Deterministic Regular Expressions in Linear Time

reasoning about deterministic regular expressions
without building the automata

Benoit Groz¹,³, Sebastian Maneth²,³, Slawek Staworko¹,³

¹University of Lille, Mostrare INRIA
²UNSW, NICTA
³Équipe associée Transduce

PODS, May, 2012
Context

DTD and XML Schema use regular expressions to specify which sequence of children may appear below a node.

```xml
<!ELEMENT book (author, chapter*, index?)>
```

Constraint: regular expression must be deterministic.

We provide new algorithms to:

- Check if a regular expression is deterministic.
- Decide the membership problem for deterministic regular expressions.
Outline

1. Glushkov relations: First, Last, Follow ... and determinism
2. Problem statement
3. Structure of the expression
4. Algorithms to test membership
Outline

1. Glushkov relations: First, Last, Follow ... and determinism
2. Problem statement
3. Structure of the expression
4. Algorithms to test membership
Structure of regular expressions

\[ab^* b \quad \text{and} \quad a b b^* \]
Structure of regular expressions

Expression is non-deterministic if:

\[a_1 b_2^* b_3 \]

\[a_1 b_2 b_3^* \]

\[b_3 \text{ follows } a_1, \ b_2 \text{ follows } a_1 \ldots \]
Structure of regular expressions

Expression is non-deterministic if:

\[a_i b_j^* a_k \ (j \neq k) \]

Example:

- \(a_1 b_2^* b_3 \)

- \(a_1 b_2 b_3^* \)
Structure of regular expressions

An expression is non-deterministic if:

\[a_1 b_2^* b_3 \]

\[\# a_1 b_2^* b_3 \$

\[\# a_2 b_3^* b_3 \$

\[\# a_1 b_2 b_3^* \$

\[\# a_1 b_2 b_3 \$
Deterministic regular expressions (a.k.a. one-unambiguous)

Expression is *non deterministic* if:

\[b_i \rightarrow a_j \rightarrow a_k \ (j \neq k) \]

\ [#a_1 b_2^* b_3$] \Rightarrow \textit{non deterministic} \\
\ [#a_1 b_2 b_3^*$] \Rightarrow \textit{deterministic}
Deterministic regular expressions (a.k.a. one-unambiguous)

Expression is *non deterministic* if:

\[b_i \rightarrow a_j \rightarrow a_k \quad (j \neq k) \]

\(#a_1 b_2^* b_3 $ \) \[\Rightarrow \text{non deterministic} \]

\(#a_1 b_2 b_3^* $ \) \[\Rightarrow \text{deterministic} \]
Deterministic regular expressions (a.k.a. one-unambiguous)

Expression is *non deterministic* if:

\[b_i \rightarrow a_j \rightarrow a_k \quad (j \neq k) \]

\[#a_1 b_2^* b_3$ \]

⇒ *non deterministic*

\[#a_1 b_2 b_3^*$ \]

⇒ *deterministic*
Deterministic regular expressions (a.k.a. one-unambiguous)

Expression is *non deterministic* if:

\[b_i \rightarrow a_j \rightarrow a_k \quad (j \neq k) \]

\[\#a_1b_2^*b_3$ \] \[\Rightarrow \text{non deterministic} \]

\[\#a_1b_2b_3^*$ \] \[\Rightarrow \text{deterministic} \]

Ambiguity parsing \(w = ab \)
Deterministic regular expressions (a.k.a. one-unambiguous)

Expression is *non deterministic* if:

\[b_i \xrightarrow{a_j} a_k \quad (j \neq k) \]

\#a_1b_2^*b_3$ \quad \Rightarrow \text{non deterministic} \\
\#a_1b_2b_3^*$ \quad \Rightarrow \text{deterministic}

\[e = (a + b)b?(ab)^* \quad ? \]
\[e = (ab+ba?)^* \quad ? \]
Deterministic regular expressions (a.k.a. one-unambiguous)

Expression is \textit{non deterministic} if:

\[b_i \, a_j \, a_k \quad (j \neq k) \]

\[#a_1b_2^*b_3$ \quad \Rightarrow \text{non deterministic} \]

\[#a_1b_2b_3^*\$ \quad \Rightarrow \text{deterministic} \]

\[e = (a + b)b?(ab)^* \quad \Rightarrow \text{deterministic} \]

\[e = (ab + ba?)^* \quad \Rightarrow \text{non deterministic: } w = ba \]
Outline

1. Glushkov relations: First, Last, Follow ... and determinism
2. Problem statement
3. Structure of the expression
4. Algorithms to test membership
Problems of interest

Testing determinism:
Input: expression \(e\),
Question: is \(e\) deterministic?

Membership:
Input: word \(w\), deterministic expression \(e\),
Question: \(w \in L(e)\)?

Scenario: big expression, big alphabet.

Remark:
size of \(e\) \(\simeq\) number of nodes in the parse tree
\(\simeq\) number of positions.
Problems of interest

Testing determinism:
Input: expression e,
Question: is e deterministic?

Membership:
Input: word w, deterministic expression e,
Question: $w \in L(e)$?

Straightforward solution through Glushkov automaton.
Build Glushkov in $O(|\Sigma| \times |e|)$ [Brüggeman-Klein TCS’93].
\[\Rightarrow \text{(quadratic in } |e|) \]

Number of transitions of Glushkov can be quadratic:
\[
\begin{align*}
 e &= (a + b + c \ldots)(a + b + c \ldots), \\
 e' &= (a + b + c \ldots)^*, \\
 e'' &= (a?b?c?\ldots)
\end{align*}
\]
Problems of interest

Testing determinism:
Input: expression e,
Question: is e deterministic?

Membership:
Input: word w, deterministic expression e,
Question: $w \in L(e)$?

Straightforward solution through Glushkov automaton.
Build Glushkov in $O(|\Sigma| \times |e|)$ [Brüggeman-Klein TCS’93].
\Rightarrow (quadratic in $|e|$)

Number of transitions of Glushkov can be quadratic:

$$e = (a + b + c \ldots)(a + b + c \ldots),$$
$$e' = (a + b + c \ldots)^*,$$
$$e'' = (a?b?c?\ldots)$$
Problems of interest

Testing determinism:
Input: expression \(e \),
Question: is \(e \) deterministic?

Membership:
Input: word \(w \), deterministic expression \(e \),
Question: \(w \in L(e) \) ?

Straightforward solution through Glushkov automaton.
Build Glushkov in \(O(|\Sigma| \times |e|) \) [Brüggeman-Klein TCS’93].
\(\Rightarrow (\text{quadratic in } |e|) \)

Can we do better?
Summary

<table>
<thead>
<tr>
<th></th>
<th>Glushkov</th>
<th>Our results</th>
</tr>
</thead>
<tbody>
<tr>
<td>testing determinism</td>
<td>$O(</td>
<td>\Sigma</td>
</tr>
<tr>
<td>membership</td>
<td>$O(</td>
<td>\Sigma</td>
</tr>
<tr>
<td>★ k-occurrence</td>
<td></td>
<td>$O(k \times</td>
</tr>
<tr>
<td>★ restrictions on +</td>
<td></td>
<td>$O(</td>
</tr>
<tr>
<td>★ star free</td>
<td></td>
<td>$O(</td>
</tr>
</tbody>
</table>
Preprocessing

We do not construct automaton. Instead we work on parse tree which we preprocess in linear time to build some pointers + datastructures.

● **Testing determinism.**
 We search a witness for non-determinism in e: pair of two positions with same label that follow a common position.

 $$b_i \xrightarrow{a_j} a_k \quad (j \neq k)$$

 We limit the number of pairs examined to $O(|e|)$ using skeleta from [Bojańczyk and Parys JACM’11].

● **Testing membership.**
 We simulate transitions on-the-fly using the pointers from preprocessing.
Roadmap: transition simulation

We want a procedure for transition simulation:

Input:
- a position a_i in the expression,
- a letter b (the next letter of the word)

Output:
- the unique b-labeled position that follows a_i
Outline

1. Glushkov relations: First, Last, Follow ... and determinism
2. Problem statement
3. Structure of the expression
4. Algorithms to test membership
Some tools

LCA preprocessing [Harel&Tarjan, SICOMP’84]

One can preprocess a tree in linear time, to answer lowest common ancestor (LCA) queries and ancestor queries in constant time.

(Input for preprocessing: \(t \))

LCA query:
- Input: two nodes \(n_1, n_2 \) in \(t \)
- Output: the lowest common ancestor (LCA) of \(n_1 \) and \(n_2 \)

Ancestor query:
- Input: two nodes \(n_1, n_2 \) in \(t \)
- Question: is \(n_1 \) an ancestor of \(n_2 \)?
Work on parse tree

Goal: Given two positions a_i and b_j, test if b_j follows a_i in constant time.
Work on parse tree: Follow

When does b_j follow a_i?

$LCA(a_1, b_3)$

$\{a_1, c_2\}$

b_3

a_4

a_1

c_2

$LCA(b_7, a_5)$

$\{b_7, b_6\}$

$\{a_5, b_7\}$

\star

$LCA(b_7, a_5)$

$\{b_7, b_6\}$

$\{a_5, b_7\}$

\star

$\{\ldots\}$: First set

$\{\ldots\}$: Last set

Case 1 : ⬤

Case 2 : *

Benoit Groz (Mostrare)

Deterministic regular expressions

PODS, May, 2012 15 / 25
Assuming that after some preprocessing we can test $First$ and $Last$ in constant time,

Theorem

We can test if b_j follows a_i in constant time.
Work on parse tree: Follow (2)

Assuming that after some preprocessing we can test \textit{First} and \textit{Last} in constant time,

\begin{quote}
\textbf{Theorem}

We can test if \(b_j \) follows \(a_i \) in constant time.
\end{quote}

Preprocessing:

pointer to lowest \(* \) ancestor of each node.

build \textit{LCA}, \textit{First} and \textit{Last} structures.

Algo. to test if \(b_j \) follows \(a_i \):

compute \(\text{LCA}(b_j, a_i) \)

follow the \(* \) pointer (for case 2: \(* \))

test that \(a_i, b_j \) in \textit{First} and \textit{Last} of appropriate nodes

\textit{New objective: test if } \(a_i \in \text{First}(n) \) \textit{ in constant time}
Work on parse tree: First and Last

```
# n₁
  a₁ * n₂
    n₃
      ? n₄
        ? ? n₅
        a₂ c₃ b₄ a₅

§
```

Figure: Expression $e₀ = (a(a(c(ba))?)?)a$.
Work on parse tree: First and Last

\[
\{a_2, \ldots \} \text{ : First set}
\]
Work on parse tree: First and Last

Figure: Expression $e_0 = (a((a ? c ? (ba)?)?) \ast .

\{a_2, \ldots\} : First set
Work on parse tree: First and Last

\[\text{First set} \]

\[\{ a_2, \ldots \} : \text{First set} \]
Work on parse tree: First and Last

\[
\{a_2, \ldots \} : \text{First set}
\]
Work on parse tree: First and Last

Figure: Expression $e_0 = (a (a (c) (b))?)^*$.

Deterministic regular expressions
Work on parse tree: First and Last

Figure: Expression $e_0 = (a (a c) b)^*$.

{ a_2, \ldots } : First set
First set: \(a \) SupFirst pointer

\(\{ a_2, \ldots \} : \) First set

\(\longrightarrow \) : a SupFirst pointer

Figure: Expression

\(e_0 = (a(a(c(a(ba)))))^* \).
We compute $SupFirst$ pointers in simple traversal.

$b_4 \in First(n_3)$ because n_2 ancestor of n_3 and n_3 ancestor of b_4.

$a_5 \notin First(n_3)$
We compute $SupFirst$ pointers in simple traversal.

$b_4 \in First(n_3)$ because n_2 ancestor of n_3 and n_3 ancestor of b_4.

$a_5 \notin First(n_3)$

✓ We can test if $a_i \in First(n)$ in constant time.

Symmetrically, we can test if $a_i \in Last(n)$ in constant time.
Reminder

Theorem

We can test if b_j follows a_i in constant time.
Outline

1. Glushkov relations: First, Last, Follow . . . and determinism
2. Problem statement
3. Structure of the expression
4. Algorithms to test membership
Simple case: k-occurrence expression

Theorem

For deterministic k-occurrence expression, the membership problem can be solved in $O(k|w|)$ after $O(|e|)$ preprocessing.

each transition simulated in $O(k)$:

$$e = (ba)^* c acabcc?b$$
General case
We put color a in $\text{parent}(\text{SupFirst}(a_i))$ and store a_i as the witness for color a in that node.

Observation: positions followed by a_5 are below n_5, those followed by a_2 or b_4 are below n_1...

\[a \mapsto a_5 \] (color a, witness a_5)
Finding the right ancestor

We can use “nearest colored ancestor queries”.

Nearest colored ancestor [Muthukrishnan et al. 96]

We can preprocess a tree \(t \) in expected linear time \(O(|t|) \) to answer nearest colored ancestor queries in \(O(\log \log |t|) \).

Expected time because of hashmaps, but becomes worst-case linear using lazy arrays.

Evaluation algorithm

Repeatedly jump to the nearest ancestor with color \(a \), and test if its witness follows.

Why is it linear?

Use amortization argument
Summary

<table>
<thead>
<tr>
<th></th>
<th>Glushkov</th>
<th>Our results</th>
</tr>
</thead>
<tbody>
<tr>
<td>testing determinism</td>
<td>$O(</td>
<td>\Sigma</td>
</tr>
<tr>
<td>membership</td>
<td>$O(</td>
<td>\Sigma</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$O(</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$O(k \times</td>
</tr>
<tr>
<td>k-occurrence (k-ORE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>restrictions on $+$</td>
<td></td>
<td>$O(</td>
</tr>
<tr>
<td>star free</td>
<td></td>
<td>$O(</td>
</tr>
</tbody>
</table>
Future work

- Close the log log gap for membership.
- Searching regular pattern instead of matching (KMP...)
For a few dollars more...

Questions are most welcome!

...but there is no guarantee for the answer

Questions?