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Outline

e The CrowdScreen framework



Broader perspective: CrowdSourcing project at TAU

CrowdSourcing: engaging web users to contribute and process information.

Use cases: Wikipedia, annotations for ML data (images,video, text processing),
reviews, data cleaning...

FP7 MODAS project (T. Milo et al.):

develop foundations for the management of large-scale crowd-sourced data.

Interface Mining with the crowd Query optimization
(NLP, query refining) (ontologies, associa- (Planning queries, Filtering, Skyline)
tion rules, data cleaning)




Filtering with the Crowd

s = 50% gluten-free cereals
ey = e; = 40% errors

Filtering in CrowdScreen’s model redundant tasks
Select with minimum number of tasks

o all cereals with gluten
o with < 7 = 10% of misclassification

Compute sequential test in terms of
e, €1, S, T and budget m.

Aim: minimize cost=#tasks

Strong assumption: s, ey, e; known in advance.
(= may use sampling)



Strategies

Compute strategy when

@ 50% of cereals contain gluten

@ error probability 0.4 per answer

@ we wish at most 10% error.

@ we can afford at most m (say, 51) questions per cereal.
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Minimize expected cost for given error threshold and budget

Here:

error rates ey, e; = 0.4, selectivity s = 0.5, error threshold 7 = 0.1, budget m = 51

In general s # .5 and ey # e but similar shape...



Seems a hard problem...

Problem: computing optimal strategy.
(i.e., optimal stopping time in a sequential test)

Complexity bounds

@ Check all possible strategies: 0(2™)
@ Check all ladder strategies: O(2°™)
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Figure: ladder strategy

=>> Heuristics
=>> Probabilistic relaxation.



Contributions: outline

Crowdscreen [Parameswaran et al, SIGMOD’12]

@ Defined the framework
@ A linear program to compute the optimal probabilistic strategy

@ Two gradient-based heuristics in O(m’); shrink and growth

Our contributions

@ Complexity Analysis and show that algorithms scale poorly

@ Improve the complexity of both growth and shrink to O(m*), and
remedy a “flaw” in growth

@ Propose a scalable heuristic based on the well-known SPRT

@ Establish connections between probabilistic and deterministic strategies.
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a Algorithms for computing good/optimal strategies
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Panel of algorithms
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Figure: Strategies returned for ey = .25, ¢; = .2, s = .8, T = .0075, and m = 15.
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SPRT[Wald’44]: stops when error < T
& likelihood ratio LR(x, y) & [Z, =5]

T-7° T

LR(x, y) = —Frreach(x ) | gluten)

Pr(reach(x, y) | gluten-free)

log(LR(x, y)) = log 7= + x log (1 - ) + ylog(

)
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/7 SPRT lines



Panel of algorithms
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Figure: Strategies returned for ey = .25, e; = .2, s = .8, T = .0075, and m = 15.

: continuing point

: accepting point

: rejecting point
 Pitop = -62
Truncated SPRT: stops when error<T or exceed m : unreachable point

T ti 9 b / : decision line
runcation may raise error above T. //: SPRT lines

< using binary search we can compute the optimal
LR threshold to obtain expected error < .




Panel of algorithms
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Figure: Strategies returned for ey = .25, e; = .2, s = .8, T = .0075, and m = 15.
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Panel of algorithms
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Figure: Strategies returned for ey = .25, e; = .2, s = .8, T = .0075, and m = 15.

: continuing point
( 7 M : accepting point
shrink: gradient-like heuristic W: rejecting point
@: Piop = .62
,_ : unreachable point
For each (x, y) compute —% =- g,_g > 0. + decision line
Add terminating point at maximum with £/ < 7. 77+ SPRT lines

Proposition

. AC .
We can compute all ratios — 7z (x, y) in o(m?).




Panel of algorithms
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Figure: Strategies returned for ey = .25, ¢; = .2, s = .8, T = .0075, and m = 15.

: continuing point

(r ork g M : accepting point
Probabilistic strategy: % : rejecting point
g 9 @ : Pstop = .62
= lower cost& linear program for optimal strategy - unreachable point
/ : decision line
Theorem //: SPRT lines

@ There is an optimal strategy with a single prob-
abilistic point (unique in general).

@ Instead of linear program, we can use shrink
with probabilistic point.
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e Experimental results
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Figure: Strategies returned for ey = .25, e; = .2, s = .8, T = .0075, and m = 15.

: continuing point

M : accepting point
X : rejecting point
| SPRT | AdaptSprt | ladder | shrink | linear @ Puop = .62
cost 6.94 7.748 7.59 7.73 756 : unre}a?hab‘le point
error | 0.008 ‘ 0.00741 ‘ 0.00749 ‘ 0.00748 ‘ 0075 # : decision line

/7 SPRT lines



Experiments on real Crowd

question s e | e
Q1 photos from Australia .18 | .25 | .36
Q2 photos from Greece or Cyprus | .26 | .27 | .32
Q3 dishes containing dairy A7 | 11| .27
Q4 dishes containing onions .54 | .38 | .27
O5 dishes containine oarlic 62 44 48
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06 dishes containine ecos 19 29 57
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Figure: Question parameters
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Figure: Average cost per item (with m = 12,7 = .1)




Running time

running time (s)

Figure: Average running time of algorithms
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Sensitivity of the strategy (7 = .1, m = 12)
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Figure: For ey =.2, e;=.25, T =.05, s=.6: cost, and sensitivity (only shrink, m=15). =



Conclusion

CrowdScreeen’s purpose: classify multiple items according to predefined
strategy.

Problem: compute "optimal" stopping rules given parameters.

Our contributions:
v’ optimize previous algorithms
v’ explain or fix properties observed in original framework
v’ establish connection between shrink and probabilistic strategy

v’ experimental evaluation
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