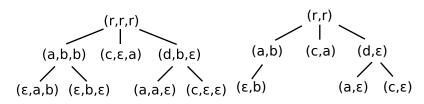


Figure: tree alignment t

Figure: projection $\pi_{1,3}(t)$

Projections

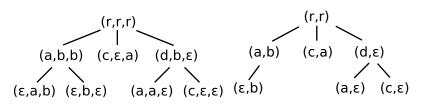


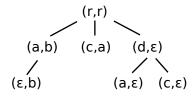
Figure: tree alignment t

Figure: projection $\pi_{1,3}(t)$

Proposition

Projections of a regular set of alignments are also regular sets of alignments.

An editing script is a binary(k=2) tree alignment t.



An editing script is a binary(k=2) tree alignment t.

Input=
$$\pi_1(t)$$
.
$$(a,b) \qquad (c,a) \qquad (d,\epsilon)$$
$$(\epsilon,b) \qquad (a,\epsilon) \qquad (c,\epsilon)$$

An *editing script* is a binary(k=2) tree alignment t.

Output=
$$\pi_2(t)$$
.
$$(a,b) \qquad (c,a) \qquad (d,\epsilon) \qquad (c,\epsilon) \qquad (c,\epsilon)$$

An editing script is a binary(k=2) tree alignment t.

Equivalence of editing scripts

$$(r,r) \qquad (r,r) \qquad (r,r) \qquad (a,\epsilon) (a,b) (c,c) (c,c) \qquad (a,\epsilon) (a,b) (d,\epsilon) (c,c) \qquad (b,\epsilon) (c,d) (c,g) \qquad (c,d) (c,g) \qquad (c,d) (c,g) \qquad (c,r) \qquad$$

Marked input

Figure: $t \sim_{eq} t'$

Equivalence of editing scripts

$$(r,r) \qquad (r,r) \qquad (r,r) \qquad (s,d) \qquad (s,d) \qquad (s,g) \qquad (s,e) \qquad (s,d) \qquad (s,g) \qquad (s,g$$

Figure: $t \sim_{eq} t'$

Equivalence of editing scripts

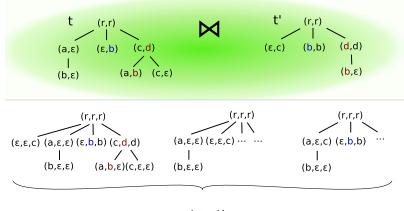
Figure: $t \not\sim_{eq} t'$

Synchronization

Definition: synchronization

 L_1, L_2 sets of editing scripts.

$$L_1 \bowtie L_2 = \{t \mid \pi_{1,2}(t) \in L_1 \land \pi_{2,3}(t) \in L_2\}$$



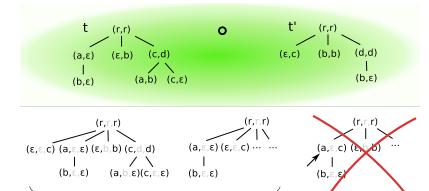
Composition

Definition: composition

 L_1, L_2 sets of editing scripts.

$$L_1 \circ L_2 = \pi_{1,3} \left((L_1 \bowtie L_2) \cap L_{\text{res}} \right)$$

... "deletions are forever"!



Properties of compositions

Proposition

Composition is associative

In a nutshell

We defined tree alignments, editing scripts as the special binary case. We defined

- projections $\pi_{i_1,i_2,...i_j}$: alignment \mapsto alignment,
- composition $L_1 \circ L_2$: editing scripts \mapsto set of editing scripts

Those operations preserve regularity.

In a nutshell

We defined tree alignments, editing scripts as the special binary case. We defined

- ullet projections $\pi_{i_1,i_2,\dots i_j}$: alignment \mapsto alignment,
- composition $L_1 \circ L_2$: editing scripts \mapsto set of editing scripts

Those operations preserve regularity.

• the equivalence relation \sim_{eq} between trees

The closure under equivalence does not preserve regularity.

Update function

Definition

An update function is a **regular** set of editing scripts f_v such that $\forall t, t' \in$ $f_{V}.\pi_{1}(t) = \pi_{1}(t') \Rightarrow t \sim_{eq} t'.$

Example:

$$\left\{ \begin{array}{ccc} (r,r) & (r,r) & (r,r) \\ \diagup & ; & \diagup & ; & \\ (a,\epsilon)(\epsilon,b) & (\epsilon,b)(a,\epsilon) & (c,a) \end{array} \right\} \quad \left\{ \begin{array}{ccc} (r,r) & (r,r) \\ \diagup & ; & \diagdown \\ (a,\epsilon)(\epsilon,b) & (a,c) \end{array} \right\}$$

update function

$$\left\{ \begin{array}{ccc} (r,r) & (r,r) \\ / \backslash & ; & | \\ (a,\epsilon)(\epsilon,b) & (a,c) \end{array} \right\}$$

not an update function

Update function

Definition

An *update function* is a **regular** set of editing scripts f_v such that $\forall t, t' \in f_v.\pi_1(t) = \pi_1(t') \Rightarrow t \sim_{eq} t'$.

Example:

Update function

Definition

An update function is a **regular** set of editing scripts f_v such that $\forall t, t' \in$ $f_{V}.\pi_{1}(t) = \pi_{1}(t') \Rightarrow t \sim_{eq} t'.$

Example:

$$\left\{ \begin{array}{ccc} (r,r) & (r,r) & (r,r) \\ \diagup & ; & \diagup & ; & \\ (a,\epsilon)(\epsilon,b) & (\epsilon,b)(a,\epsilon) & (c,a) \end{array} \right\} \quad \left\{ \begin{array}{ccc} (r,r) & (r,r) \\ \diagup & ; & \cr (a,\epsilon)(\epsilon,b) & (a,b) \end{array} \right\}$$

update function

$$\left\{ \begin{array}{ccc} (\mathsf{r},\mathsf{r}) & & (\mathsf{r},\mathsf{r}) \\ & \swarrow & ; & | \\ (\mathsf{a},\epsilon)(\epsilon,\mathsf{b}) & & (\mathsf{a},\mathsf{b}) \end{array} \right\}$$

not an update function

Testing functionality

Proposition

Given a regular set L of editing scripts, we can test in polynomial time whether L is an update function

Plandowski's algorithm for testing equivalence of two morphisms on a context-free language.

Making a transformation functional

Theorem

Given a regular set of editing scripts L, we can 'effectively' compute an update function f_L such that $f_L \subseteq L$ and the domains of f_L and L are equal $(\pi_1(f_L) = \pi_1(L))$.

Outline

- Tree Alignments for Updates
- Update Translation
 - Polynomial time algorithms
- Update Translation with Constraints

Views

Reminder

An update u is an editing script (binary alignment).

An update function f_v is a regular set of Ed.S that defines a functional transformation.

Definition

A *view V* is an update function over alphabet $\Sigma \times \Sigma_{\varepsilon}$: no insertions; only deletions.

The view update problem: defining translations

Definition

a set of Ed.S. L_s is a translation of f_v (w.r.t. V) iff $L_s \circ V \sim_{eq} V \circ f_v$.

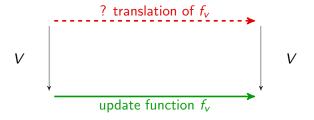


Figure: View update propagation: a synopsis.

The problems we solve

Problem: [Finding a translation]

Input: view V, update function f_v

Output: a translation for f_v on the source.

Problem: [Testing a translation]

Input: view V, update function f_v , and regular set of source up-

dates L_s

Question: is L_s a translation for f_v on the source?

Translations for unconstrained updates

Proposition[Compute a translation]

From V and f_v , if $\pi_2(f_v) \subseteq \pi_2(V)$ we can compute an automaton A such that L(A) is a translation of f_v , in polynomial time.

 \Rightarrow : Using previous theorem we can compute a functional translation of f_{ν} .

Translations for unconstrained updates

Proposition[Compute a translation]

From V and f_v , if $\pi_2(f_v) \subseteq \pi_2(V)$ we can compute an automaton A such that L(A) is a translation of f_v , in polynomial time.

 \Rightarrow : Using previous theorem we can compute a functional translation of $f_{\rm v}$.

Proposition[Test a translation]

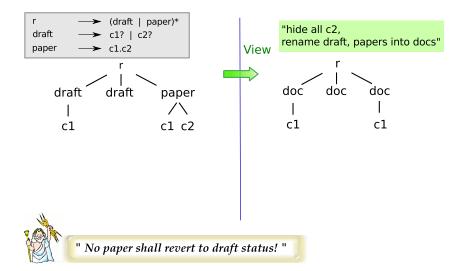
Given view V, update function f_v , and set of source updates L_s , it is decidable whether L_s is a translation of f_v .

We check that $L_s \circ V \cup V \circ f_V$ is an update function, which can be achieved in PTIME once equality of the domains is checked.

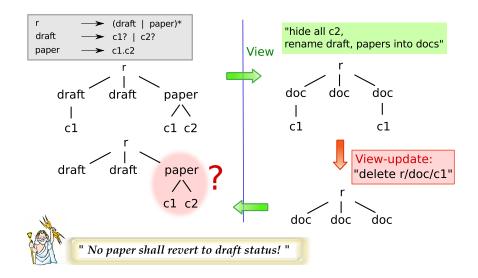
Outline

- Tree Alignments for Updates
- 2 Update Translation
- Update Translation with Constraints
 - Intractability in general
 - A restriction that makes all problems decidable

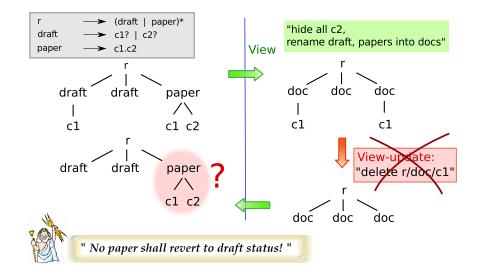
Constraints on updates



Constraints on updates



Constraints on updates



Translatability with constraints

We fix a view V, and a regular set of Ed.S. \mathcal{U}_s representing authorized source updates.

Change from unconstrained setting: u_v may have a translation from some source document and have no translation from another source document. \Rightarrow : leads to unacceptable behaviour from the user's point of view

Definition

 f_v is translatable iff $\exists L \subseteq \mathcal{U}_s.L \circ V \sim_{eq} V \circ f_v$.

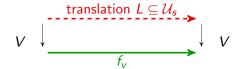


Figure: View update propagation: a synopsis.

The problems we want to solve

Problem: [Test translatability]

Input: view V, set of authorized source updates \mathcal{U}_s , update function

 f_{v}

Question: *Is* f_v *translatable?*

Problem: [Compute translatable updates]

Input: view V, set of authorized source updates \mathcal{U}_s

Output: a regular expression for the set of all translatable view

updates.

The problems we want to solve

Problem: [Test translatability]

Input: view V, set of authorized source updates \mathcal{U}_s , update function

Question: *Is* f_v *translatable?*

Proposition[Testing translatability]

In general, testing translatability of f_v is undecidable.

Problem: [Compute translatable updates]

Input: view V, set of authorized source updates \mathcal{U}_s

Output: a regular expression for the set of all translatable view

updates.

Proposition[Computing the translatable updates]

In general, emptiness for the set of translatable updates is undecidable

K-synchronized updates

Definition

An editing script t is k-synchronized if for every sequence $n_1 \ldots, n_{k+1}$ of following siblings labeled with an insertion tag $(\{\varepsilon\} \times \Sigma)$, there exists a node n between n_1 and n_{k+1} such that n is tagged with a relabeling $(\Sigma \times \Sigma)$.

Example:

$$(\varepsilon, a)(d, \varepsilon)(\varepsilon, c)(\varepsilon, a)(b, c)(\varepsilon, a)(\varepsilon, b)(a, a)$$

→: 3-synchronized, but not 2-synchronized.

K-synchronized updates

Definition

An editing script t is k-synchronized if for every sequence $n_1 \ldots, n_{k+1}$ of following siblings labeled with an insertion tag $(\{\varepsilon\} \times \Sigma)$, there exists a node n between n_1 and n_{k+1} such that n is tagged with a relabeling $(\Sigma \times \Sigma)$.

Example:

$$(\varepsilon, a)(d, \varepsilon)(\varepsilon, c)(\varepsilon, a)(b, c)(\varepsilon, a)(\varepsilon, b)(a, a)$$

→: 3-synchronized, but not 2-synchronized.

Proposition

We can test in polynomial time whether $\exists k.L$ is k-synchronized or not

Applications

Lemma

Fix $k \in \mathbb{N}$. Given a regular set L of k-synchronized editing scripts, $[L]_{eq} = \{t \mid \exists t' \in L.t \sim_{eq} t'\}$ is a regular set of k-synchronized editing scripts.

Proposition[Testing translatability]

Testing translatability of a regular set f_v of k-synchronized editing scripts is decidable.

Proposition

When f_v is a k-synchronized update function, we can compute a translation.

Theorem[Compute translatable updates]

When the set of authorized updates is such that the updates it induces on the view $(V^{-1} \circ \mathcal{U}_s \circ V)$ are k-synchronized, we can compute an automaton for the set of all translatable view updates.

Conclusion

	No constraints	General \mathcal{U}_s	U_s & k -synchro. restrict
Compute translation	Ртіме	No	YES if translatable
Testing translation	Ptime	undecidable	decidable
Test transl.	><	undecidable	decidable
Compute translatable updates	><	No	decidable

User-friendliness:

- view can be defined via annotated DTD/XPath annotations...
- editing script can express a small fragment of XQUF; of the form: "Apply atomic update to all nodes selected by XPath query"

Future work

Efficiency:

- how to efficiently evaluate non-deterministic transducers?
- defining a notion of locality

Study independence of updates, commutativity, reversibility.