
The View Update Problem for XML

Sławek Staworko
∗

University Lille 3
MOSTRARE, INRIA, Lille

Iovka Boneva
University Lille 1

MOSTRARE, INRIA, Lille

Benoît Groz
University Lille 1, ENS Cachan

MOSTRARE, INRIA, Lille

ABSTRACT
We study the problem of update propagation across views in
the setting where both the view and the source database are
XML documents. We consider a simple class of XML views
that remove selected parts of the source document. The
considered update operations permit to insert and delete
subtrees of the document. We focus on constructing prop-
agations that are 1) schema compliant i.e., when applied to
the source document they give a document that satisfies the
document schema; 2) side-effect free i.e., the view of the new
source document is exactly as the result of applying the user
update to the old view. We present a special structure allow-
ing to capture all such propagations. We also show how to
use this structure to capture only those propagations that
affect minimally the parts of the document which are not
visible in the view. Finally, we present a general outline of a
polynomial algorithm constructing a unique propagation.

1. INTRODUCTION
Since its standardisation by the W3C [1], the use of the
XML is constantly growing. Initially adopted as a data ex-
change format for Web applications, over the years XML has
become popular to the point where native XML database
management systems are constructed [2]. However, we re-
searchers, and practitioners alike, agree that those systems
are not as mature as e.g., existing relational DBMS. Many
problems, well established in the context of RDBMS, remain
open for XML. In this paper, we address the view update
problem well studied in the setting of relational databases [3,
4, 5, 6, 7].

The main role of database views is to provide an easy access
to a portion of the data stored in the database by remov-
ing irrelevant parts and possibly restructuring the remaining
parts [8]. While the view definition specifies how to select
the data included in the view, it typically does not say what
to do if the user wishes to change the contents of the view.

∗Contact author: slawomir.staworko@inria.fr

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Updates in XML (EDBT Workshop Proceedings), March 22, 2010, Lau-
sanne, Switzerland.

The view update problem can be stated as follows. Given
a database t, a view definition A, and an update operation
U of the view Aptq, find an update u of t which “correctly”
propagates the changes of the view to the source document
t. The precise meaning of “correctly” is to be defined. In
the case of relational databases, several criteria have been
considered. For instance, [4] proposes to consider only the
side-effect free updates, that is Apuptqq � UpAptqq. Intu-
itively, this means that the user performing the update does
not see any unexpected changes in the view. In [5] Bancilhon
and Spyratos add the constant complement criterion which
essentially requires that there are no side effects on the parts
that are not included in the view. This particular require-
ment guarantees the uniqueness of the constructed update
propagation for certain classes of views [7]. Finally, one
also requires schema compliance i.e. the updated database
should satisfy the integrity constraints [6]. Due to the richer
hierarchical structure of XML documents, the solutions pro-
posed for relational databases cannot be directly applied and
new approaches need to be developed.

In this paper, we address the view update problem for XML.
We assume that both the source document and the view are
XML documents (although the view needs not be materi-
alized). The schema of the document is captured with a
Document Type Definition (DTD). We consider XML views
obtained by removing selected parts of the document only.
This class of views does not allow any restructuring of the
data, however, it has various practical applications of which
secure access to XML databases is one prominent exam-
ple [9, 10]. The considered update operations are inserting
and deleting a subtree. These operations are the backbone
of the proposed XQuery Update facility [11] and are com-
monly considered in the context of incremental validation
and incremental query evaluation for XML [12, 13].

We focus on constructing propagations that are side-effect
free and schema compliant. While there might be an infi-
nite number of such propagations, we present propagation
graphs which capture all schema compliant and side-effect
free propagations. Essentially, propagations correspond to
paths in the propagation graphs. The graphs have size poly-
nomial in the size of the source document, the schema, and
the view update. Also, constructing updates from selected
paths can be done in polynomial time. Thus, we consider
the propagation graphs to be compact representations of all
propagations.



One could adapt the constant complement criterion to select
the propagation that does not affect the parts that are hid-
den by the view. While this approach produces at most one
propagation, such a propagation need not exists. Instead,
we select propagations that minimally modify the parts of
the document that are not visible by the user. Such prop-
agations always exist and their number is finite, although,
may be exponential. All such propagation can also be rep-
resented in a compact manner, using optimal propagation
graphs, basically subgraphs induced by cheapest paths in
the propagation graphs.

Finally, we outline a general algorithm which selects one
optimal propagation. This propagation is obtained by con-
structing paths in optimal propagation graphs. There are
many ways of doing it and in this paper we discuss only a
few of them. The algorithm, however, is parametrized by a
general procedure selecting the desired path. We claim that
if the procedure works in polynomial time, then the update
can be propagated in polynomial time as well.

Organization of the paper. Section 2 presents basic no-
tions used in this paper. In Section 3 we study the problem
of constructing the inverse image of a view fragment. This
problem plays an important role in our approach to update
propagation which we present in Section 4. Section 5 con-
tains an outline of a polynomial algorithm constructing a
unique propagation. We discuss the related work in Sec-
tion 6. Finally, in Section 7 we summarize the results and
outline directions of further work.

Acknowledgments. We would like to thank Anne-Cécile
Caron, Yves Roos, and Sophie Tison for their numerous sug-
gestions and early feedback in this work.

2. PRELIMINARIES
Trees. A tree over Σ is a structure t � pΣ, Nt,�t, t, λtq,
where Nt is a finite set of node identifiers, �t is the de-
scendant relation,  t is the following sibling relation, and
λt : Nt Ñ Σ is the labeling function. We remark that both
�t and  t are irreflexive. The size of a tree t, denoted |t|,
is the cardinality of Nt. A tree is empty is its node set is
empty. We denote the root of a nonempty tree t by rootptq.
Given a tree t and a node n P Nt by t|n we denote the subtree
of t rooted at node n. Often, when considering a tree which
is, or eventually will become, a subtree of another tree we
call it a (tree) fragment. In the sequel, we assume a fixed
set Σ of node labels and by TΣ we denote the set of all trees
over Σ. A (tree) language over Σ is a subset of TΣ.

In this paper we work with updates that essentially trans-
form one tree into another. Node identifiers are used to
identify the correspondence between the nodes in the tree
before and after the transformation. Since in this process
new nodes can be inserted and some nodes deleted, we in-
tentionally do not assume the set of node identifiers to be a
prefix closed subset of N∗. Also, the equality of trees should
not be confused with isomorphism: two trees are equal iff
all the elements of the underlying structures are the same,
including the node set. Figure 1 contains an example of a
tree t0 (shown together with its node identifiers). We re-
mark that if the particular choice of node identifiers is not
important, we simply denote trees as terms over Σ for sake

r

a b d a c d

a c b c

n0

n1 n2 n3 n4 n5 n6

n7 n8 n9 n10

Figure 1: A tree t0.

of clarity.

Automata and DTDs. A finite automaton over Σ is a
tuple M � pΣ, Q, q0, δ, F q, where Q is a finite set of states,
q0 P Q is a distinguished starting state, δ � Q � Σ � Q
is the transition relation, and F � Q is the subset of ac-
cepting states. By LpMq we denote the set of words over Σ
recognized by M . The size of M , denoted |M | is the sum
|Q| � |δ| � |F |.

A Document Type Definition over Σ (DTD) is a function D
that maps a symbol a P Σ to an automaton Ma that specifies
the allowed sequences of children of a node labeled with a.
A tree t P TΣ satisfies D iff for every node n P Nt the word
consisting of consecutive labels of children of n belongs to
LpDpλtpnqqq. By LpDq we denote the set of all nonempty
trees that satisfy D. The size of a DTD is the sum of the
sizes of all automata used. Typically, DTDs specify also the
required label of the root. We omit this requirement as this
will allow us to easily consider tree fragments that satisfy
the DTD. We remark, however, that our constructions can
be easily extended to include this additional requirement.

In the examples, we specify DTDs using rules mapping sym-
bols in Σ to regular expressions over Σ defined in the stan-
dard fashion. If for a symbol a no rule is given, then aÑ ε is
assumed. Also, we consider only satisfiable DTD, i.e. such
that for every symbol a P Σ there exists a tree satisfying the
DTD and whose root label is a. Naturally, testing satisfiabil-
ity of a DTD can be done in polynomial time [14]. Figure 2
contains an example of a DTD D0 specified with two rules
and the corresponding automata. Note that t0 satisfies D0.

r Ñ pa � pb� cq � dq∗

dÑ ppa� bq � cq∗

q0 q1 q2
a b

c

d

p0 p1

a

b

c

Figure 2: A DTD D0 and two automata.

Annotations and views. In this paper, we consider views
obtained by hiding selected nodes of the source document.
To identify the visible nodes we use annotations. They are
commonly used, for instance, to specify security views of
XML documents [9, 10]. Typically, they accompany DTDs,



but here we introduce them independently of the DTD.

Formally, an annotation is a function A : Σ � Σ Ñ t0, 1u.
Given a non-empty tree t, the set vAwt � Nt of visible nodes
is defined recursively: 1) the root node is always visible; 2) if
a node n has a visible parent p, then n is visible if and only if
Apλtppq, λtpnqq � 1; 3) in all other cases the node is hidden.
Note that the visibility of nodes is upward closed [15], i.e.
all descendants of a hidden node are hidden as well.

The view of a tree consists of visible nodes only. Formally,
a view of t P L defined by A is a tree t1 � pΣ, vAwt,�t X
vAw2t , t X vAw2t , λt æ vAw2t q, where by f æ X we denote
the restriction of function f to the set X. In the sequel,
we abuse the notation and by Aptq denote the view of t
defined by A. In examples, we specify annotation only on
the essential pairs of symbols; the annotation is assumed to
be 1 on the remaining pairs. Figure 3 contains an example
of an annotation A0 and the view A0pt0q.

A0pr, aq � A0pr, dq � 1

A0pr, bq � A0pr, cq � 0

A0pd, aq � A0pd, bq � 0

A0pd, cq � 1

r

a d a d

c c

n0

n1 n3 n4 n6

n8 n10

Figure 3: An annotation A0 and the view A0pt0q.

By ApLq we denote the set of all views of trees in L. We
remark that a DTD capturing ApLpDqq can be easily derived
from D and A. For instance, the view DTD for D0 and A0 is

r Ñ pa � dq∗ dÑ c∗

Editing scripts. We consider two standard editing oper-
ations: inserting and deleting a subtree. To represent the
updates performed by the user on the document we use a
formalism based on tree alignments commonly used in the
context of measuring similarities between trees [16]. This
formalism allow us to associate with every node exactly one
editing operation. For consistency, with nodes that are not
affected by the update we associate a special phantom oper-
ation which does nothing.

Formally, an editing script over Σ is a tree over the alphabet
EpΣq defined as

EpΣq � tInspaq, Noppaq, Delpaq | a P Σu.

Inspaq is an insertion of a node, Delpaq is a deletion of a
node, and Noppaq is a phantom operation. Since we con-
sider only updates that insert and delete whole trees, we
require that all descendants of an inserting node are insert-
ing as well, and similarly all descendant of a deleting node
are deleting. The cost of an editing script S is the number
of nodes that are labeled with a non-phantom operation.
Figure 4 contains an example of an editing script.

This particular representation of document updates allows
us to identify not only the update but also the original and

Nopprq

Delpaq Delpdq Noppaq Inspdq Inspaq Noppdq

Delpcq Inspcq Inspcq Noppcq Inspcq

n0

n1 n3 n4 n11 n12 n6

n8 n13 n14 n15n10

Figure 4: An update S0 of the view A0pt0q.

the resulting document and the correspondence between the
nodes of those trees. Formally, the input tree InpSq of an
editing script S � pEpΣq, NS ,�S , S , λSq, is defined as

pΣ, NIn ,�S X pNInq
2, S X pNInq

2, λInpSqq,

NIn � tn P NS | λSpnq � Inspaq for any a P Σu,

λInpSqpnq � a if λSpnq � Delpaq or λSpnq � Noppaq.

The output tree OutpSq of S is defined analogously. For
instance, the input tree of S0 in Figure 4 is the tree A0pt0q
in Fig 3. Its output tree is presented in Figure 5.

r

a d a d

c c c c

n0

n4 n11 n12 n6

n13 n14 n10 n15

Figure 5: The output tree of S0.

We remark that inclusion of the node identifier in the up-
date may seem limiting for reasoning about abstract up-
dates. However, in the setting of update propagation, the
context of the update is an integral part of the problem in-
put. Thus, from now on we do not make a formal distinction
between the update and its editing script, and we refer to a
script S with the input tree t as an update of t. Also, if t is
the input tree of S and t1 its output tree, we write Sptq � t1.

We also overload the symbols Insp.q, Delp.q, Nopp.q to trees.
For instance, by Insptq we denote the unique editing script
S such that InpSq is an empty tree and OutpSq � t.

3. WARM-UP: VIEW INVERSE
In this section we focus on the view inversion problem: given
a view document t1 construct a source document t, called an
inverse of t1, that yields exactly the same view, i.e. Aptq � t1.
This problem is an integral part of the update propagation
problem because a propagation of an update fragment which
inserts a subtree is an update that inserts the inverse of the
subtree. One could attempt to use the solution of view in-
verse problem to solve the problem of view update propaga-
tion by simply constructing the inverse of the updated view.
However, as we illustrate in an example in Section 6, this
approach disregards the relative positions of nodes affected
by the update, and consequently, may yield inadequate and
erroneous solutions.



d

c c

n11

n13 n14

d

a c b c

n11

n13 n14n16 n17

pc0, p0q

pc0, p1q

pn13, p0q

pn13, p1q

pn14, p0q

pn14, p1q

I
n
s
pa

q

R
ec
p1
q

I
n
s
pb

q

R
ec
p2
q I

n
s
pa

q

I
n
s
pbqI

n
s
pb

q I
n
s
pa

q

Figure 6: A view fragment, its inversion graph, and its inverse.

Formally, the inverse operation of a view t1 w.r.t. a tree
language L and annotation A is

InvpL,A, t1q � tt P L | Aptq � t1u.

Note that InvpL,A, t1q is not closed under isomorphism be-
cause its elements need to contain the visible nodes of t1.

To capture the inverse operation of a view t1 w.r.t. a DTD
D and annotation A we construct a collection HpD,A, t1q of
directed labeled graphs pHnqnPNt1

, one for each node of t1.
The graph Hn captures all possible sequences of children of
the node n in all trees in InvpL,A, t1q. We fix a node n P Nt1

and let x � λt1pnq and Dpxq � MpΣ, Q, q0, δ, F q. We also
identify the sequence m1, . . . ,mk of children nodes of n in
t1. The inversion graph Hn � pVn, Enq is defined as follows.
The set of vertices is Vn � tc0,m1, . . . ,mku�Q, where c0 is
a fresh element, different for every n, to which we will also
refer as m0. The set En consists of two types of edges:

(i) pmi, qq
Inspyq
ÝÝÝÝÑ pmi, q

1q for any q
y
ÝÑ q1 P δ such that

Apx, yq � 0 (for i P t0, . . . , ku);

(ii) pmi�1, qq
Recpiq
ÝÝÝÝÑ pmi, q

1q for any q
y
ÝÑ q1 P δ such that

Apx, yq � 1 and λt1pmiq � y (for i P t1, . . . , ku).

An inversion path in Hn is a (possibly cyclic) directed path
from pc0, q0q to pmk, qq with q P F . Each inversion path
gives a possible sequence of children of the node n in some
tree in InvpL,A, t1q. (i)-edges correspond to subtrees that
are to be inserted, and (ii)-edges correspond to the children
of n which are present in t1.

Now, for a given choice of exactly one inversion path in ev-
ery Hn (for n P Ntq we construct a source document in a
bottom-up fashion. For Hn and its inversion path we con-
struct the tree whose root node n labeled with λt1pnq and
its subtrees are obtained by traversing the path as follows.
For a (i)-edge we add a tree satisfying D with root node la-
bel y. Every time we traverse this edge, the trees used need
not be the same and in particular each time we use fresh
nodes. For a (ii)-edge we add the tree obtained from Hmi

and its inversion path. Finally, the source tree t is the tree
obtained from Hrootpt1q and its inversion path. We remark
that the resulting tree depends not only on the choices of
paths but also on the choice of subtrees used for (i)-edges.
Figure 6 contains an example of an inversion graph Hn11 for
a subtree of OutpS0q at n11 (w.r.t. D0 and A0), a selected
inversion path, and the corresponding inverse tree.

We claim that any tree obtained from an inversion path is
an inversion of t1, and vice versa, i.e. for any inversion of

t1 (w.r.t. A and D), there exists a corresponding choice of
inversion paths (together with a choice of subtrees used for
traversing (i)-edges).

Theorem 1. HpD,A, t1q captures InvpLpDq, A, t1q for any
DTD D, any annotation A, and any view tree t1 P ApLpDqq.

We are also interested in the set of view inversions that
add a minimal amount of new (invisible) nodes. Formally,
we take the set InvminpL,A, t1q of size-minimal elements of
InvpL,A, t1q. To capture this set in every inversion graph
we add weights to edges. The choice of weights may be
arbitrary for (ii)-edges because every inversion path must
contain exactly one edge with Recpiq for every i P t1, . . . , ku.
Here, we assign weights that not only allow constructing
minimal inversions but moreover allow an easy calculation
of the minimal number of nodes that need to be added to
obtain the inversion.

The weight of a (i)-edge is equal to the minimal size of a
tree satisfying D and with root label y. Note that this value
is greater than 0 and can be easily precomputed from D in
polynomial time. The weight of a (ii)-edge is set to the min-
imal cost of a inverting path in Hmi (calculated recursively).

Now, by H�
n we denote the subgraph of Hn induced by the

cheapest inversion paths. We remark that H�
n is acyclic. By

H�pD,A, t1q we denote the collection of optimal inversion
graphs pH�

nqnPNt1
for t1 w.r.t. D and A. Naturally, when

constructing a source tree from the optimal inversion graphs,
traversal of a (i)-edge adds a minimal tree satisfying D with
root label y, and traversal of a (ii)-edge adds an optimal
inversion obtained from H�

mi
.

Theorem 2. H�pD,A, t1q captures InvminpLpDq, A, t1q for
any DTD D, any annotation A, and any view tree t1 P
ApLpDqq.

Finally, we observe that both the size of HpD,A, t1q, and
thus its optimal version as well, is polynomial in the size of
D and t1.

4. VIEW UPDATE PROBLEM
We begin by formalizing the problem. Take a language L
of admissible source documents (possibly expressed with a
DTD), an annotation A, and let V � ApLq be the tree
language of possible views which we assume to be known to
the user. Assume also some source document t P L. Now,
a view update is an editing script S such that InpSq � Aptq



and OutpSq P V . For technical reasons, we require that the
update does not use the nodes that are hidden by the view
definition, i.e. NS X pNtzNAptqq � ∅. This requirement
prevents situations where the user attempts to add a node
with an identifier already used by an existing node in the
source document but not visible to the user.

Now, a propagation of S is any editing script S1 such that
InpS1q � t. We say that 1) S1 is schema compliant if OutpS1q P
L; 2) S1 is side-effect free if ApOutpS1qq � OutpSq. By
P pL,A, t, Sq we denote the set of all schema compliant and
side-effect free propagations of S for t w.r.t. L and A. Fig-
ure 7 contains a schema compliant and side-effect free prop-
agation of S0 (Figure 4).

With a relatively simple argument we show that every view
update has side-effect free and schema compliant propaga-
tion if L is closed under isomorphism, for instance if it is
defined by a DTD. Since OutpSq P V , there exists some
t1 P L such that OutpSq � Apt1q. Because L is closed un-
der isomorphism, we can choose t1 which shares only visible
nodes with t, i.e. Nt1 XNt � NApt1qXNAptq. Now, the prop-
agation S simply removes all invisible nodes of t and inserts
all invisible nodes of t1.

Compact representation. Now, we present a construc-
tion that allows to capture desirable propagations. This
construction can be seen as an extension of inversion graphs
which handles not only insertions, but also deletions and
Nop-operations. We fix a DTD D, an annotation A, a source
document t P LpDq, and a view update S. We identify the
set of the view nodes of the source document t that appear
in the updated version of the view

N∆ � tn P NS | λSpnq � Noppaq for some a P Σu.

Note that N∆ � NAptq � Nt. We construct a collection of
directed labeled graphs GpD,A, t, Sq � pGnqnPN∆ , one for
each node in N∆. We fix a node n P N∆ and let x � λtpnq
and Dpxq � MpΣ, Q, q0, δ, F q. Now, let m1, . . . ,mk be the
sequence of children of n in t and m1

1, . . . ,m
1
` be the sequence

of children of n in S. Typically, these two sequences have
common nodes. Let

NC � tc0u Y tm1, . . . ,mku X tm1
1, . . . ,m

1
`u,

where c0 is an artificial common node that will be refereed
to as m0 and m1

0.

We partition the sequence m0,m1, . . . ,mk into segments
contained between two consecutive common nodes. For-
mally, the segment starting at a common node mi P NC is

segtpmiq � tmj P Nt | i ¤ j^Ei1 P ti�1, . . . , ju.mi1 P NCu.

Analogously, in the sequence m1
0,m

1
1, . . . ,m

1
` we identify the

segment segSpm1
jq starting at a common node m1

j . For in-
stance, for the tree t0 (Figure 1) and the edit script S0

(Figure 4), we have segt0pn4q � tn4, n5u and segS0pn4q �
tn4, n11, n12u. We remark that for all m P NC the ele-
ments of segtpmqztmu are hidden by A and all elements
of segSpmqztmu are inserted by S. Consequently, when
constructing a propagation we need to consider all ways of
shuffling the contents of each pair of two corresponding seg-
ments.

Now, the propagation graph Gn is defined as follows. The
set of vertices is V �

�
mPNC

psegtpmq�Q� segSpmqq. The
set E consists of the following edges: for y P Σ such that
Apx, yq � 0 we have

(i) pmi, q,m
1
jq

Inspyq
ÝÝÝÝÑ pmi, q

1,m1
jq for any q

y
ÝÑ q1 P δ;

(invisible insert)

(ii) pmi�1, q,m
1
jq

Delpyq
ÝÝÝÝÑ pmi, q,m

1
jq if λtpmiq � y; (invis-

ible delete)

(iii) pmi�1, q,m
1
jq

Noppyq
ÝÝÝÝÑ pmi, q

1,m1
jq for any q

y
ÝÑ q1 P δ

and if λtpmiq � y; (invisible nop)

and for y P Σ such that Apx, yq � 1 we have

(iv) pmi, q,m
1
j�1q

Inspyq
ÝÝÝÝÑ pmi, q

1,m1
jq for any q

y
ÝÑ q1 P δ

and if λSpm1
jq � Inspyq; (visible insert)

(v) pmi�1, q,m
1
j�1q

Delpyq
ÝÝÝÝÑ pmi, q,m

1
jq if λtpmiq � y and

λSpm1
jq � Delpyq; (visible delete)

(vi) pmi�1, q,mj�1q
Noppyq
ÝÝÝÝÑ pmi, q

1,m1
jq for any q

y
ÝÑ q1 P δ

and if λtpmiq � y and λSpm1
iq � Noppyq; (visible nop)

A propagation path in Gn is a (possibly cyclic) directed path
from pc0, q0, c0q to pmk, q,m

1
`q such that q P F . Figure 8

contains the propagation graph Gn6 for t0 and S0 (w.r.t.
D0 and A0) with one chosen propagation path.

pc0, p0, c0q

pn9, p1, c0q

pn10, p0, n10q

pn10, p1, n10q

pn10, p0, n15q

pc0, p1, c0q

pn9, p0, c0q

pn10, p1, n15q

I
n
s
pa

q

I
n
s
pbq

I
n
s
pa

q

I
n
s
pbq

I
n
s
pa

q

I
n
s
pbq

Delpbq

Delpbq

I
n
s
pb

q I
n
s
pa

q

N
oppbq N

op
pc
q

In
sp
cq

Figure 8: The propagation graph Gn6 .

Now, given a choice of exactly one propagation path in every
Gn (for n P N∆) we construct a propagation of S as follows.
For n P N∆, the script corresponding to Gn has its root node
n labeled with Noppλtpnqq and its subtrees are obtained from
traversing the propagation path:


 For (i)-edge we add a subtree Inspt2q, where t2 is some
arbitrarily chosen tree satisfying D with root label y
(using fresh nodes).


 For (ii)-edge and (v)-edge we add Delpt|miq.


 For (iii)-edge we add the subtree Noppt|miq.


 For (iv)-edge we let t1 � OutpS|m1

j
q, take any t2 P

InvpLpDq, A, t1q, and add the subtree Inspt2q. For
(vi)-edge we add the script generated recursively from
Gmi and its propagation path.



Nopprq

Delpaq Delpbq Delpdq Noppaq Noppcq Inspdq Inspaq Inspbq Noppdq

Delpaq Delpcq Inspaq Inspcq Inspbq Inspcq Noppbq Noppcq Inspaq Inspcq

n0

n1 n2 n3 n4 n5 n6

n7 n8 n9 n10

n11 n12

n13 n14 n15n16 n17 n18

n19

Figure 7: An optimal side-effect free propagation of S0.

For instance the path in Figure 8 yields a script presented
in Figure 9.

Noppdq

Noppbq Noppcq Inspaq Inspcq

n6

n9 n10 n18 n15

Figure 9: An update fragment obtained from Gn6 .

We remark that the constructed propagation depends on
the selected choice of propagation paths and the selected
trees used when traversing (i)-edges. Our claim is that the
obtained script is a side-effect free propagation of S. More-
over, all side-effect free propagations can be obtained in this
fashion.

Theorem 3. GpD,A, t, Sq captures P pLpDq, A, t, Sq for
any DTD D, any annotation A, any source tree t P LpDq,
and any update S of the view Aptq.

Optimal propagations. We remark that a view update
may have infinitely many side-effect free and schema compli-
ant propagations. For instance, consider the DTD D1 : r Ñ
pa � b∗q∗ with an annotation A1pr, aq � 1 and A1pr, bq � 0.
Regardless of the source document, inserting in the view a
node labeled with a may be propagated to an update that
inserts a and an arbitrary number of invisible nodes b. To
limit the amount of invisible nodes that the propagation
may add, we consider only the cost optimal update propa-
gations. Formally, by PminpL,A, t, Sq we denote the subset
of cost minimal elements of P pL,A, t, Sq. In the previous
example, an update inserting a node a is propagated to an
update that inserts this node only.

To capture the set of optimal propagations, we add weights
to the edges of propagation graphs. We assume D, A, t, and
S to be given as before and we fix n P N∆. For a (i)-edge
the weight is the size of a minimal tree satisfying D and
with root label b. For a (ii)-edge and a (v)-edge the weight
is the size of the subtree to be deleted t|mi . For a (iii)-edge
the weight is 0. For a (iv)-edge the weight is the size of
a minimal view inversion of OutpS|m1

j
q, which we calculate

using the optimal inverse graph. For a (vi)-edge the weight
is the cost of the cheapest propagation path in Gmi , which
we calculate recursively.

Now, by G�
n we denote the subgraph of Gn induced by the

cheapest propagation paths of Gn. By G�pD,A, t, Sq we de-
note the collection of optimal propagation graphs pG�

nqnPN∆

for t and S w.r.t. D and A. Naturally, when constructing
a script using path in G�

n we use only optimal elements. In
particular, when traversing (i)-edge we use a minimal tree
satisfying D and whose root node is y, and when travers-
ing (iv)-edge we take an optimal view inverse. Figure 10
contains the optimal propagation graph G�

n0
.

q0
c0c0

q0
n1n1

q0
n1n2

q0
n1n3

q1
n4n4

q2
n5n4

q0
n5n11

q1
n5n12

q2
n5n12

q0
n6n6

q2
n4n4

q0
n4n11

q1
n4n12

Inspdq Inspaq Noppcq

I
n
s
pc

qI
n
s
pb

q I
n
s
pc

q

Delpaq Delpbq Delpdq

Noppaq

Noppcq Inspdq Inspaq

I
n
s
pb

q

Noppdq

Figure 10: The optimal propagation graph G�
n0

.

Theorem 4. G�pD,A, t, Sq captures PminpLpDq, A, t, Sq for
any DTD D, any annotation A, any source tree t P LpDq,
and any update S of the view Aptq.

Finally, we remark that G�pD,A, t, Sq and its optimal ver-
sion can be constructed in time polynomial in the size of D,
t, and S.

Upper bound. We observe that the optimal inverse and
propagation graphs have only acyclic inverse and propaga-
tion paths. This shows that the number of optimal side-
effect free and schema compliant propagations has an expo-
nential upper bound. This bound is tight as illustrated by
the following example. Take a DTD D2 : r Ñ pa � pb � cqq∗

with an annotation A2pr, aq � 1 and A2pr, bq � A2pr, cq � 0.
Clearly, inserting a node labeled with a requires insertion of
a node labeled either by c or b. Consequently, inserting k
nodes a has 2k optimal propagations since the choices are
independent.

5. PROPAGATION ALGORITHM
In this section we discuss a construction of a tractable view
update propagation algorithm based on optimal propagation
and inversion graphs.



In essence, the algorithm works as follows:

1. It constructs the collection of the optimal propagation
graphs for the source document and the given view
update.

2. For all new trees inserted by the view update it con-
structs the corresponding optimal inversion graphs.

3. It chooses exactly one propagation (inversion) path in
every optimal propagation (inversion reps.) graph.

4. It recursively constructs the propagation of the view
update using the propagation and inversion graphs
with the selected paths.

For instance Figure 7 contains an example of propagation of
the update S0 when using the paths selected on Figures 6, 8,
and 10.

We observe one peculiarity of update propagation which is
a consequence of the fact that a minimal tree satisfying a
DTD may be of size exponential in the size of the DTD. For
instance, consider the following DTD (with i P tn, . . . , 1u)

aÑ an � an ai Ñ ai�1 � ai�1 a0 Ñ ε

One of the resulting inconveniences is that the XML view
update problem is inherently exponential: propagation of a
simple view update may require insertion of a subtree expo-
nential in the size of the DTD.

One could remove the size of the DTD from complexity anal-
ysis, but we will assume that the administrator specifies de-
fault XML document fragments, called insertlets, that are
used to insert the invisible subtrees. This assumption is
quite natural and reasonable: rather than inserting an arbi-
trary fragments into the source document, one might prefer
to specify the fragments to be used should the necessity
arise. At the same time, it allows us to characterize more
precisely the complexity of view update propagation.

An insertlet package for D is a collectionW � pWaqaPΣ con-
taining for every a P Σ an insertlet Wa, i.e. a minimal tree
satisfying D with root label a. We remark that in practice it
will not be necessary to specify an insertlet for every symbol
but here we do not enter in those details.

So far we said little as to how a unique path in every prop-
agation and inversion graph is to be selected. Because of
space limitations we only outline some approaches that can
be used to reduce the number of the considered cheapest
paths and eventually lead to one unique update propaga-
tion. First, we propose to use typing of nodes to identify
updates which do not change the types of nodes that are
preserved by the update. Formally, a document typing is a
function Θ which maps a tree t to a function Θt : Nt Ñ Γ,
where Γ is a set of types. A propagation S1 of a view update
S preserves Θ-typing iff for every n P NInpS1q XNOutpS1q we
have ΘInpS1qpnq � ΘOutpS1qpnq. One possible typing could be
based on rich schema formalisms, like EDTD [17, 18]. An-
other possible typing could use the states of the automaton
used to verify that the sequence of children is valid w.r.t.
the DTD. It would require the automata to be determin-
istic, however, it is a commonly enforced requirement for
DTDs [1, 18].

Finally, a unique update propagation can be defined by using
preferences on edges to be selected when constructing the
optimal propagation path in G�pD,A, t, Sq. For example,
the selected propagation path in Figure 10 is the result of
preference of Nop-edges over Ins-edges.

We assume that we are given a function Φ which allows to
select the unique preferred paths in inversion and propaga-
tion graphs and that it works in time polynomial in the size
of the graphs. Consequently, we obtain

Theorem 5. Given a DTD D, an annotation A, a source
document t, and a view update S, a side-effect free propaga-
tion S1 of S w.r.t. a polynomial preference function Φ and
insertlets W can be computed in time polynomial in the size
of D, t, S, and W.

6. RELATED WORK
A recent thread of work by Foster et al. studies so called
lenses [19, 20]. These are bi-directional tree transformers
(view definitions) that provide two operations: get and put.
The get operation allows to compute an abstract view of a
concrete tree. The put operation takes an updated version of
the abstract view, together with the original concrete tree,
and correspondingly updates the original tree. This way the
view definition itself allows to compute the update propaga-
tion. In particular, this implies that the transformer defines
explicitly constant tree values to be used when some infor-
mation is missing. This is similar to our insertlets. Each
lens definition comes with two types, for concrete trees and
abstract views. The type of the abstract view defines also
the allowed updates on the view. Types also guarantee that
lenses are “well-behaved” [19]. The PutGet rule from [19]
corresponds to absence of side-effects.

An important difference between our approach and [19] is
that the lenses are defined on feature trees – unordered, edge-
labelled trees with no repeated labels among sibling edges.
Consequently, working with XML requires encoding of XML
trees into feature trees whereas our approach works directly
on XML trees. Moreover, the definition of lenses requires
an explicit specification of insertlets while in our approach
a minimal insertlet can be automatically computed. On the
other hand, lenses allow in view definitions not only node fil-
tering, but also local tree transformations, such as inserting
a node or a constant tree.

Several authors consider updating XML views of relational
databases [21, 22, 23, 24]. For instance, [22] focuses on trans-
lating XML view updates to relational view updates and del-
egating the problem to the relational DBMS, [21] studies the
conditions under which a view update is translatable, and
[23] provides algorithms for the translation of a rich class
of view updates. There exist numerous approaches storing
XML documents in relational databases, e.g. [25, 26], and
one could attempt to combine them with the view propaga-
tion solutions. However, the complexity of view definitions
required to reconstruct the XML documents is beyond the
capabilities of the existing propagation solutions.

One may attempt to solve the view update problem using so-
lutions for XML repairing [27, 28] as described below. Take



a DTD D, an annotation A, and let t1 be the result of ap-
plying the user update on the view Aptq for some source
document t P LpDq. Now, let L1 be the set InvpLpDq, A, t1q
closed under isomorphism, i.e. the set of all source docu-
ments satisfying D and whose view gives t1 disregarding the
identifiers. This set is a regular language of trees and a way
of propagating the update to the source document is choos-
ing from L1 the tree closes to the original tree t, i.e. repairing
t w.r.t. L1. We argue that by dropping the node identifiers
this approach inadvertently looses information allowing it
to correlate the relative positions of existing and new nodes.
We illustrate this with an example.

Take a DTD D3 : r Ñ b � pc� εq � pa � cq∗ with an annotation
A3pr, bq � A3pr, aq � 0 and A3pr, cq � 1. The view DTD
is r Ñ c∗. Now, let t � rpb, a, cq, and then A3ptq � rpcq.
Suppose that the user inserts a child c as the last child
of the root node r resulting in t1 � rpc, cq. There are two
trees satisfying D3, t1 � rpb, c, a, cq and t2 � rpb, a, c, a, cq,
for which the view w.r.t. A3 is t1. While t1 is closer to t
than t2, it is obvious that t2 is better suited for the updated
source document. One reason is that the user inserts the new
node c at a position following the node c already existing in
the source document.

For similar reasons the view update propagation cannot be
adequately solved by constructing the inverse image of the
updated view, e.g. using the inversion of a transforma-
tion [29]. Essentially, such an approach does not take into
account the original tree and may lead to source updates
that are superfluous and unnecessary.

Ref. [30] proposes to propagate view updates by defining a
backward semantics of XQuery expressions. Essentially, the
backward semantics of an XQuery expression used to define
a view is a function which takes the original source docu-
ment with the modified view and returns an updated source
document. The class of views is richer than annotated DTDs
and, for instance, allows using multiple copies of a part of
the source document in the view. This part is changed by
the update propagation even if its occurrence is changed in
the view. Thus update propagation is not necessarily side-
effect free. We also note that the backward semantics does
not take the source document schema into consideration, i.e
the propagation is not necessarily schema compliant.

7. CONCLUSIONS AND FUTURE WORK
In this paper we have addressed the view update problem in
the setting of simple XML views, defined with annotations,
and basic yet ample update operations. We have taken an
approach constructing side-effect free and schema compliant
update propagations, well established in the setting of rela-
tional databases. The solutions for relational databases are,
however, incompatible due to a richer structure of XML doc-
ument. Consequently, we have devised novel solutions tai-
lored to the semi-structured databases. We have presented a
construction of (optimal) propagation graphs which allow to
capture all (optimal) schema compliant and side-effect free
propagations. We have also outlined a general algorithm
which uses the propagation graphs to construct a desired up-
date propagation. To the best of our knowledge, our work
is the first to provide a complete and self-contained solution
for the view update problem for XML.

The work presented in this paper is our first step towards
a comprehensive framework for XML view update propaga-
tion, a task which turns out to be as challenging for XML
databases as it is for relational databases. Although the
considered classes of views and updates already have several
possible practical applications, our first goal will be to ex-
tend them and further increase the appeal of our framework.
We believe that the framework can be extended to handle
more general update operations including renaming a node,
deleting an inner node, and inserting an inner node [31].
More challenging is extending our approach to more power-
ful view formalisms allowing restructuring of the document.
In our first attempt, we will explore formalisms based on
Visibly Pushdown Transducers [32], which allow deleting, re-
naming, and inserting nodes of a tree. Also, extending the
framework to allow richer document schema languages, e.g.
EDTDs [17, 18], should be feasible with further employment
of general tree automata techniques [33].

We intend to devise an administrator-friendly manner of
defining preferences on the choice of the desired update prop-
agation. This includes defining further correctness criteria
for update propagation with efficient algorithms for their
construction. We also plan to study variants of the notion
of side-effect free propagation in the setting where several
user views are given.

Finally, we observe that in our approach the source docu-
ment is given and the view update is materialized, i.e the
editing script contains the materialized view. View mate-
rialization is often considered too expensive and therefore
should be avoided. It would be interesting to see if the
view materialization could be minimized, for instance, by
using editing scripts containing only the affected parts of
the view (no Nop nodes). Furthermore, we would like to in-
vestigate rewriting XQuery update programs independently
of the original document. This may, however, be quite chal-
lenging because a rewritten update program would need not
only propagate the update but also ensure that the schema
is satisfied and there are no side effect.

8. REFERENCES
[1] W3C. Extensible markup language (XML) 1.0, 1999.

http://www.w3.org/TR/xml/.

[2] A. Vakali, B. Catania, and A. Maddalena. XML data
stores: Emerging practices. IEEE Internet Computing,
9(2):62–69, 2005.

[3] E. F. Codd. Recent investigations in relational data
base systems. In IFIP Congress, 1974.

[4] Umeshwar Dayal and Philip A. Bernstein. On the
correct translation of update operations on relational
views. TODS, 7(3), 1982.

[5] F. Bancilhon and N. Spyratos. Update semantics of
relational views. ACM Transactions on Database
Systems (TODS), 6, 1981.

[6] S. Cosmadakis and C. Papadimitriou. Updates of
relational views. Journal of the ACM, 31(4):742–760,
1984.

[7] J. Lechtenbörger and G. Vossen. On the computation
of relational view complements. ACM Transactions on
Database Systems (TODS), 28(2):175–208, 2003.

[8] R. Ramakrishnan and J. Gehrke. Database



Management Systems. WCB/McGraw-Hill, 2000.

[9] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis.
Rewriting regular XPath queries on XML views. In
International Conference on Data Engineering
(ICDE), pages 666–675, 2007.

[10] B. Groz, S. Staworko, A.-C. Caron, Y. Roos, and
S. Tison. XML security views revisited. In
International Symposium on Database Programming
Languages (DBPL), volume 5708 of Lecture Notes in
Computer Science. Springer, August 2009.

[11] W3C. XQuery update facility 1.0, 2009.
http://www.w3.org/TR/xquery-update-10/.

[12] Henrik Björklund, Wouter Gelade, Marcel Marquardt,
and Wim Martens. Incremental xpath evaluation. In
ICDT 2009, 2009. preprint.

[13] A Balmin, Y. Papakonstantinou, and V. Vianu.
Incremental validation of XML documents. ACM
Transactions on Database Systems (TODS),
29(4):710–751, December 2004.

[14] M. Benedikt, W. Fan, and F. Geerts. XPath
satisfiability in the presence of DTDs. In ACM
Symposium on Principles of Database Systems
(PODS), 2005.

[15] M. Benedikt and I. Fundulaki. XML subtree queries:
Specification and composition. In International
Symposium on Database Programming Languages
(DBPL), pages 138–153, 2005.

[16] T. Jiang, L. Wang, and K. Zhang. Alignment of trees -
an alternative to tree edit. Theoretical Computer
Science (TCS), 143(1):137–148, 1995.

[17] Y. Papakonstantinou and V. Vianu. DTD inference for
views of XML data. In ACM Symposium on Principles
of Database Systems (PODS), pages 35–46, 2000.

[18] W. Martens, F. Neven, T. Schwentick, and G. J. Bex.
Expressiveness and complexity of XML schema. ACM
Transactions on Database Systems (TODS),
31(3):770–813, 2006.

[19] J. Nathan Foster, Michael B. Greenwald, Jonathan T.
Moore, Benjamin C. Pierce, and Alan Schmitt.
Combinators for bidirectional tree transformations: A
linguistic approach to the view-update problem. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 29, 2007.

[20] J.N. Foster, B.C. Pierce, and S. Zdancewic. Updatable
security views. In Computer Security Foundations
Symposium, 2009.

[21] Ling Wang, Elke A. Rundensteiner, and Murali Mani.
Updating XML views published over relational
databases: Towards the existence of a correct update
mapping. Data and Knowledge Engineering, 58, 2006.

[22] Vanessa P. Braganholo, Susan B. Davidson, and

Carlos A. Heuser. PataxÓ: A framework to allow
updates through XML views. ACM Transactions on
Database Systems (TODS), 31, 2006.

[23] Byron Choi, Gao Cong, Wenfei Fan, and Stratis D.
Viglas. Updating recursive XML views of relations.
Journal of Computer Science and Technology, 23,
2008.

[24] L. Fegaras. Propagating updates through XML views
using lineage tracing. In International Conference on
Data Engineering (ICDE), 2010.

[25] P. Boncz, T. Grust, M. Keulen, S. Manegold,
J. Rittinger, and J. Teubner. MonetDB/XQuery: a
fast XQuery processor powered by a relational engine.
In ACM SIGMOD International Conference on
Management of Data, pages 479–490, 2006.

[26] I. Tatarinov, K. Beyer, and J. Shanmugasundaram.
Storing and querying ordered XML using a relational
database system. In ACM SIGMOD International
Conference on Management of Data, pages 204–215,
2002.

[27] S. Staworko and J. Chomicki. Validity-sensitive
querying of XML databases. In EDBT Workshops
(dataX), pages 164–177. Springer, 2006.

[28] Beatrice Bouchou, Ahmed Cheriat, Myrian
Halfeld Ferrari, and Agata Savary. XML document
correction: Incremental approach activated by schema
validation. In 10th International Database Engineering
and Applications Symposium (IDEAS’06), 2006.

[29] K. Matsuda, Z. Hu, and M. Takeichi. Type-based
specialization of XML transformations. In ACM
SIGPLAN Symposium on Partial Evaluation and
Semantics-based Program Manipulation (PEPM),
pages 61–72, 2009.

[30] D. Liu, Z. Hu, and M. Takeichi. Bidirectional
interpretation of XQuery. In ACM SIGPLAN
Symposium on Partial Evaluation and Semantics-based
Program Manipulation (PEPM), pages 21–30, 2007.

[31] D. Shasha and K. Zhang. Approximate tree pattern
matching. In A. Apostolico and Z. Galil, editors,
Pattern Matching in Strings, Trees, and Arrays, pages
341–371. Oxford University Press, 1997.

[32] F. Servais and J.-F. Raskin. Visibly pushdown
transducers. In International Colloquium on
Automata, Languages and Programming (ICALP),
2008.

[33] H. Comon, M. Dauchet, R. Gilleron, C. Löding,
F. Jacquemard, D. Lugiez, S. Tison, and M. Tommasi.
Tree automata techniques and applications. Available
on: http://www.grappa.univ-lille3.fr/tata, 1997.
release 2007.


