
Deterministic Regular Expressions in Linear Time
reasoning about deterministic regular expressions

without building the automata

Benoit Groz1,3, Sebastian Maneth2,3, Slawek Staworko1,3

1University of Lille, Mostrare INRIA

2UNSW, NICTA

3Équipe associée Transduce

PODS, May, 2012

Benoit Groz (Mostrare) Deterministic regular expressions PODS, May, 2012 1 / 25

Context

DTD and XML Schema use regular expressions to specify which
sequence of children may appear below a node.

<!ELEMENT book (author,chapter*,index?)>

Constraint: regular expression must be deterministic.

We provide new algorithms to:
Check if a regular expression is deterministic.

Decide the membership problem for deterministic
regular expressions.

Benoit Groz (Mostrare) Deterministic regular expressions PODS, May, 2012 2 / 25

Outline

1 Glushkov relations: First, Last, Follow . . . and determinism

2 Problem statement

3 Structure of the expression

4 Algorithms to test membership

Benoit Groz (Mostrare) Deterministic regular expressions PODS, May, 2012 3 / 25

Outline

1 Glushkov relations: First, Last, Follow . . . and determinism

2 Problem statement

3 Structure of the expression

4 Algorithms to test membership

Benoit Groz (Mostrare) Deterministic regular expressions PODS, May, 2012 4 / 25

Structure of regular expressions

Expression is non deterministic if:

bi aj ak (j 6= k)

ab∗b

a1 b2 b3q0

$

First Last

b3 follows a1, b2 follows a1

abb∗

a1 b2 b3q0

$

Benoit Groz (Mostrare) Deterministic regular expressions PODS, May, 2012 5 / 25

Structure of regular expressions

Expression is non deterministic if:

bi aj ak (j 6= k)

#a1b∗2b3$

a1 b2 b3q0

$

First Last

b3 follows a1, b2 follows a1. . .

#a1b2b∗3$

a1 b2 b3q0

$

Benoit Groz (Mostrare) Deterministic regular expressions PODS, May, 2012 5 / 25

Structure of regular expressions

Expression is non deterministic if:

bi aj ak (j 6= k)

#a1b∗2b3$

a1 b2 b3q0

$

First Last

b3 follows a1, b2 follows a1

#a1b2b∗3$

a1 b2 b3q0

$

Benoit Groz (Mostrare) Deterministic regular expressions PODS, May, 2012 5 / 25

Structure of regular expressions

Expression is non deterministic if:

bi aj ak (j 6= k)

#a1b∗2b3$

⇒non deterministic

a1 b2 b3# $

First Last

b3 follows a1, b2 follows a1

#a1b2b∗3$

⇒deterministic

a1 b2 b3# $

Benoit Groz (Mostrare) Deterministic regular expressions PODS, May, 2012 5 / 25

Deterministic regular expressions (a.k.a. one-unambiguous)

Expression is non deterministic if:

bi aj ak (j 6= k)

#a1b∗2b3$
⇒non deterministic

a1 b2 b3# $

Ambiguity parsing w = ab

#a1b2b∗3$
⇒deterministic

a1 b2 b3# $

e = (a + b)b?(ab)∗ ?
e = (ab+ba?)∗ ?

Benoit Groz (Mostrare) Deterministic regular expressions PODS, May, 2012 6 / 25

Deterministic regular expressions (a.k.a. one-unambiguous)

Expression is non deterministic if:

bi aj ak (j 6= k)

#a1b∗2b3$
⇒non deterministic

a1 b2 b3# $

Ambiguity parsing w = ab

#a1b2b∗3$
⇒deterministic

a1 b2 b3# $

e = (a + b)b?(ab)∗ ?
e = (ab+ba?)∗ ?

Benoit Groz (Mostrare) Deterministic regular expressions PODS, May, 2012 6 / 25

Deterministic regular expressions (a.k.a. one-unambiguous)

Expression is non deterministic if:

bi aj ak (j 6= k)

#a1b∗2b3$
⇒non deterministic

a1 b2 b3# $

Ambiguity parsing w = ab

#a1b2b∗3$
⇒deterministic

a1 b2 b3# $

e = (a + b)b?(ab)∗ ?
e = (ab+ba?)∗ ?

Benoit Groz (Mostrare) Deterministic regular expressions PODS, May, 2012 6 / 25

Deterministic regular expressions (a.k.a. one-unambiguous)

Expression is non deterministic if:

bi aj ak (j 6= k)

#a1b∗2b3$
⇒non deterministic

a1 b2 b3# $

Ambiguity parsing w = ab

#a1b2b∗3$
⇒deterministic

a1 b2 b3# $

e = (a + b)b?(ab)∗ ?
e = (ab+ba?)∗ ?

Benoit Groz (Mostrare) Deterministic regular expressions PODS, May, 2012 6 / 25

Deterministic regular expressions (a.k.a. one-unambiguous)

Expression is non deterministic if:

bi aj ak (j 6= k)

#a1b∗2b3$
⇒non deterministic

a1 b2 b3# $

Ambiguity parsing w = ab

#a1b2b∗3$
⇒deterministic

a1 b2 b3# $

e = (a + b)b?(ab)∗ ?
e = (ab+ba?)∗ ?

Benoit Groz (Mostrare) Deterministic regular expressions PODS, May, 2012 6 / 25

Deterministic regular expressions (a.k.a. one-unambiguous)

Expression is non deterministic if:

bi aj ak (j 6= k)

#a1b∗2b3$
⇒non deterministic

a1 b2 b3# $

Ambiguity parsing w = ab

#a1b2b∗3$
⇒deterministic

a1 b2 b3# $

e = (a + b)b?(ab)∗ ⇒deterministic
e = (ab+ba?)∗ ⇒non deterministic: w = ba

Benoit Groz (Mostrare) Deterministic regular expressions PODS, May, 2012 6 / 25

Outline

1 Glushkov relations: First, Last, Follow . . . and determinism

2 Problem statement

3 Structure of the expression

4 Algorithms to test membership

Benoit Groz (Mostrare) Deterministic regular expressions PODS, May, 2012 7 / 25

Problems of interest
Testing determinism:

Input: expression e,
Question: is e deterministic?

Membership:
Input: word w , deterministic expression e,
Question: w ∈ L(e)?

Scenario: big expres-
sion, big alphabet.

Remark:
size of e = number of nodes in the parse tree

' number of positions.

Benoit Groz (Mostrare) Deterministic regular expressions PODS, May, 2012 8 / 25

Problems of interest
Testing determinism:

Input: expression e,
Question: is e deterministic?

Membership:
Input: word w , deterministic expression e,
Question: w ∈ L(e)?

Straightforward solution through Glushkov automaton.
Build Glushkov in O(|Σ| × |e|) [Brüggeman-Klein TCS’93].
=⇒ (quadratic in |e|)

Number of transitions of Glushkov can be quadratic:

e = (a + b + c . . .)(a + b + c . . .),
e ′ = (a + b + c . . .)∗,
e ′′ = (a?b?c? . . .)

qi

a

b

...

a

b

...

Benoit Groz (Mostrare) Deterministic regular expressions PODS, May, 2012 8 / 25

Problems of interest
Testing determinism:

Input: expression e,
Question: is e deterministic?

Membership:
Input: word w , deterministic expression e,
Question: w ∈ L(e)?

Straightforward solution through Glushkov automaton.
Build Glushkov in O(|Σ| × |e|) [Brüggeman-Klein TCS’93].
=⇒ (quadratic in |e|)

Number of transitions of Glushkov can be quadratic:

e = (a + b + c . . .)(a + b + c . . .),
e ′ = (a + b + c . . .)∗,
e ′′ = (a?b?c? . . .)

qi

a

b

...

a

b

...

Benoit Groz (Mostrare) Deterministic regular expressions PODS, May, 2012 8 / 25

Problems of interest
Testing determinism:

Input: expression e,
Question: is e deterministic?

Membership:
Input: word w , deterministic expression e,
Question: w ∈ L(e)?

Straightforward solution through Glushkov automaton.
Build Glushkov in O(|Σ| × |e|) [Brüggeman-Klein TCS’93].
=⇒ (quadratic in |e|)

Can we do better?

Benoit Groz (Mostrare) Deterministic regular expressions PODS, May, 2012 8 / 25

Summary

Glushkov Our results

testing determinism O(|Σ| × |e|) O(|e|)

membership O(|Σ| × |e|+ |w |) O(|e|+ |w | log log(e))

? k-occurrence O(k × |w |)

? restrictions on + O(|e|+ |w |)

? star free O(|e|+ |w |)

This
talk

Benoit Groz (Mostrare) Deterministic regular expressions PODS, May, 2012 9 / 25

Roadmap

Preprocessing

We do not construct automaton. Instead we work on parse tree which we
preprocess in linear time to build some pointers+datastructures.

Testing determinism.
We search a witness for non-determinism in e: pair of two positions
with same label that follow a common position.

bi aj ak (j 6= k)

We limit the number of pairs examined to O(|e|) using
skeleta from [Bojańczyk and Parys JACM’11].

Testing membership.
We simulate transitions on-the-fly using the pointers from
preprocessing.

Benoit Groz (Mostrare) Deterministic regular expressions PODS, May, 2012 10 / 25

Roadmap: transition simulation

We want a procedure for transition simulation:
Input:

a position ai in the expression,
a letter b (the next letter of the word)

Output:
the unique b-labeled position that follows ai

Benoit Groz (Mostrare) Deterministic regular expressions PODS, May, 2012 11 / 25

Outline

1 Glushkov relations: First, Last, Follow . . . and determinism

2 Problem statement

3 Structure of the expression

4 Algorithms to test membership

Benoit Groz (Mostrare) Deterministic regular expressions PODS, May, 2012 12 / 25

Some tools

LCA preprocessing [Harel&Tarjan, SICOMP’84]

One can preprocess a tree in linear time, to answer lowest
common ancestor (LCA) queries and ancestor queries in
constant time.

(Input for preprocessing: t)

LCA query:
Input: two nodes n1, n2 in t
Output: the lowest common ancestor (LCA) of n1 and n2

Ancestor query:
Input: two nodes n1, n2 in t
Question: is n1 an ancestor of n2?

Benoit Groz (Mostrare) Deterministic regular expressions PODS, May, 2012 13 / 25

Work on parse tree

Goal: Given two positions ai and bj ,
test if bj follows ai in constant time.

Benoit Groz (Mostrare) Deterministic regular expressions PODS, May, 2012 14 / 25

Work on parse tree: Follow

When does bj follow ai?

�

�

?

a1

?

c2

�

b3 a4

{b3}{a1, c2}

LCA(a1, b3)

×

Case 1 : �

∗

+

�

a5 b6

b7

{a5, b7}{b7, b6}

lowest star above
LCA(b7, a5)

×

Case 2 : ∗

{. . . } : First set

{. . . } : Last set

Benoit Groz (Mostrare) Deterministic regular expressions PODS, May, 2012 15 / 25

Work on parse tree: Follow (2)

Assuming that after some preprocessing we can test First and Last in
constant time,

Theorem

We can test if bj follows ai in constant time.

Preprocessing:
pointer to lowest ∗ ancestor of each node.
build LCA, First and Last structures.

Algo. to test if bj follows ai :
compute LCA(bj , ai)
follow the ∗ pointer (for case 2 : ∗)
test that ai , bj in First and Last of appropriate nodes

New objective: test if ai ∈ First(n) in constant time

Benoit Groz (Mostrare) Deterministic regular expressions PODS, May, 2012 16 / 25

Work on parse tree: Follow (2)

Assuming that after some preprocessing we can test First and Last in
constant time,

Theorem

We can test if bj follows ai in constant time.

Preprocessing:
pointer to lowest ∗ ancestor of each node.
build LCA, First and Last structures.

Algo. to test if bj follows ai :
compute LCA(bj , ai)
follow the ∗ pointer (for case 2 : ∗)
test that ai , bj in First and Last of appropriate nodes

New objective: test if ai ∈ First(n) in constant time

Benoit Groz (Mostrare) Deterministic regular expressions PODS, May, 2012 16 / 25

Work on parse tree: First and Last

�

�

�

a1 ∗

�

�

?

a2

?

c3

?

�

b4 a5

$

n1

n2

n3

n4

n5

Figure: Expression e0 = (a((a?c?)(ba)?)∗.

Benoit Groz (Mostrare) Deterministic regular expressions PODS, May, 2012 17 / 25

Work on parse tree: First and Last

{a2, . . . } : First set

�

�

�

a1 ∗

�

�

?

a2

?

c3

?

�

b4 a5

$

n1

n2

n3

n4

n5{b4}

Figure: Expression e0 = (a((a?c?)(ba)?)∗.

Benoit Groz (Mostrare) Deterministic regular expressions PODS, May, 2012 17 / 25

Work on parse tree: First and Last

{a2, . . . } : First set

�

�

�

a1 ∗

�

�

?

a2

?

c3

?

�

b4 a5

$

n1

n2

n3

n4

n5{b4}

{b4}

Figure: Expression e0 = (a((a?c?)(ba)?)∗.

Benoit Groz (Mostrare) Deterministic regular expressions PODS, May, 2012 17 / 25

Work on parse tree: First and Last

{a2, . . . } : First set

�

�

�

a1 ∗

�

�

?

a2

?

c3

?

�

b4 a5

$

n1

n2

n3

n4

n5{b4}

{b4}

{a2, c3, b4}

Figure: Expression e0 = (a((a?c?)(ba)?)∗.

Benoit Groz (Mostrare) Deterministic regular expressions PODS, May, 2012 17 / 25

Work on parse tree: First and Last

{a2, . . . } : First set

�

�

�

a1 ∗

�

�

?

a2

?

c3

?

�

b4 a5

$

n1

n2

n3

n4

n5{b4}

{b4}

{a2, c3, b4}

{a2, c3, b4}

Figure: Expression e0 = (a((a?c?)(ba)?)∗.

Benoit Groz (Mostrare) Deterministic regular expressions PODS, May, 2012 17 / 25

Work on parse tree: First and Last

{a2, . . . } : First set

�

�

�

a1 ∗

�

�

?

a2

?

c3

?

�

b4 a5

$

n1

n2

n3

n4

n5{b4}

{b4}

{a2, c3, b4}

{a2, c3, b4}

{a1}

Figure: Expression e0 = (a((a?c?)(ba)?)∗.

Benoit Groz (Mostrare) Deterministic regular expressions PODS, May, 2012 17 / 25

Work on parse tree: First and Last

{a2, . . . } : First set

�

�

�

a1 ∗

�

�

?

a2

?

c3

?

�

b4 a5

$

n1

n2

n3

n4

n5{b4}

{b4}

{a2, c3, b4}

{a2, c3, b4}

{a1}

{a2} {c3}

{a2, c3}

Figure: Expression e0 = (a((a?c?)(ba)?)∗.

Benoit Groz (Mostrare) Deterministic regular expressions PODS, May, 2012 17 / 25

Work on parse tree: First and Last

{a2, . . . } : First set

: a SupFirst pointer

�

�

�

a1 ∗

�

�

?

a2

?

c3

?

�

b4 a5

$

n1

n2

n3

n4

n5{b4}

{b4}

{a2, c3, b4}

{a2, c3, b4}

{a1}

Figure: Expression e0 = (a((a?c?)(ba)?)∗.

Benoit Groz (Mostrare) Deterministic regular expressions PODS, May, 2012 17 / 25

Work on parse tree: First and Last

�

�

�

a1 ∗

�

�

?

a2

?

c3

?

�

b4 a5

$

n1

n2

n3

n4

n5{b4}

{b4}

{a2, c3, b4}

{a2, c3, b4}

We compute SupFirst pointers in
simple traversal.

b4∈First(n3) because
n2 ancestor of n3

and n3 ancestor of b4.

a5 /∈ First(n3)

Figure: Expression e0 = (a((a?c?)(ba)?)∗.

Benoit Groz (Mostrare) Deterministic regular expressions PODS, May, 2012 17 / 25

Work on parse tree: First and Last

�

�

�

a1 ∗

�

�

?

a2

?

c3

?

�

b4 a5

$

n1

n2

n3

n4

n5{b4}

{b4}

{a2, c3, b4}

{a2, c3, b4}

We compute SupFirst pointers in
simple traversal.

b4∈First(n3) because
n2 ancestor of n3

and n3 ancestor of b4.

a5 /∈ First(n3)

X We can test if ai ∈ First(n) in
constant time.

Symmetrically, we can test if ai ∈
Last(n) in constant time.

Figure: Expression e0 = (a((a?c?)(ba)?)∗.

Benoit Groz (Mostrare) Deterministic regular expressions PODS, May, 2012 17 / 25

Reminder

Theorem

We can test if bj follows ai in constant time.

Benoit Groz (Mostrare) Deterministic regular expressions PODS, May, 2012 18 / 25

Outline

1 Glushkov relations: First, Last, Follow . . . and determinism

2 Problem statement

3 Structure of the expression

4 Algorithms to test membership

Benoit Groz (Mostrare) Deterministic regular expressions PODS, May, 2012 19 / 25

Simple case: k-occurrence expression

Theorem

For deterministic k-occurrence expression, the membership problem can be
solved in O(k|w |) after O(|e|) preprocessing.

each transition simulated in O(k):

e = (ba)∗ c acabcc?b

Benoit Groz (Mostrare) Deterministic regular expressions PODS, May, 2012 20 / 25

General case
We put color a in parent(SupFirst(ai)) and store ai as the
witness for color a in that node.

: a SupFirst pointer

[a5] : map a 7→ a5

(color a, witness a5)

�

�

�

a1 ∗

�

�

?

a2

?

c3

?

�

b4 a5

$

n1

n2

n3

n4

n5

[a1]

[a2, c3, b4]

[a5]

Observation: positions followed
by a5 are below n5, those followed
by a2 or b4 are below n1. . .

Benoit Groz (Mostrare) Deterministic regular expressions PODS, May, 2012 21 / 25

Finding the right ancestor

We can use “nearest colored ancestor queries”.

Nearest colored ancestor [Muthukrishnan et al. 96]

We can preprocess a tree t in expected linear time O(|t|) to answer
nearest colored ancestor queries in O(log log |t|).

Expected time because of hashmaps, but becomes worst-case linear using
lazy arrays.

Evaluation algorithm

Repeatedly jump to the nearest ancestor with color a, and test if its
witness follows.

Why is it linear?

Use amortization argument

Benoit Groz (Mostrare) Deterministic regular expressions PODS, May, 2012 22 / 25

Summary

Glushkov Our results

testing determinism O(|Σ| × |e|) O(|e|)

membership O(|Σ| × |e|+ |w |) O(|e|+ |w | log log(e))

? k-occurrence (k-ORE) O(k × |w |)

? restrictions on + O(|e|+ |w |)

? star free O(|e|+ |w |)

This
talk

Benoit Groz (Mostrare) Deterministic regular expressions PODS, May, 2012 23 / 25

Future work

Close the log log gap for membership.

Searching regular pattern instead of matching (KMP. . .)

Thanks for your attention!

Benoit Groz (Mostrare) Deterministic regular expressions PODS, May, 2012 24 / 25

For a few dollars more...

Questions are most welcome!

...but there is no guarantee for the answer

Benoit Groz (Mostrare) Deterministic regular expressions PODS, May, 2012 25 / 25

	Glushkov relations: First, Last, Follow … and determinism
	Problem statement
	Structure of the expression
	Algorithms to test membership

