Secure XML Database Access with Views

SecReT’09

Benoit Groz
(joint work with Anne-Cécile Caron, Yves Roos, Sławek Staworko, Sophie Tison)

Mostrare

10 juillet 2009
Securing databases with views

Many ways to enforce access control for XML. Among others:

- Checking the queries:
 - statically ⇒ may reject proper queries and access
 [Oasis project: XACML]
 - dynamically ⇒ incurs costly runtime security check
 [Murata et al. CCS’03]
Securing databases with views

Many ways to enforce access control for XML. Among others:

- Checking the queries:
 - statically ⇒ may reject proper queries and access [Oasis project: XACML]
 - dynamically ⇒ incurs costly runtime security check [Murata et al. CCS’03]

- Annotating the data:
 - annotating the data, or materializing the view ⇒ expensive maintenance [Damiani et al. EDBT’00, Cho et al. VLDB’02]
 - annotating the DTD with Non-materialized view

Rewriting queries from the view to the document [Fan et al. SIGMOD’04, Vercammen et al, Rassadko et al . . .]
Outline

1. Non-materialized views and query rewriting

2. Comparing Access Control Policies
“Whoever wishes to keep a secret must hide the fact that he possesses one”.

attributed to Johann Wolfgang von Goethe
Answer to query $Q = \text{evaluation of } Q'$ on the original document t
Framework: XML

- XML document = tree.
- No data-values.

<projects>
 <project>
 <name>
 </name>
 ... license
 src doc free
 </project>
 <project>
 ... license
 src doc free
 </project>
</projects>
We use *Regular XPath* queries

Query $q_1 = \downarrow^* / \downarrow :: \text{doc}$

$\text{Ans}(q_1, t) = \{n_{11}, n_{14}\}$

"get all documentations"
We use Regular XPath queries

Query $q_2 = \downarrow :: project[\downarrow :: stable]/\downarrow :: name$

$\text{Ans}(q_2, t) = \{n_3\}$

“get names of stable projects”
Access control for XML

We wish to hide:

- whether a project is *stable* or *in-development*
- the *binaries*
- the *sources* for non-free projects
DTD and Annotation

Example

\[
\begin{align*}
\text{projects} & \rightarrow \text{project}^* \\
\text{project} & \rightarrow \text{name},(\text{stable} \mid \text{dev}),\text{license} \\
A_0(\text{project},\text{stable}) &= \text{false} \\
A_0(\text{project},\text{dev}) &= \text{false} \\
\text{license} & \rightarrow \text{free} \mid \text{propr} \\
\text{stable} & \rightarrow \text{src},\text{bin},\text{doc} \\
A_0(\text{stable},\text{src}) &= [\uparrow^*:\text{project} / \downarrow^*:\text{free}] \\
A_0(\text{stable},\text{doc}) &= \text{true} \\
\text{dev} & \rightarrow \text{src},\text{doc} \\
A_0(\text{dev},\text{src}) &= [\uparrow^*:\text{project} / \downarrow^*:\text{free}] \\
A_0(\text{dev},\text{doc}) &= \text{true}
\end{align*}
\]
The security view

document t

View $A(t)$
Annotating the DTDs

▷ annotation as a function $A : \Sigma \times \Sigma \rightarrow \{\text{true, false, } [f]\}$.

Example

<table>
<thead>
<tr>
<th>Category</th>
<th>Element</th>
<th>Annotation Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>projects</td>
<td>project*</td>
<td></td>
</tr>
<tr>
<td>project</td>
<td>name, (stable</td>
<td>$A_0(\text{project, stable}) = \text{false}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(dev), license</td>
<td>$A_0(\text{project, dev}) = \text{false}$</td>
</tr>
<tr>
<td>license</td>
<td>free</td>
<td></td>
</tr>
<tr>
<td>stable</td>
<td>src, bin, doc</td>
<td>$A_0(\text{stable, src}) = [\uparrow^:\text{project}/\downarrow^:\text{free}]$</td>
</tr>
<tr>
<td>dev</td>
<td>src, doc</td>
<td>$A_0(\text{dev, src}) = [\uparrow^:\text{project}/\downarrow^:\text{free}]$</td>
</tr>
</tbody>
</table>

Proposition: This model of annotation is equivalent to defining accessible elements with a X_{Reg} filter f_A such that:

$$\forall n \in \mathbb{N}, n \text{ accessible wrt. } A \iff (t, n) \models f_{A_{acc}}$$
Annotating the DTDs

▷ annotation as a function $A : \Sigma \times \Sigma \rightarrow \{\text{true, false, }[f]\}$.

Example

projects \rightarrow project*	stable \rightarrow src, bin, doc	
project \rightarrow name, (stable	dev), license	A_0(stable, src) $= [\uparrow^*::project/\downarrow^*::free]$
A_0(project, stable) $= \text{false}$	A_0(stable, doc) $= \text{true}$	
A_0(project, dev) $= \text{false}$	dev \rightarrow src, doc	
license \rightarrow free	A_0(dev, src) $= [\uparrow^*::project/\downarrow^*::free]$	
\mid propr	A_0(dev, doc) $= \text{true}$	

Proposition

This model of annotation is equivalent to defining accessible elements with a $\text{\textit{XReg}}$ filter f^A_{acc} such that:

$\forall n \in N_t. \ n \text{ accessible wrt. } A \iff (t, n) \models f^A_{\text{acc}}$
Rewriting Queries

Theorem: *Regular XPath* is closed under query rewriting

There exists a function Rewrite such that:

\[\forall t. \text{Ans}(Q, A(t)) = \text{Ans}(\text{Rewrite}(Q, A), t) \]

Moreover, Rewrite(Q, A) is computable in time \(O(|A| \ast |Q|) \).
Rewriting Queries

Theorem: Regular XPath is closed under query rewriting

There exists a function Rewrite such that:

\[
\forall t. \text{Ans}(Q, A(t)) = \text{Ans}(\text{Rewrite}(Q, A), t)
\]

Moreover, Rewrite\((Q, A)\) is computable in time \(O(|A| \times |Q|)\).

Proof.

Translate the base axes using \(f^A_{\text{acc}}\):

\[
\text{Rewrite}(\uparrow, A) = \text{self}[f^A_{\text{acc}}]/(\uparrow[\neg f^A_{\text{acc}}])^*/\text{self}[f^A_{\text{acc}}]
\]

Rewrite the query inductively.
Rewriting Queries

Hidden part

User part

Query $Q' = \text{Rewrite}(Q, A)$

Answer

projects

project

name

stable

license

src
bin
doc
free

project

name

stable

license

src
bin
doc
propr

project

name

dev

license

src
doc
free

B. Groz, S. Staworko et al (Mostrare) Secure XML Database Access with Views 10 juillet 2009 12 / 19
Rewriting Queries

Hidden part

User part

\[Q' = \downarrow :: \text{project}[\text{license}/\text{free}] / \downarrow :: * / \downarrow :: \text{src} \]

\[Q = \downarrow :: \text{project} / \downarrow :: \text{src} \]

Query \(Q \)

Answer

\(Q' = \text{Rewrite}(Q, A) \)

document \(t \)

\begin{itemize}
 \item projects
 \begin{itemize}
 \item project
 \begin{itemize}
 \item name: stable
 \item license
 \begin{itemize}
 \item src
 \item bin
 \item doc
 \item free
 \end{itemize}
 \end{itemize}
 \end{itemize}
 \end{itemize}
\end{itemize}
Outline

1. Non-materialized views and query rewriting

2. Comparing Access Control Policies
Comparing access control policies

Definition

Two annotations A_1 and A_2 over DTD D are \textit{equivalent} iff they hide the same nodes:

$$A_1 \equiv^D A_2 \text{ iff } \forall t \in L(D). \ A_1(t) = A_2(t)$$
Comparing access control policies

Definition

Two annotations A_1 and A_2 over DTD D are equivalent iff they hide the same nodes:

$$A_1 \equiv^D A_2 \text{ iff } \forall t \in L(D). \ A_1(t) = A_2(t)$$

Proposition

Testing equivalence of annotations is $EXPTIME$-complete.

Proof.

This problem is polynomially equivalent to the problem of equivalence of $\mathcal{X} Reg$ filters over a DTD.
Comparing Access control policies

Definition

A_1 and A_2 annotations over DTD D. A_1 is \textit{1-restriction} of A_2 in the presence of D, denoted

$$A_1 \preceq^D_1 A_2 \iff \forall t \in L(D). \ N_{A_1}(t) \subseteq N_{A_2}(t)$$

Intuition:

The simplest way for comparing two annotations: A_1 is more “restrictive” than A_2 if it shows no element hidden by A_2.

Proposition

Testing 1-restriction is \textit{EXPTIME}-complete.
Does \(\preceq_1 \) ensure the properties we expect?

Example

\[
\begin{align*}
\text{projects} & \rightarrow \text{project}\star \\
\text{project} & \rightarrow \text{name},(\text{stable} \mid \text{dev}),\text{license} \\
A_0(\text{project},\text{stable}) &= \text{false} \\
A_0(\text{project},\text{dev}) &= \text{false} \\
\text{license} &\rightarrow \text{free} \mid \text{propr} \\
\text{stable} &\rightarrow \text{src},\text{bin},\text{doc} \\
A_0(\text{stable},\text{src}) &= [\uparrow^*:\text{project}/\downarrow^*:\text{free}] \\
A_0(\text{stable},\text{doc}) &= \text{true} \\
\text{dev} &\rightarrow \text{src},\text{doc} \\
A_0(\text{dev},\text{src}) &= [\uparrow^*:\text{project}/\downarrow^*:\text{free}] \\
A_0(\text{dev},\text{doc}) &= \text{true}
\end{align*}
\]
Does \preceq_1 ensure the properties we expect?

Example

- $\text{projects} \rightarrow \text{project}^*$
- $\text{project} \rightarrow \text{name}, (\text{stable} | \text{dev}), \text{license}$
 - $A_0(\text{project}, \text{stable}) = \text{false}$
 - $A_0(\text{project}, \text{dev}) = \text{false}$
- $\text{license} \rightarrow \text{free} | \text{propr}$

- $\text{stable} \rightarrow \text{src}, \text{bin}, \text{doc}$
- $A_0(\text{stable}, \text{src}) = [\uparrow^*::\text{project}/\downarrow^*::\text{free}]$
- $A_0(\text{stable}, \text{doc}) = \text{true}$

- $\text{dev} \rightarrow \text{src}, \text{doc}$
- $A_0(\text{dev}, \text{src}) = [\uparrow^*::\text{project}/\downarrow^*::\text{free}] \text{false}$
- $A_0(\text{dev}, \text{doc}) = \text{true}$
Does \lesssim_1 ensure the properties we expect?

Example

$$\text{projects} \rightarrow \text{project}^*$$
$$\text{project} \rightarrow \text{name},(\text{stable} \mid \text{dev}),\text{license}$$
$$A_0(\text{project},\text{stable}) = \text{false}$$
$$A_0(\text{project},\text{dev}) = \text{false}$$
$$\text{license} \rightarrow \text{free} \mid \text{propr}$$

$$\text{stable} \rightarrow \text{src},\text{bin},\text{doc}$$
$$A_0(\text{stable},\text{src}) = \lceil\text{*:project} / \text{*:free}\rceil$$
$$A_0(\text{stable},\text{doc}) = \text{true}$$
$$\text{dev} \rightarrow \text{src},\text{doc}$$
$$A_0(\text{dev},\text{src}) = \lceil\text{*:project} / \text{*:free}\rceil\text{false}$$
$$A_0(\text{dev},\text{doc}) = \text{true}$$

Document t

- **User can select all projects under free license that are not stable!**
An information-oriented comparison

Argument

A_1 should be more “restrictive” than A_2 if every information inferred from A_1 can be inferred from A_2.

Definition

A_1 and A_2 annotations over DTD D. A_1 is 2-restriction of A_2 in the presence of D, denoted

$$A_1 \preceq^D_2 A_2 \text{ iff } \forall Q_1 \exists Q_2. \forall t \in L(D). \text{Ans}(Q_1, A_1(t)) = \text{Ans}(Q_2, A_2(t))$$
An information-oriented comparison

Definition

A_1 and A_2 annotations over DTD D. A_1 is a 2-restriction of A_2 in the presence of D, denoted

$$A_1 \preceq^D_2 A_2 \text{ iff } \forall Q_1 \exists Q_2. \forall t \in L(D). \text{Ans}(Q_1, A_1(t)) = \text{Ans}(Q_2, A_2(t))$$

Theorem

This property is undecidable.
An information-oriented comparison

Definition

A_1 and A_2 annotations over DTD D. A_1 is 2-restriction of A_2 in the presence of D, denoted

$$A_1 \preceq_D^2 A_2 \iff \forall Q_1 \exists Q_2. \forall t \in L(D). \text{Ans}(Q_1, A_1(t)) = \text{Ans}(Q_2, A_2(t))$$

Theorem

This property is undecidable.

Alternative characterization

$A_1 \preceq_D^2 A_2$ if and only if

$$\exists f. \forall t \models D \forall n \in N_{A_2}(t). (n, A_2(t)) \models f \iff n \in N_{A_1}(t)$$

\models : if filter f is provided, then one can verify the property in EXPTIME
An information-oriented comparison

Definition

A_1 and A_2 annotations over DTD D. A_1 is 2-restriction of A_2 in the presence of D, denoted

$$A_1 \preceq^2_{D} A_2 \text{ iff } \forall Q_1 \exists Q_2. \forall t \in L(D). \text{Ans}(Q_1, A_1(t)) = \text{Ans}(Q_2, A_2(t))$$

Theorem

This property is undecidable.

Theorem

However, for non-recursive DTDs, 2-restriction can be tested in EXPTIME
Further work

- implementation
- update propagation
- richer schema and query language
- other view formalisms