Filtering with the Crowd

Benoît Groz, Ezra Levin, Isaco Meiljson, Tova Milo

Tel-Aviv University Univ. Paris Saclay

15 Mars 2016

Outline

- 1 The CrowdScreen framework
- 2 Algorithms for computing good/optimal strategie
- Experimental results

Broader perspective: CrowdSourcing project at TAU

CrowdSourcing: engaging web users to contribute and process information.

Use cases: Wikipedia, annotations for ML data (images, video, text processing), reviews, data cleaning...

FP7 MODAS project (T. Milo et al.):

develop foundations for the management of large-scale crowd-sourced data.

Interface (NLP, query refining)

Mining with the crowd (ontologies, association rules, data cleaning)

Query optimization (Planning queries, <u>Filtering</u>, Skyline)

. . .

Filtering with the Crowd

Filtering in CrowdScreen's model Select with minimum number of tasks

- · all cereals with gluten
- with $\leq \tau = 10\%$ of misclassification Compute sequential test in terms of e_0, e_1, s, τ and budget m.

s = 50% gluten-free cereals $e_0 = e_1 = 40\%$ errors

redundant tasks

Aim: minimize cost=#tasks

Strong assumption: s, e_0 , e_1 known in advance. (\hookrightarrow may use sampling)

Strategies

Compute strategy when

- 50% of cereals contain gluten
- error probability 0.4 per answer
- we wish at most 10% error.
- we can afford at most *m* (say, 51) questions per cereal.

Minimize expected cost for given error threshold and budget

Here:

error rates e_0 , $e_1 = 0.4$, selectivity s = 0.5, error threshold $\tau = 0.1$, budget m = 51

In general $s \neq .5$ and $e_0 \neq e_1$ but similar shape...

Seems a hard problem...

Problem: computing optimal strategy.

(i.e., optimal stopping time in a sequential test)

Complexity bounds

- Check all possible strategies: $O(2^{m^2})$
- Check all ladder strategies: $O(2^{2m})$

Figure: ladder strategy

- → Heuristics
- → Probabilistic relaxation.

Contributions: outline

Crowdscreen [Parameswaran et al, SIGMOD'12]

- Defined the framework
- A linear program to compute the optimal probabilistic strategy
- Two gradient-based heuristics in $O(m^5)$; shrink and growth

Our contributions

- Complexity Analysis and show that algorithms scale poorly
- Improve the complexity of both growth and shrink to $O(m^4)$, and remedy a "flaw" in growth
- Propose a scalable heuristic based on the well-known SPRT
- Establish connections between probabilistic and deterministic strategies.

Outline

- The CrowdScreen framework
- 2 Algorithms for computing good/optimal strategies
- Experimental results

Figure: Strategies returned for $e_0 = .25$, $e_1 = .2$, s = .8, $\tau = .0075$, and m = 15.

: continuing point
: accepting point
: rejecting point
: Pstop = .62
: unreachable point
/: decision line
//: SPRT lines

Figure: Strategies returned for $e_0 = .25$, $e_1 = .2$, s = .8, $\tau = .0075$, and m = 15.

Truncated SPRT: stops when error $< \tau$ or exceed m Truncation may raise error above τ . \hookrightarrow using binary search we can compute the optimal LR threshold to obtain expected error $< \tau$.

■: continuing point
■: accepting point
■: rejecting point
●: P_{stop} = .62
: unreachable point
/: decision line
//: SPRT lines

Figure: Strategies returned for $e_0 = .25$, $e_1 = .2$, s = .8, $\tau = .0075$, and m = 15.

: continuing point

: accepting point

: rejecting point

: P_{stop} = .62

: unreachable point

/: decision line

//: SPRT lines

Figure: Strategies returned for $e_0 = .25$, $e_1 = .2$, s = .8, $\tau = .0075$, and m = 15.

Figure: Strategies returned for $e_0 = .25$, $e_1 = .2$, s = .8, $\tau = .0075$, and m = 15.

Probabilistic strategy:

⇒ lower cost& linear program for optimal strategy

Theorem

- There is an optimal strategy with a single probabilistic point (unique in general).
- Instead of linear program, we can use **shrink** with probabilistic point.

Outline

- 1 The CrowdScreen framework
- 2 Algorithms for computing good/optimal strategies
- Experimental results

Figure: Strategies returned for $e_0 = .25$, $e_1 = .2$, s = .8, $\tau = .0075$, and m = 15.

	SPRT	AdaptSprt	ladder	shrink	linear	$ \mathbf{x} $: rejecting point $ \mathbf{o} $: $ P_{stop} = .62 $
cost	6.94 0.008	7.748 0.00741	7.59 0.00749	7.73 0.00748	7.56 .0075	unreachable point: /: decision line //: SPRT lines

Experiments on real Crowd

question		S	e_0	e_1
Q1	photos from Australia	.18	.25	.36
Q2	photos from Greece or Cyprus	.26	.27	.32
Q3	dishes containing dairy	.17	.11	.27
Q4	dishes containing onions	.54	.38	.27
Q5	dishes containing garlic	.62	.44	.48
Q6	dishes containing eggs	.19	.22	.57

Figure: Question parameters

Running time

$\frac{(e_0, e_1, \tau, m, s)}{(.25, .2, .0075, 15, .8)}$ $(.2, .25, .05, 18, .6)$	1adder (PyPy) 0.8s 5s	naive (PyPy) 6.4s 4.5min	naive (cPython) 3min 2.7h naive (cPython)	
(e_0,e_1,τ,m,s)	shrink (PyPy)	naive (PyPy)		
(.25, .2, .0075, 40, .8) (.25, .2, .0075, 200, .8)	.24s 1.5s	.6s 12 min	23s > 5h	

Figure: Running time for ladder and shrink variants

Figure: Average running time of algorithms on random instances

Sensitivity of the strategy ($\tau = .1, m = 12$)

Figure: For e_0 = .2, e_1 = .25, τ = .05, s = .6: cost, and sensitivity (only shrink, m = 15).

Conclusion

CrowdScreeen's purpose: classify multiple items according to predefined strategy.

Problem: compute "optimal" stopping rules given parameters.

Our contributions:

- √ optimize previous algorithms
- \checkmark explain or fix properties observed in original framework
- \checkmark establish connection between ${ t shrink}$ and probabilistic strategy
- √ experimental evaluation