
XML Security Views
Queries, Updates, and Schema

Benôıt Groz

University of Lille, Mostrare INRIA

PhD defense, October 2012

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 1 / 45

Talk Outline
1 Context

Motivations
XML framework
Problems presented

2 Modelization
Alignments
VPAs

3 Determinacy and Query rewriting
Definition, hardness results
A restriction: interval bounded-queries
Our results

4 View update

5 Deterministic schema
Glushkov relations and determinism
Problem statement
Algorithm to decide determinism
Summary

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 2 / 45

Outline

1 Context
Motivations
XML framework
Problems presented

2 Modelization

3 Determinacy and Query rewriting

4 View update

5 Deterministic schema

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 3 / 45

Context: Protecting data

March 2011: an attack retrieved huge mailing lists from Epsilon, a
leading online marketing company.

April 2011: Sony’s PlayStation network : 100 million customer
accounts compromised including street numbers, email, and
passwords.

June 2011: CitiBank communicated a breach into 1% of its credit
card accounts (200.000 customers).

March 2012: 1.500.000 card numbers compromised as a result of
unauthorized access into GlobalPayment processing system.

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 4 / 45

Context: XML constellation

Purpose: large-scale electronic publishing

usability over the Internet

compatibility with SGML

facilitating automatic processing of the documents

Features:

document model: a document = a tree

Languages to manipulate the document: Query and Transformation
languages: XPath, XQuery, XQUF, XSLT

Schema languages: DTD, RelaxNG, XML Schema, Schematron

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 5 / 45

Our project

The Source side:
the hidden part

Schema
Access

specification

Definition of view V

XML document t

Query Q1 over
real document

Source update us

The View side:
what the user sees

View schema

View document
t ′ = V iew (V , t)

Query Q
over the view

View update uv

?

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 6 / 45

Our project

Project: Develop techniques for XML security views.

Originally: techniques to reason about XML security views.
... but the problem addressed are general database problems: can find
application in any system using views, and more...

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 7 / 45

XML document
XMLDocument Tree representation

<bib>

<book>

<author> Abiteboul </author>
<author> Vianu </author>

<title> Foundations. . . </title>

</book>

<book>
...

</book>

<paper>
...

</paper>

</bib>

bib

book book paper

author

Abiteboul

author

Vianu

title

Foundations. . .

.

labeled ordered unranked trees

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 8 / 45

XML document
XMLDocument Tree representation

<bib>

<book>

<author> Abiteboul </author>
<author> Vianu </author>

<title> Foundations. . . </title>

</book>

<book>
...

</book>

<paper>
...

</paper>

</bib>

bib

book book paper

author

Abiteboul

author

Vianu

title

Foundations. . .

.

labeled ordered unranked trees

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 8 / 45

XML document
XMLDocument Tree representation

<bib>

<book>

<author> Abiteboul </author>
<author> Vianu </author>

<title> Foundations. . . </title>

</book>

<book>
...

</book>

<paper>
...

</paper>

</bib>

bib

book book paper

author

Abiteboul

author

Vianu

title

Foundations. . .

.

labeled ordered unranked trees

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 8 / 45

XML document
XMLDocument Tree representation

<bib>

<book>

<author> Abiteboul </author>
<author> Vianu </author>

<title> Foundations. . . </title>

</book>

<book>
...

</book>

<paper>
...

</paper>

</bib>

bib

book book paper

author

Abiteboul

author

Vianu

title

Foundations. . .

.

labeled ordered unranked trees

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 8 / 45

DTD

DTD D tree t satisfying D

bib→ (book + paper)∗

book→ author∗, title

author→ #PCDATA

title→ #PCDATA

bib

book book paper

author

Abiteboul

author

Vianu

title

Foundations. . .

.

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 9 / 45

XPath

Definition

Query: function t 7→ Q(t) ⊆ Nodes(t)

Several XPath languages: XPath 1.0, XPath 2.0, XPath 3.0 ...

Researchers very often focus on the navigational core.

Core XPath 1.0 ⊂ Conditional XPath⊂ Regular XPath [Marx EDBT’04] .

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 10 / 45

XPath

House of Windsor

king

queen
K

king

king king duke
N

king duke
N

queen
K

queen
K

Q
king king king queen king

Regular XPath: path expressions with transitive closure and filters
N ⇓∗::duke
K (⇓::king/⇓::queen)∗

Q (⇓::king/⇓::queen)∗/self::[⇒::king/⇒::king]

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 11 / 45

XPath

House of Windsor

king

queen
K

king

king king duke
N

king duke
N

queen
K

queen
K

Q
king king king queen king

Regular XPath: path expressions with transitive closure and filters
N ⇓∗::duke
K (⇓::king/⇓::queen)∗

Q (⇓::king/⇓::queen)∗/self::[⇒::king/⇒::king]

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 11 / 45

XPath

House of Windsor

king

queen
K

king

king king duke
N

king duke
N

queen
K

queen
K

Q
king king king queen king

Regular XPath: path expressions with transitive closure and filters
N ⇓∗::duke
K (⇓::king/⇓::queen)∗

Q (⇓::king/⇓::queen)∗/self::[⇒::king/⇒::king]

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 11 / 45

XQUF

Update language based on XQuery (thereby on XPath)

for $x in ⇓∗::duke return

delete node $x ,

insert node <other>...</other> before $x

king

queen

king king

duke queen king duke

king

queen

king king

other queen king other
.

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 12 / 45

(Security) views

Security views are simple views defined in [Fan et al.’04 and ’07].
Operations: hide or rename nodes.

Example

Storing successive versions of papers, hiding old versions
DTD D0:

docs→ paper∗

paper→ name, version
version→ number, files, prev

prev→ version | ε

Q0 = ⇓::paper/(self ∪ ⇓::name ∪ ⇓::version/⇓::files)

Here, security view = pair (D0,Q0)
Nodes selected by Q0 (plus root) are visible, others are hidden.

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 13 / 45

(Security) views
What happens when the parent of a visible node n is hidden?
Two approaches:

forbid this (upward-closed queries) =⇒ makes things simpler

or n gets adopted by its closest visible ancestor =⇒ more expressive

docs
X

paper
X

name
X

version

number files
X

prev

version

numberfiles

A document t � D0

docs
X

paper
X

name
X

files
X

V iew (Q0, t)

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 14 / 45

(Security) views
What happens when the parent of a visible node n is hidden?
Two approaches:

forbid this (upward-closed queries) =⇒ makes things simpler

or n gets adopted by its closest visible ancestor =⇒ more expressive

docs
X

paper
X

name
X

version

number files
X

prev

version

numberfiles

A document t � D0

docs
X

paper
X

name
X

files
X

V iew (Q0, t)

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 14 / 45

3 selected pieces

PB 1 (Queries): Determinacy and Query rewriting

PB 2 (Updates): The view update problem

PB 3 (Schema): check if a schema is “correct” w.r.t. W3C
specifications

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 15 / 45

Outline

1 Context

2 Modelization
Alignments
VPAs

3 Determinacy and Query rewriting

4 View update

5 Deterministic schema

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 16 / 45

Queries, Views, and Updates as Alignment languages
Representing a query with alignments

Q0 = ⇓::paper/(self ∪ ⇓::name ∪ ⇓::version/⇓::files)

(docs, docs)

(paper, paperle)

(name, name) (version, ε)

(number, ε) (files, files) (prev, ε)

(version, ε)

(number, ε)(files, ε)

One alignment in Q0

Queries only select: alphabet={(a, β) | a ∈ Σ, β = a or β = ε}
Views select or rename: alphabet={(a, β) | a ∈ Σ, β ∈ Σ ∪ {ε}}

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 17 / 45

Queries, Views, and Updates as Alignment languages
Representing a view with alignments

Q0 = ⇓::paper/(self ∪ ⇓::name ∪ ⇓::version/⇓::files)

(docs, docs)

(paper, article)

(name, idme) (version, ε)

(number, ε) (files, files) (prev, ε)

(version, ε)

(number, ε)(files, ε)

One alignment in Q0

Queries only select: alphabet={(a, β) | a ∈ Σ, β = a or β = ε}
Views select or rename: alphabet={(a, β) | a ∈ Σ, β ∈ Σ ∪ {ε}}

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 17 / 45

Queries, Views, and Updates as Alignment languages
Representing an update with upward-closed alignments

f: for $x in ⇓∗::paper return (rename node $x into article

delete nodes $x/⇓::version/⇓∗ ,
insert node <author>...</author> as first into $x)

(docs, docs)

(paper, article)

(ε, author) (name, name) (version, ε)

(number, ε) (files, ε) (prev, ε)

(version, ε)

(number, ε)(files, ε)

One alignment of update function f

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 18 / 45

Automata

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 19 / 45

VPA

Visibly Pushdown Automata (VPA) [Alur&Madhusudan’04]
2 main applications: Verification and XML processing.

Characteristics: Work on linearization of the trees: read one element after
another, and update the state accordingly.

Uses a stack, but stack operation determined by the element read.

cannot process the document until its end

Output = no iff or

state at the end not accepting

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 20 / 45

VPA: run

<king>

<queen>

<king>

</king>

</queen>

<queen>

</queen>

<king>

</king>

</king>

stack:
q0

king

queen

king

queen king

q0 q0

q0

q0

q0

q0

q1

q0

q1

q0

q0

+q0

+q1

+q0 −q0

−q1

+q1 −q1 +q0 −q0

−q0

q0start q1

<queen> : q1

<king> : q0

</king> : q0

</queen> : q1

<queen> : q1

<king> : q0

VPA A

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 21 / 45

VPA: run

<king>

<queen>

<king>

</king>

</queen>

<queen>

</queen>

<king>

</king>

</king>

stack:
q0

q1

king

queen

king

queen king

q0 q0

q0

q0

q0

q0

q1

q0

q1

q0

q0

+q0

+q1

+q0 −q0

−q1

+q1 −q1 +q0 −q0

−q0

q0start q1

<queen> : q1

<king> : q0

</king> : q0

</queen> : q1

<queen> : q1

<king> : q0

VPA A

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 21 / 45

VPA: run

<king>

<queen>

<king>

</king>

</queen>

<queen>

</queen>

<king>

</king>

</king>

stack:
q0

q1

q0

king

queen

king

queen king

q0 q0

q0

q0

q0

q0

q1

q0

q1

q0

q0

+q0

+q1

+q0 −q0

−q1

+q1 −q1 +q0 −q0

−q0

q0start q1

<queen> : q1

<king> : q0

</king> : q0

</queen> : q1

<queen> : q1

<king> : q0

VPA A

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 21 / 45

VPA: run

<king>

<queen>

<king>

</king>

</queen>

<queen>

</queen>

<king>

</king>

</king>

stack:
q0

q1

q0

king

queen

king

queen king

q0 q0

q0

q0

q0

q0

q1

q0

q1

q0

q0

+q0

+q1

+q0 −q0

−q1

+q1 −q1 +q0 −q0

−q0

q0start q1

<queen> : q1

<king> : q0

</king> : q0

</queen> : q1

<queen> : q1

<king> : q0

VPA A

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 21 / 45

VPA: run

<king>

<queen>

<king>

</king>

</queen>

<queen>

</queen>

<king>

</king>

</king>

stack:
q0

q1

king

queen

king

queen king

q0 q0

q0

q0

q0

q0

q1

q0

q1

q0

q0

+q0

+q1

+q0 −q0

−q1

+q1 −q1 +q0 −q0

−q0

q0start q1

<queen> : q1

<king> : q0

</king> : q0

</queen> : q1

<queen> : q1

<king> : q0

VPA A

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 21 / 45

VPA: run

<king>

<queen>

<king>

</king>

</queen>

<queen>

</queen>

<king>

</king>

</king>

stack:
q0

q1

king

queen

king

queen king

q0 q0

q0

q0

q0

q0

q1

q0

q1

q0

q0

+q0

+q1

+q0 −q0

−q1

+q1 −q1 +q0 −q0

−q0

q0start q1

<queen> : q1

<king> : q0

</king> : q0

</queen> : q1

<queen> : q1

<king> : q0

VPA A

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 21 / 45

VPA: run

<king>

<queen>

<king>

</king>

</queen>

<queen>

</queen>

<king>

</king>

</king>

stack:
q0

q1

king

queen

king

queen king

q0 q0

q0

q0

q0

q0

q1

q0

q1

q0

q0

+q0

+q1

+q0 −q0

−q1

+q1 −q1 +q0 −q0

−q0

q0start q1

<queen> : q1

<king> : q0

</king> : q0

</queen> : q1

<queen> : q1

<king> : q0

VPA A

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 21 / 45

VPA: run

<king>

<queen>

<king>

</king>

</queen>

<queen>

</queen>

<king>

</king>

</king>

stack:
q0

q0

king

queen

king

queen king

q0 q0

q0

q0

q0

q0

q1

q0

q1

q0

q0

+q0

+q1

+q0 −q0

−q1

+q1 −q1 +q0 −q0

−q0

q0start q1

<queen> : q1

<king> : q0

</king> : q0

</queen> : q1

<queen> : q1

<king> : q0

VPA A

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 21 / 45

VPA: run

<king>

<queen>

<king>

</king>

</queen>

<queen>

</queen>

<king>

</king>

</king>

stack:
q0

q0

king

queen

king

queen king

q0 q0

q0

q0

q0

q0

q1

q0

q1

q0

q0

+q0

+q1

+q0 −q0

−q1

+q1 −q1 +q0 −q0

−q0

q0start q1

<queen> : q1

<king> : q0

</king> : q0

</queen> : q1

<queen> : q1

<king> : q0

VPA A

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 21 / 45

VPA: run

<king>

<queen>

<king>

</king>

</queen>

<queen>

</queen>

<king>

</king>

</king>

stack:
q0

king

queen

king

queen king

q0 q0

q0

q0

q0

q0

q1

q0

q1

q0

q0

+q0

+q1

+q0 −q0

−q1

+q1 −q1 +q0 −q0

−q0

q0start q1

<queen> : q1

<king> : q0

</king> : q0

</queen> : q1

<queen> : q1

<king> : q0

VPA A

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 21 / 45

VPA: run

<king>

<queen>

<king>

</king>

</queen>

<queen>

</queen>

<king>

</king>

</king>

Language L(A) = hedges in
which all rightmost children
are labeled king.

king

queen

king

queen king

q0 q0

q0

q0

q0

q0

q1

q0

q1

q0

q0

+q0

+q1

+q0 −q0

−q1

+q1 −q1 +q0 −q0

−q0

q0start q1

<queen> : q1

<king> : q0

</king> : q0

</queen> : q1

<queen> : q1

<king> : q0

VPA A

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 21 / 45

Along the path: detailed bounds for VPAs

Theorem (VPA emptiness)

One can decide emptiness of L(A) in O(|∆| × |Q|+ |Q|3).

Theorem (VPA evaluation (depending on strategy))

O(|A|2 × 22Q2
+ |t|),

O((|∆| × |Q|+ |Q|3)× |t|),

Tight bounds for the pumping lemma

Theorem

There is a family of VPAs An with n states and stack symbols such that
the smallest tree in L(An) has size 2Ω(n2).

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 22 / 45

Outline

1 Context

2 Modelization

3 Determinacy and Query rewriting
Definition, hardness results
A restriction: interval bounded-queries
Our results

4 View update

5 Deterministic schema

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 23 / 45

Problem(s) statement

Q1 determines Q2 iff ∀t, t ′ Q1(t) = Q1(t ′) implies Q2(t) = Q2(t ′)?

tree t

view tree for Q1

view tree for Q2

Q1

Q2

?

tree t ′
Q1

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 24 / 45

Determinacy by example

⇓∗::king ∪ ⇓∗::king/⇓∗::duke determines ⇓∗::king/⇓::duke
easy: simply select ⇓∗::king/⇓::duke

⇓∗::king/⇓∗::queen ∪ ⇓∗::queen/⇓∗::king ∪ ⇓∗::duke determines
⇓∗::duke[⇑∗::queen and ⇑∗::king]:
select ⇓∗::duke[⇑∗::queen] ∪ ⇓∗::duke[⇑∗::king].

⇓∗::king[⇓∗::queen] does not determine ⇓∗::king (not even contained)

⇓∗::king does not determine ⇓∗::king[⇓∗::queen].

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 25 / 45

Determinacy by example

⇓∗::king ∪ ⇓∗::king/⇓∗::duke determines ⇓∗::king/⇓::duke
easy: simply select ⇓∗::king/⇓::duke

⇓∗::king/⇓∗::queen ∪ ⇓∗::queen/⇓∗::king ∪ ⇓∗::duke determines
⇓∗::duke[⇑∗::queen and ⇑∗::king]:
select ⇓∗::duke[⇑∗::queen] ∪ ⇓∗::duke[⇑∗::king].

⇓∗::king[⇓∗::queen] does not determine ⇓∗::king (not even contained)

⇓∗::king does not determine ⇓∗::king[⇓∗::queen].

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 25 / 45

Determinacy by example

⇓∗::king ∪ ⇓∗::king/⇓∗::duke determines ⇓∗::king/⇓::duke
easy: simply select ⇓∗::king/⇓::duke

⇓∗::king/⇓∗::queen ∪ ⇓∗::queen/⇓∗::king ∪ ⇓∗::duke determines
⇓∗::duke[⇑∗::queen and ⇑∗::king]:
select ⇓∗::duke[⇑∗::queen] ∪ ⇓∗::duke[⇑∗::king].

⇓∗::king[⇓∗::queen] does not determine ⇓∗::king (not even contained)

⇓∗::king does not determine ⇓∗::king[⇓∗::queen].

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 25 / 45

Determinacy by example

⇓∗::king ∪ ⇓∗::king/⇓∗::duke determines ⇓∗::king/⇓::duke
easy: simply select ⇓∗::king/⇓::duke

⇓∗::king/⇓∗::queen ∪ ⇓∗::queen/⇓∗::king ∪ ⇓∗::duke determines
⇓∗::duke[⇑∗::queen and ⇑∗::king]:
select ⇓∗::duke[⇑∗::queen] ∪ ⇓∗::duke[⇑∗::king].

⇓∗::king[⇓∗::queen] does not determine ⇓∗::king (not even contained)

⇓∗::king does not determine ⇓∗::king[⇓∗::queen].

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 25 / 45

Deciding determinacy: undecidability in general

Theorem

In general determinacy is undecidable.

Proof.

Reduction from the emptiness of intersection of two CFG.

For VPAs and Regular XPath, determinacy is harder than containment:

Tractable restrictions?

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 26 / 45

(Deciding determinacy) Restriction: IB queries
X

X

X

X

≤ 3

≤ 3

X

X

≤ 3

X

X

X

X

> 3

3-interval bounded not 3-interval bounded

Q is k-interval bounded if
for every tree, along every
path to the root. . .

Q is interval bounded if it
is k-interval bounded for
some k .

generalizes 1) bounded depth of trees 2) upward-closed queries

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 27 / 45

Determinacy for interval bounded queries

Can we find two trees t, t ′ such that Q1(t) = Q1(t ′) but Q2(t) 6= Q2(t ′)?

Apply a pumping lemma for VPAs: if there exist two such trees then there
exist two “small“ such trees (polynomial depth, exponential size).

Double pumping argument in order to preserve the difference for Q2.

n↑

n◦

n↓

n↑

n◦

n↓
n ∈ Q2(t) \Q2(t′)

V iew (Q1, t) = V iew (Q1, t
′)

V iew (Q2, t) 6= V iew (Q2, t
′)

tree t tree t ′

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 28 / 45

Determinacy for interval bounded queries

Can we find two trees t, t ′ such that Q1(t) = Q1(t ′) but Q2(t) 6= Q2(t ′)?

Apply a pumping lemma for VPAs: if there exist two such trees then there
exist two “small“ such trees (polynomial depth, exponential size).

Theorem

Determinacy is Pspace-complete for interval bounded VPAs

Proof.

Upper-bound via pumping: guess the trees step by step, check in Pspace.

Lower bound: compressed membership for regular expressions with squares
is Pspace-hard [Lohrey IJFCS’10].

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 28 / 45

Summary of our results on determinacy

VPA XReg

Schema non-rec IB gen non-rec IB gen

containmt. PTime PTime PTime Pspace-c Exptime-c Exptime-c

determ. Pspace-c 1 Pspace-c 2 undec Pspace-c Exptime-c undec
1polynomial when the depth of the DTD is bounded by a fixed integer k.
2polynomial when the constant for interval boundedness is a fixed integer k.

Figure: Containment and Determinacy in a nutshell.

F Translating Regular XPath to Automata [Calvanese et al. DBPL’09]

F Pumping Lemma on VPAs

F Transducers functionality [Gurari Ibarra JCSS’81, MST’83]

F Language Theory (hardness results on CFG)

[Szymanski Williams FOCS’73, Lohrey IJFCS’10...]

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 29 / 45

Outline

1 Context

2 Modelization

3 Determinacy and Query rewriting

4 View update

5 Deterministic schema

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 30 / 45

Problem 2: the view update problem

draft

r

draft paper

c1 c2c1

View

"hide all c2,
rename draft and papers into docs"

doc

r

doc doc

c1 c1

draft c1? | c2?

paper c1,c2

Schema:

doc c1?

View-Schema:

r (draft | paper)* r doc*

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 31 / 45

Problem 2: the view update problem

draft

r

draft paper

c1 c2c1

View

"hide all c2,
rename draft and papers into docs"

doc

r

doc doc

c1 c1

View-update:
"delete r/doc/c1"

doc

r

doc doc

Updated document:

draft

r

draft draft

c2

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 31 / 45

Problem 2: the view update problem

draft

r

draft paper

c1 c2c1

View

"hide all c2,
rename draft, papers into docs"

doc

r

doc doc

c1 c2c1

doc

r

doc doc

Updated document:

draft

r

draft draft

c2

"delete r/draft/c1,
 delete r/paper/c1,
 for $p in r/paper return rename node $p as draft"

View-update:
"delete r/doc/c1"

Translation of the view update

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 31 / 45

The View-Update pb

with set of authorized updates Us

For instance Us = all updates that do not modify file nodes

V V

update function fv

? translation of fv

⊆ Us

Figure: View update propagation: a synopsis.

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 32 / 45

The View-Update pb with set of authorized updates Us

For instance Us = all updates that do not modify file nodes

V V

update function fv

? translation of fv ⊆ Us

Figure: View update propagation: a synopsis.

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 32 / 45

Contributions

A notion of equivalence for alignments

Properties of alignment languages w.r.t. composition and equivalence

Study of the view update problem for update functions, for two
settings:

1 when all updates (respecting the schema) are authorized
2 when there are constraints on document updates

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 33 / 45

Contributions: results

We can in PTime:
X test if a set of updates is a function
X test if two functions are equivalent
X compute the translation of a view update (without constraints)

With constraints, one cannot decide if an update function can be
translated, but we identified a very large ’tractable’ fragment for which
this problem is Exptime-complete.

F Plandowski’s algorithm for testing equivalence of two morphisms on

a context-free language [Plandowski ESA’94]

F Language theory to prove intractability under constraints (PCP,

transducer functionality) [Griffith JACM’68]

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 34 / 45

Outline

1 Context

2 Modelization

3 Determinacy and Query rewriting

4 View update

5 Deterministic schema
Glushkov relations and determinism
Problem statement
Algorithm to decide determinism
Summary

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 35 / 45

Motivations

DTDs and XML Schema use regular expressions to define the content of
elements. In DTDs, we have standard regular expressions.
In XML Schema regular expressions can use numeric occurrences.

Constraint: those regular expressions must be deterministic.

How can we check if a regular expression is
deterministic?

How can we use determinism to speed up parsing ?
(membership pb)

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 36 / 45

Structure of regular expressions

Expression is non deterministic if:

bi aj ak (j 6= k)

ab∗b

a1 b2 b3q0

First Last

b3 follows a1, b2 follows a1

abb∗

a1 b2 b3q0

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 37 / 45

Structure of regular expressions

Expression is non deterministic if:

bi aj ak (j 6= k)

#a1b∗2b3$

a1 b2 b3q0

First Last

b3 follows a1, b2 follows a1. . .

a1b2b∗3

a1 b2 b3q0

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 37 / 45

Deterministic regular expressions (a.k.a. one-unambiguous)

Expression is non deterministic if:

bi aj ak (j 6= k)

a1b∗2b3

⇒non deterministic

a1 b2 b3q0

Ambiguity parsing w = ab

a1b2b∗3
⇒deterministic

a1 b2 b3q0

e = (a + b)b?(ab)∗ ?
e ′ = (ab+b a?)∗ ?

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 38 / 45

Deterministic regular expressions (a.k.a. one-unambiguous)

Expression is non deterministic if:

bi aj ak (j 6= k)

a1b∗2b3

⇒non deterministic

a1 b2 b3q0

Ambiguity parsing w = ab

a1b2b∗3
⇒deterministic

a1 b2 b3q0

e = (a + b)b?(ab)∗ ?
e ′ = (ab+b a?)∗ ?

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 38 / 45

Deterministic regular expressions (a.k.a. one-unambiguous)

Expression is non deterministic if:

bi aj ak (j 6= k)

a1b∗2b3

⇒non deterministic

a1 b2 b3q0

Ambiguity parsing w = ab

a1b2b∗3
⇒deterministic

a1 b2 b3q0

e = (a + b)b?(ab)∗ ?
e ′ = (ab+b a?)∗ ?

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 38 / 45

Deterministic regular expressions (a.k.a. one-unambiguous)

Expression is non deterministic if:

bi aj ak (j 6= k)

a1b∗2b3

⇒non deterministic

a1 b2 b3q0

Ambiguity parsing w = ab

a1b2b∗3
⇒deterministic

a1 b2 b3q0

e = (a + b)b?(ab)∗ ⇒deterministic
e ′ = (ab+b a?)∗ ⇒non deterministic: w = ba

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 38 / 45

Problem statement

Testing determinism:
Input: expression e,
Question: is e deterministic?

Scenario: big expres-
sion, big alphabet.

Remark:
size of e = number of nodes in the parse tree

' number of positions.

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 39 / 45

Testing determinism

Straightforward solution through Glushkov automaton.
Build Glushkov in O(|Σ| × |e|)[Brüggeman-Klein TCS’93].
=⇒ (quadratic in |e|)

Number of transitions of Glushkov can be quadratic:

e = (a + b + c . . .)(a + b + c . . .),
e ′ = (a + b + c . . .)∗,
e ′′ = (a?b?c? . . .)

qi

a

b

...

a

b

...

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 40 / 45

Testing determinism

Straightforward solution through Glushkov automaton.
Build Glushkov in O(|Σ| × |e|)[Brüggeman-Klein TCS’93].
=⇒ (quadratic in |e|)

With numeric occurrences, same complexity O(|Σ| × |e|)[Kilpelainen et al
IC’07, Inf. Syst’11]

essentially build the Glushkov relations in O(|Σ| × |e|), but adapted with
some tricky issues to handle numeric indicators

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 40 / 45

Testing determinism

Straightforward solution through Glushkov automaton.
Build Glushkov in O(|Σ| × |e|)[Brüggeman-Klein TCS’93].
=⇒ (quadratic in |e|)

With numeric occurrences, same complexity O(|Σ| × |e|)[Kilpelainen et al
IC’07, Inf. Syst’11]

Can we do better?

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 40 / 45

Testing determinism

Straightforward solution through Glushkov automaton.
Build Glushkov in O(|Σ| × |e|)[Brüggeman-Klein TCS’93].
=⇒ (quadratic in |e|)

With numeric occurrences, same complexity O(|Σ| × |e|)[Kilpelainen et al
IC’07, Inf. Syst’11]

Can we do better?

Theorem

Determinism can be tested in O(|e|) even with numeric occurrences.

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 40 / 45

Testing Determinism

Do not build the automaton. Instead, work on parse tree and build some
pointers+datastructures.

Then identify for each a the pairs of a-labeled positions which might follow
a common position, and check if they do.

=⇒ we reduce the number of pairs to a linear number, and check each
pair in constant time.

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 41 / 45

Testing Determinism

In order to reduce the number of pairs, we use
F Several ideas from [Bojańczyk and Parys JACM’11] (data logic)
F Glushkov relations [Bruggeman-Klein. . .] (automata)

Remark:

The structures built for testing determinism for the basis of new algorithms
to decide membership in (almost) linear time, together with color ancestor
queries and (further use of) LCA
F LCA [Harel and Tarjan,SICOMP’84] (tree algorithms)
F Nearest color ancestor [Muthukrishnan,96] (OO programming)

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 42 / 45

Conclusion

PB 1 (Queries): Determinacy and Query rewriting
Xundecidable in general, exponential for interval bounded-fragment,
polynomial for restricted cases

PB 2 (Updates): The view update problem
X polynomial without constraints, undecidable with, but scarcely
tractable except for simple cases

PB 3 (Schema): check if a schema is “correct” w.r.t. W3C
specifications
X linear algorithm

lAlong the way, we also developed new techniques and proved
interesting results for word and tree automata.

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 43 / 45

Conclusion

Open Questions:

lIs VPA evaluation quadratic?

lIs membership linear for deterministic regular expressions?

lDefine and take into account quality of the translation for the view
update problem.

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 44 / 45

Automata theory provides a general framework to solve very diverse
problems on XML databases. . .

. . . and database applications (esp. big data processing)
also raises interesting challenges for automata theory

Benôıt Groz (Mostrare) XML Security Views PhD defense, October 2012 45 / 45

	Context
	Motivations
	XML framework
	Problems presented

	Modelization
	Alignments
	VPAs

	Determinacy and Query rewriting
	Definition, hardness results
	A restriction: interval bounded-queries
	Our results

	View update
	Deterministic schema
	Glushkov relations and determinism
	Problem statement
	Algorithm to decide determinism
	Summary

