Deterministic Regular Expressions in Linear Time reasoning about deterministic regular expressions without building the automata

Benoit Groz^{1,3}, Sebastian Maneth^{2,3}, Slawek Staworko^{1,3}

¹University of Lille, Mostrare INRIA

²UNSW, NICTA

³Équipe associée Transduce

PODS, May, 2012

Benoit Groz (Mostrare)

Context

DTD and XML Schema use regular expressions to specify which sequence of children may appear below a node.

<!ELEMENT book (author, chapter*, index?)>

Constraint: regular expression must be deterministic.

We provide new algorithms to:

- Check if a regular expression is deterministic.
- Decide the membership problem for deterministic regular expressions.

Outline

- 2 Problem statement
- Structure of the expression
- 4 Algorithms to test membership

Outline

- 1 Glushkov relations: First, Last, Follow ... and determinism
 - 2 Problem statement
- 3 Structure of the expression
- 4 Algorithms to test membership

ab*b

abb*

$$a_1b_2^*b_3$$

 $a_1b_2b_3^*$

 b_3 follows a_1 , b_2 follows a_1 ...

 $a_1b_2^*b_3$

 $a_1b_2b_3^*$

 $#a_1b_2^*b_3$ \$

 $#a_1b_2b_3^*$ \$

→((b₃))- (a_1) \$ # b_2

Expression is non deterministic if:

$$b_i \stackrel{\frown}{\frown} a_j \stackrel{\frown}{\frown} a_k \quad (j \neq k)$$

 $#a_1b_2^*b_3$ \Rightarrow non deterministic

$$\rightarrow (\#) \rightarrow (a_1) \rightarrow (b_2) \rightarrow (b_3) \rightarrow (\$)$$

Expression is non deterministic if:

$$b_i \stackrel{\frown}{\frown} a_j \stackrel{\frown}{\frown} a_k \quad (j \neq k)$$

 $#a_1b_2^*b_3$ \Rightarrow non deterministic

$$\rightarrow (\#) \rightarrow (a_1) \rightarrow (b_2) \rightarrow (b_3) \rightarrow (\$)$$

Expression is non deterministic if:

$$b_i \stackrel{\frown}{\frown} a_j \stackrel{\frown}{\frown} a_k \quad (j \neq k)$$

 $#a_1b_2^*b_3$ \Rightarrow non deterministic

$$\rightarrow (\#) \rightarrow (a_1) \rightarrow (b_2) \rightarrow (b_3) \rightarrow (\$)$$

Expression is non deterministic if:

$$b_i \stackrel{\frown}{\frown} a_j \stackrel{\frown}{\frown} a_k \quad (j \neq k)$$

 $#a_1b_2^*b_3$ \Rightarrow non deterministic

$$\rightarrow (\#) \rightarrow (a_1) \rightarrow (b_2) \rightarrow (b_3) \rightarrow (\$)$$

Ambiguity parsing w = ab

Expression is non deterministic if:

$$b_i \stackrel{\frown}{\frown} a_j \stackrel{\frown}{\frown} a_k \quad (j \neq k)$$

 $#a_1b_2^*b_3$ \Rightarrow non deterministic

$$\rightarrow (\#) \rightarrow (a_1) \rightarrow (b_2) \rightarrow (b_3) \rightarrow (\$)$$

$$e = (a + b)b?(ab)^*$$
 ?
 $e = (ab+ba?)^*$?

Expression is *non deterministic* if:

$$b_i \stackrel{\frown}{\frown} a_j \stackrel{\frown}{\frown} a_k \quad (j \neq k)$$

 $#a_1b_2^*b_3$ \$ \Rightarrow non deterministic $#a_1b_2b_3^*$ \$ \Rightarrow deterministic

$$\rightarrow (\#) \rightarrow (a_1) \rightarrow (b_2) \rightarrow (b_3) \rightarrow (\$)$$

 $\begin{vmatrix} e = (a+b)b?(ab)^* & \Rightarrow deterministic \\ e = (ab+ba?)^* & \Rightarrow non \ deterministic: \ w = ba \end{vmatrix}$

Outline

Glushkov relations: First, Last, Follow ... and determinism

2 Problem statement

- 3 Structure of the expression
- 4 Algorithms to test membership

Testing determinism:

Input: expression *e*, Question: is *e* deterministic?

Membership:

Input: word w, deterministic expression e, Question: $w \in L(e)$?

Remark:

size of e = number of nodes in the parse tree \simeq number of positions.

Testing determinism:

Input: expression *e*, Question: is *e* deterministic?

Membership:

Input: word w, deterministic expression e, Question: $w \in L(e)$?

 $\begin{array}{l} \mbox{Straightforward solution through Glushkov automaton.} \\ \mbox{Build Glushkov in } \mathcal{O}(|\Sigma| \times |e|) \mbox{ [Brüggeman-Klein TCS'93].} \\ \implies (\mbox{quadratic in } |e|) \end{array}$

Number of transitions of Glushkov can be quadratic:

$$e = (a + b + c \dots)(a + b + c \dots),$$

$$e' = (a + b + c \dots)^*,$$

$$e'' = (a?b?c?\dots)$$

Testing determinism:

Input: expression *e*, Question: is *e* deterministic?

Membership:

Input: word w, deterministic expression e, Question: $w \in L(e)$?

Straightforward solution through Glushkov automaton. Build Glushkov in $O(|\Sigma| \times |e|)$ [Brüggeman-Klein TCS'93]. \implies (quadratic in |e|)

Number of transitions of Glushkov can be quadratic:

$$e = (a + b + c \dots)(a + b + c \dots),$$

 $e' = (a + b + c \dots)^*,$
 $e'' = (a?b?c?\dots)$

Testing determinism:

Input: expression *e*, Question: is *e* deterministic?

Membership:

Input: word w, deterministic expression e, Question: $w \in L(e)$?

 $\begin{array}{l} \mbox{Straightforward solution through Glushkov automaton.} \\ \mbox{Build Glushkov in } \mathcal{O}(|\Sigma| \times |e|) \ [\mbox{Brüggeman-Klein TCS'93}]. \\ \implies (\mbox{quadratic in } |e|) \end{array}$

Can we do better?

Summary

	Glushkov	Our results
testing determinism	$O(\Sigma imes e)$	O(e)
membership	$O(\Sigma imes e + w)$	$O(e + w \log \log(e))$ This
* k-occurrence		O(k imes w)talk
\star restrictions on $+$		O(e + w)
* star free		O(e + w)

Roadmap

Preprocessing

We do not construct automaton. Instead we work on parse tree which we preprocess in linear time to build some pointers+datastructures.

• Testing determinism.

We search a witness for non-determinism in *e*: pair of two positions with same label that follow a common position.

$$b_i$$
 a_j a_k $(j \neq k$

We limit the number of pairs examined to O(|e|) using skeleta from [Bojańczyk and Parys JACM'11].

• Testing membership.

We simulate transitions on-the-fly using the pointers from preprocessing.

Roadmap: transition simulation

We want a procedure for transition simulation:

Input:

a position a_i in the expression,

a letter b (the next letter of the word)

Output:

the unique *b*-labeled position that follows a_i

Outline

- 1) Glushkov relations: First, Last, Follow ... and determinism
- 2 Problem statement
- 3 Structure of the expression
- 4 Algorithms to test membership

Some tools

LCA preprocessing [Harel&Tarjan, SICOMP'84]

One can preprocess a tree in linear time, to answer lowest common ancestor (LCA) queries and ancestor queries in constant time.

(Input for preprocessing: *t*)

LCA query:

Input: two nodes n_1 , n_2 in tOutput: the lowest common ancestor (LCA) of n_1 and n_2

Ancestor query:

Input: two nodes n_1 , n_2 in tQuestion: is n_1 an ancestor of n_2 ?

Work on parse tree

Goal: Given two positions a_i and b_j , test if b_j follows a_i in constant time.

Work on parse tree: Follow

When does b_j follow a_i ?

Work on parse tree: Follow (2)

Assuming that after some preprocessing we can test *First* and *Last* in constant time,

Theorem

We can test if b_i follows a_i in constant time.

Work on parse tree: Follow (2)

Assuming that after some preprocessing we can test *First* and *Last* in constant time,

Theorem

We can test if b_i follows a_i in constant time.

Preprocessing:

pointer to lowest * ancestor of each node. build *LCA*, *First* and *Last* structures.

```
Algo. to test if b_j follows a_i:
compute LCA(b_j, a_i)
follow the * pointer (for case 2: *)
test that a_i, b_j in First and Last of appropriate nodes
```

New objective: test if $a_i \in First(n)$ in constant time

We compute *SupFirst* pointers in simple traversal.

 $b_4 \in First(n_3)$ because n_2 ancestor of n_3 and n_3 ancestor of b_4 .

 $a_5 \notin First(n_3)$

 \checkmark We can test if $a_i \in First(n)$ in constant time.

Symmetrically, we can test if $a_i \in Last(n)$ in constant time.

Reminder

Theorem

We can test if b_j follows a_i in constant time.

Outline

- 1) Glushkov relations: First, Last, Follow ... and determinism
- 2 Problem statement
- 3 Structure of the expression
- 4 Algorithms to test membership

Simple case: *k*-occurrence expression

Theorem

For deterministic k-occurrence expression, the membership problem can be solved in O(k|w|) after O(|e|) preprocessing.

each transition simulated in O(k):

General case

We put color a in $parent(SupFirst(a_i))$ and store a_i as the witness for color a in that node.

Finding the right ancestor

We can use "nearest colored ancestor queries".

Nearest colored ancestor [Muthukrishnan et al. 96]

We can preprocess a tree t in expected linear time O(|t|) to answer nearest colored ancestor queries in $O(\log \log |t|)$.

Expected time because of hashmaps, but becomes worst-case linear using lazy arrays.

Evaluation algorithm

Repeatedly jump to the nearest ancestor with color *a*, and test if its witness follows.

Why is it linear?

Use amortization argument

Summary

	Glushkov	Our results	
testing determinism	$O(\Sigma imes e)$	O(e)	
membership	$O(\Sigma imes e + w)$	$O(e + w \log\log(e))$	
* <i>k</i> -occurrence (<i>k</i> -ORE)		O(k imes w) ta	
\star restrictions on $+$		O(e + w)	
* star free		O(e + w)	

- Close the log log gap for membership.
- Searching regular pattern instead of matching (KMP...)

Thanks for your attention!

For a few dollars more...

Questions are most welcome!

...but there is no guarantee for the answer

