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Context

DTD and XML Schema use regular expressions to specify which
sequence of children may appear below a node.

<!ELEMENT book (author,chapter*,index?)>

Constraint: regular expression must be deterministic.

We provide new algorithms to:
Check if a regular expression is deterministic.

Decide the membership problem for deterministic
regular expressions.
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Structure of regular expressions

Expression is non deterministic if:

bi aj ak (j 6= k)

ab∗b

a1 b2 b3q0

$

First Last

b3 follows a1, b2 follows a1

abb∗

a1 b2 b3q0

$
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Structure of regular expressions

Expression is non deterministic if:

bi aj ak (j 6= k)

#a1b∗2b3$

⇒non deterministic

a1 b2 b3# $

First Last

b3 follows a1, b2 follows a1

#a1b2b∗3$

⇒deterministic

a1 b2 b3# $
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Deterministic regular expressions (a.k.a. one-unambiguous)

Expression is non deterministic if:

bi aj ak (j 6= k)

#a1b∗2b3$
⇒non deterministic

a1 b2 b3# $

Ambiguity parsing w = ab

#a1b2b∗3$
⇒deterministic

a1 b2 b3# $

e = (a + b)b?(ab)∗ ?
e = (ab+ba?)∗ ?
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Deterministic regular expressions (a.k.a. one-unambiguous)

Expression is non deterministic if:

bi aj ak (j 6= k)

#a1b∗2b3$
⇒non deterministic

a1 b2 b3# $

Ambiguity parsing w = ab

#a1b2b∗3$
⇒deterministic

a1 b2 b3# $

e = (a + b)b?(ab)∗ ⇒deterministic
e = (ab+ba?)∗ ⇒non deterministic: w = ba
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Problems of interest
Testing determinism:

Input: expression e,
Question: is e deterministic?

Membership:
Input: word w , deterministic expression e,
Question: w ∈ L(e)?

Scenario: big expres-
sion, big alphabet.

Remark:
size of e = number of nodes in the parse tree

' number of positions.
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Problems of interest
Testing determinism:

Input: expression e,
Question: is e deterministic?

Membership:
Input: word w , deterministic expression e,
Question: w ∈ L(e)?

Straightforward solution through Glushkov automaton.
Build Glushkov in O(|Σ| × |e|) [Brüggeman-Klein TCS’93].
=⇒ (quadratic in |e|)

Number of transitions of Glushkov can be quadratic:

e = (a + b + c . . . )(a + b + c . . . ),
e ′ = (a + b + c . . . )∗,
e ′′ = (a?b?c? . . . )

qi

a

b

...

a

b

...
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Problems of interest
Testing determinism:

Input: expression e,
Question: is e deterministic?

Membership:
Input: word w , deterministic expression e,
Question: w ∈ L(e)?

Straightforward solution through Glushkov automaton.
Build Glushkov in O(|Σ| × |e|) [Brüggeman-Klein TCS’93].
=⇒ (quadratic in |e|)

Can we do better?
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Summary

Glushkov Our results

testing determinism O(|Σ| × |e|) O(|e|)

membership O(|Σ| × |e|+ |w |) O(|e|+ |w | log log(e))

? k-occurrence O(k × |w |)

? restrictions on + O(|e|+ |w |)

? star free O(|e|+ |w |)

This
talk
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Roadmap

Preprocessing

We do not construct automaton. Instead we work on parse tree which we
preprocess in linear time to build some pointers+datastructures.

Testing determinism.
We search a witness for non-determinism in e: pair of two positions
with same label that follow a common position.

bi aj ak (j 6= k)

We limit the number of pairs examined to O(|e|) using
skeleta from [Bojańczyk and Parys JACM’11].

Testing membership.
We simulate transitions on-the-fly using the pointers from
preprocessing.
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Roadmap: transition simulation

We want a procedure for transition simulation:
Input:

a position ai in the expression,
a letter b (the next letter of the word)

Output:
the unique b-labeled position that follows ai
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Some tools

LCA preprocessing [Harel&Tarjan, SICOMP’84]

One can preprocess a tree in linear time, to answer lowest
common ancestor (LCA) queries and ancestor queries in
constant time.

(Input for preprocessing: t)

LCA query:
Input: two nodes n1, n2 in t
Output: the lowest common ancestor (LCA) of n1 and n2

Ancestor query:
Input: two nodes n1, n2 in t
Question: is n1 an ancestor of n2?
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Work on parse tree

Goal: Given two positions ai and bj ,
test if bj follows ai in constant time.
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Work on parse tree: Follow

When does bj follow ai?

�

�

?

a1

?

c2

�

b3 a4

{b3}{a1, c2}

LCA(a1, b3)

×

Case 1 : �

∗

+

�

a5 b6

b7

{a5, b7}{b7, b6}

lowest star above
LCA(b7, a5)

×

Case 2 : ∗

{. . . } : First set

{. . . } : Last set
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Work on parse tree: Follow (2)

Assuming that after some preprocessing we can test First and Last in
constant time,

Theorem

We can test if bj follows ai in constant time.

Preprocessing:
pointer to lowest ∗ ancestor of each node.
build LCA, First and Last structures.

Algo. to test if bj follows ai :
compute LCA(bj , ai )
follow the ∗ pointer (for case 2 : ∗)
test that ai , bj in First and Last of appropriate nodes

New objective: test if ai ∈ First(n) in constant time

Benoit Groz (Mostrare) Deterministic regular expressions PODS, May, 2012 16 / 25



Work on parse tree: Follow (2)

Assuming that after some preprocessing we can test First and Last in
constant time,

Theorem

We can test if bj follows ai in constant time.

Preprocessing:
pointer to lowest ∗ ancestor of each node.
build LCA, First and Last structures.

Algo. to test if bj follows ai :
compute LCA(bj , ai )
follow the ∗ pointer (for case 2 : ∗)
test that ai , bj in First and Last of appropriate nodes

New objective: test if ai ∈ First(n) in constant time

Benoit Groz (Mostrare) Deterministic regular expressions PODS, May, 2012 16 / 25



Work on parse tree: First and Last

�

�

# �

a1 ∗

�

�

?

a2

?

c3

?

�

b4 a5

$

n1

n2

n3

n4

n5

Figure: Expression e0 = (a((a?c?)(ba)?)∗.
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Work on parse tree: First and Last

{a2, . . . } : First set

�

�

# �

a1 ∗

�

�

?

a2

?

c3

?

�

b4 a5

$

n1

n2

n3

n4

n5{b4}

Figure: Expression e0 = (a((a?c?)(ba)?)∗.
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Work on parse tree: First and Last
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�

�

# �
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�

�

?
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?
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?

�

b4 a5

$

n1

n2

n3

n4
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{a2} {c3}
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Work on parse tree: First and Last

{a2, . . . } : First set

: a SupFirst pointer

�

�

# �

a1 ∗

�

�

?

a2

?

c3

?

�

b4 a5

$

n1

n2

n3

n4

n5{b4}

{b4}

{a2, c3, b4}

{a2, c3, b4}

{a1}

Figure: Expression e0 = (a((a?c?)(ba)?)∗.
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Work on parse tree: First and Last

�

�

# �
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�

�

?
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?
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�

b4 a5

$

n1

n2

n3

n4

n5{b4}

{b4}

{a2, c3, b4}

{a2, c3, b4}

We compute SupFirst pointers in
simple traversal.

b4∈First(n3) because
n2 ancestor of n3

and n3 ancestor of b4.

a5 /∈ First(n3)

Figure: Expression e0 = (a((a?c?)(ba)?)∗.
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Work on parse tree: First and Last

�

�

# �

a1 ∗

�

�

?

a2

?

c3

?

�

b4 a5

$

n1

n2

n3

n4

n5{b4}

{b4}
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We compute SupFirst pointers in
simple traversal.

b4∈First(n3) because
n2 ancestor of n3

and n3 ancestor of b4.

a5 /∈ First(n3)

X We can test if ai ∈ First(n) in
constant time.

Symmetrically, we can test if ai ∈
Last(n) in constant time.

Figure: Expression e0 = (a((a?c?)(ba)?)∗.
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Reminder

Theorem

We can test if bj follows ai in constant time.
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Simple case: k-occurrence expression

Theorem

For deterministic k-occurrence expression, the membership problem can be
solved in O(k|w |) after O(|e|) preprocessing.

each transition simulated in O(k):

e = (ba)∗ c acabcc?b
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General case
We put color a in parent(SupFirst(ai )) and store ai as the
witness for color a in that node.

: a SupFirst pointer

[a5] : map a 7→ a5

(color a, witness a5)

�

�

# �

a1 ∗

�

�

?

a2

?

c3

?

�

b4 a5

$

n1

n2

n3

n4

n5

[a1]

[a2, c3, b4]

[a5]

Observation: positions followed
by a5 are below n5, those followed
by a2 or b4 are below n1. . .
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Finding the right ancestor

We can use “nearest colored ancestor queries”.

Nearest colored ancestor [Muthukrishnan et al. 96]

We can preprocess a tree t in expected linear time O(|t|) to answer
nearest colored ancestor queries in O(log log |t|).

Expected time because of hashmaps, but becomes worst-case linear using
lazy arrays.

Evaluation algorithm

Repeatedly jump to the nearest ancestor with color a, and test if its
witness follows.

Why is it linear?

Use amortization argument
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Summary

Glushkov Our results

testing determinism O(|Σ| × |e|) O(|e|)

membership O(|Σ| × |e|+ |w |) O(|e|+ |w | log log(e))

? k-occurrence (k-ORE) O(k × |w |)

? restrictions on + O(|e|+ |w |)

? star free O(|e|+ |w |)

This
talk
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Future work

Close the log log gap for membership.

Searching regular pattern instead of matching (KMP. . . )

Thanks for your attention!
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For a few dollars more...

Questions are most welcome!

...but there is no guarantee for the answer
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