
A parallel data-structure for modular programming of triangulated
computing media.

Frédéric Gruau1

Accepted: 3 July 2022
� The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract
Our long-term project involves performing general-purpose computation on 2D amorphous computing media, which

consist of arbitrary many, small, identical processing elements that are homogeneously spread in 2D Euclidian space, and

that communicate locally in space. While the minimal assumptions on hardware provide the fascinating perspective of

arbitrary large computing power, they also make programming notoriously difficult. Furthermore, our project involves

simulating objects extended in 2D-space, called ‘‘blobs’’. Maintaining the connectedness of blobs while they move in space

adds another layer of difficulty since it demands to process the topology of 2D space. This paper describes a new parallel

data structure that can simplify the programming task, in this context. In computer graphics, processing related to 2D

topology is performed by using triangle meshes. We consider synchronous media whose underlying network is also a

triangle mesh. Our data structure, derived from computer graphics, is anchored on that mesh so that its operations can be

compiled on the medium. More precisely, our compiler produces a circuit of logic gates, which enables a high-performance

simulation, in the case of crystalline media (Cellular Automata). We demonstrate the expressiveness of the data structure’s

operation by using an incremental and modular programming style. We program, first small, then larger building-block

functions, and re-use them. Blobs are implemented and re-used to compute the Voronoı̈ diagram. What is the scope of the

data-structure? This poses the question of whether there exists a universal set of primitives able to program any processing

specified only in terms of 2D-geometry.

Keywords Computing medium � Cellular automata � Data structure � Triangle mesh � Blob � Voronoı̈ diagram

1 Introduction

Our long-term project involves performing general-purpose

computation on computing media (Gruau et al. 2008). We

consider 2D computing media consisting of billions of

small identical Processing Elements (PE). The network

linking PEs is defined by an embedding in 2D space, with

two properties:

1. Euclidian sampling: PEs are homogeneously spread in

2D Euclidian space.

2. Locality: a PE can communicate only with its closest

neighbors in space.

We restrict our scope to synchronous media. During one

synchronous cycle, each PE makes a bounded amount of

computation and exchanges a bounded amount of data with

its neighbors. Synchronicity is usually considered difficult

to obtain. However, the two hypotheses defining a com-

puting medium make it feasible to also bound the distance,

and therefore the communication time between any two

neighbors, in which case synchronicity can be obtained just

by letting each PE waits a fixed bounded time.

If no additional hypothesis is put on the network, the

medium is called amorphous (Abelson et al. 2000). We

consider also crystalline media, where the placement in 2D

is done regularly according to a lattice structure such as the

2D grid or the hexagonal grid. Crystalline media have been

extensively studied, and they are commonly called Cellular

Automata (Bhattacharjee et al. 2020) (CA). From a com-

putational point of view, the striking feature of a comput-

ing medium is its arbitrary large size. Locality combined

& Frédéric Gruau

gruau@lisn.fr

1 Laboratoire Interdisciplinaire des Sciences du Numérique,

Université Paris Saclay, Orsay, France

123

Natural Computing
https://doi.org/10.1007/s11047-022-09906-1(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-0274-8907
http://crossmark.crossref.org/dialog/?doi=10.1007/s11047-022-09906-1&domain=pdf
https://doi.org/10.1007/s11047-022-09906-1

with homogeneity ensures that communication can always

occur in constant time, without violating the laws of phy-

sics, no matter how large the medium is. Furthermore, for

the amorphous case, PEs are spread on a 2D surface

without having to worry about the exact location, like

smartdust (Kahn et al. 1999). The crystalline case is

however also worthy of interest because it can be simulated

more efficiently.

Arbitrary scalability is a fascinating property because it

means the feasibility of parallel hardware with arbitrary

large power. However, programming computing media is a

difficult task. Furthermore, our project involves simulating

large objects extended in space. This demands new prim-

itives that are able to process topological information.

Our proposal is to restrict the range of topololgy on the

network linking the PEs: we assume it is triangulated. For

amorphous media, a premiliminary step of Delaunay tri-

angulation must be conducted. Another option is to build a

combinatorial Delaunay graph as a second layer based on

the hop counts between PEs (Zhou et al. 2013). For crys-

talline media, the hexagonal CA is triangulated.

Thanks to triangulation, information can be grouped into

fields located more precisely in space, and processed using

operators derived from standard data structure used in

image processing. The programming task becomes highly

simplified: 1- Fields enable a modular programming style

2- Operators on fields can process topological information

and handle large objects, and 3- circuits can be compiled

and simulated with high-performance..

Fields. First, programming computing media is facili-

tated by using abstraction to directly program the ensemble

of PEs. This is called aggregate programming in Beal et al.

(2015). This implies rooting the programming layer on a

parallel data-structure:

1. The elementary data are fields of values (Audrito et al.

2019) over the whole medium. Each PE holds a

particular local value corresponding to its location.

2. Primitive operations are elementary functions that

compute new fields.

Some of the fields are stored in the PE’s memory. We call

these ‘‘mutable’’ because their value can be updated. Each

mutable field is associated with an updating function. A

synchronous medium computes by iterating those updating

functions at each time step. As an illustrating example, if

mutable fields represent physical states, and the updating

function models a discretized version of some physical law,

the parallel execution of all the medium’s PEs can simulate

the physics throughout the sampled space. In general,

simulating physics is what computing media are naturally

proficient at, due to Euclidian sampling. Fluid dynamics

are translated into simple CA local rules in Chopard and

Droz (1998). Rauch modeled wave propagation on an

amorphous medium (Rauch 2003), thus demonstrating that

the crystalline property is not mandatory for doing physics.

The key advantage brought by aggregate programming

is modularity. A program is designed by combining oper-

ators to produce increasingly complex field-functions.

Thus, a tool-box of generic ‘‘spatial functions’’ is devel-

oped. For example, a useful tool computes a distance field

from a boolean field representing a set of sources. In Coore

(1999), such a distance field is used to move particles away

or towards the sources, or parallel to the sources.

Large objects. Second, our project simulates large

objects extended in space and moving in space. We call

them ‘‘blobs’’ to convey the idea that they are‘‘shapeless’’

since no constraints are placed a priori on the shape. Many

approaches have been proposed for a programming layer of

computing media (Beal et al. 2013). However, very few

works, have considered large objects. The only example we

found is polymers in Toffoli and Bach (2001). However,

polymers are 1D objects; moreover, only a crystalline

medium was considered in this study. In general, blobs are

2D-objects. The support of a blob is encoded by a boolean

field representing the presence flag. Blobs move in space

by modifying this flag on their border. However, they

should not be disrupted; nor should they merge. Each PE

must compute whether it can reset (resp. set) the presence

flag, without causing disruption (resp. merging). This blob-

predicate derives all the structures used in our project, such

as implementing membranes or establishing a bond

between two blobs, as proved in Gruau and Malbos (2002).

Blob is a building block of generic interest. In this article,

we show how using blobs enables us to easily compute the

Voronoı̈ diagram.

Simulating gas or fluid dynamics involves only particles,

each one hosted on a single PE. The real physics can be

translated in a time-effective way, using only simple

primitive exchanging information between pairs of adja-

cent PEs. In contrast, implementing blobs involves inter-

action between multiple PEs. and demands more elaborate

primitives.

Simulating real physics of solid-state objects would be

too time-consuming. Instead, we resort to ‘‘artificial phy-

sics’’. We design elementary operations inspired by com-

puter graphics. They are defined for triangulated

computing media whose underlying network is a triangle

mesh. They can process fields representing the topology of

2D-space, to match the topological nature of the blob-

predicate. Since the primitive types and the elementary

operations are both rooted on the triangle mesh, we call the

resulting data structure the triangle data-structure or more

shortly the triangle type.

Performance. Third, our project involves complex

update functions. In the third interactive simulation filmed

in Gruau (2018) each PE has 77 bits of state and 13878

F. Gruau

123

binary logic gates. This should be contrasted with usual CA

rules such as the game of life, with a single bit of state, and

a transition computed with a dozen gates. For this unusual

level of complexity, the direct naı̈ve method of updating

each PE one by one prevents interactive simulation. High-

performance is obtained by first compiling a program using

triangle-types into a circuit of logic gates, and then opti-

mizing the circuit simulation.

outline. We present the triangle-type, its elementary

fields, and operations. We then develop a small library of

macro-operations, for computation and communication.

Next, we utilize this library to compute the blob-predicate,

which then allows us to compute the Voronoı̈ diagram.

Finally, we explain how to compile into circuits, and obtain

high-performance. We illustrate the general applicability,

with a complementary example of triangle-type use.

2 The triangle type: a parallel data-structure
based on triangle mesh

We need to process large objects represented on arbitrary

many PEs of a computing medium. The intuition behind

our data representation is to compute ‘‘in 2D-space, about

2D-space’’. A feature of a large object has a natural loca-

tion in 2D-space. For example, an object’s frontier lies

between adjacent PEs, i.e. on the edges of the network. An

edge links the two PEs that need to be consulted to com-

pute whether there is a frontier or not. One of the two

should be in, and the other out. The frontier should ideally

be computed ‘‘on edges’’. We thus imagine that there are

virtual PEs on the edges themselves, which will compute

‘‘in edges’’ whatever is naturally computed ‘‘about edges’’.

Likewise, the edge is also the ideal place to store the

frontier, because the frontier is likely to be used by the two

linked PEs that are nearby. By assuming that the network

linking PEs is a triangle mesh, we can define virtual PEs on

many loci other than just vertices and edges, and generalize

this principle of computing ‘‘in 2D-space, about 2D-

space’’. We will use 9 types of loci.

Triangle meshes. A triangle mesh is equivalently a

maximal planar graph. Maximal means no edges can be

added, hence all the faces are triangles. We consider two

types of triangle meshes shown in Fig. 1 representing

respectively amorphous and crystalline computing media.

For amorphous media, a simple and often used PE dis-

tribution in 2D is the ‘‘Poisson-disk’’ sampling: the loca-

tion of each new PE is chosen with a uniform probability,

but the PE is discarded if there are already other PEs

nearby, i.e. within a disk of a given radius. For our simu-

lation, instead of discarding, we used the Furthest Point

Optimization (FPO) algorithm (Schlömer et al. 2011)

which produces more homogeneous and isotropic

distribution. A Delaunay triangulation builds the triangle

mesh shown in Fig. 1(a). The improved quality due to FPO

causes the hop-count distance to become a good approxi-

mation of the geometric distance. This, in turn, enables us

to compute spatial features with accuracy. For example, the

hop-count discrete Voronoı̈ Diagram (VD) computed in

this paper approximates the real continuous VD.

For crystalline media, the usual architecture with CA is

the 2D square grid. However, it is not a maximal planar

graph, neither with the Von Neumann neighborhood (4

neighbors, north, south, east, west) which is not maximal

nor with the Moore neighborhood (8 neighbors including

the diagonals) which is not planar. The hexagonal grid in

Fig. 1(b) is the canonical maximal planar graph. This paper

is an extended version of Gruau and Maignan (2018),

which considered only this lattice.

The DCEL data-structure. Triangle meshes are widely

used in computer graphics due to their simplicity. They are

usually represented by a Doubly-Connected Edge List

(DCEL) data structure (Van Kreveld et al. 2000), due to

the capability to find the neighbors of a vertex, face, or

edge in constant time. As Fig. 2 shows, an edge in the

DCEL connects two vertices and is defined by a pair of

half-edges, each one being a twin of the other. A face is

(a) (b)

5

5

5

7

7

57

7

5

5

7

Fig. 1 Two examples of 2D triangle mesh a amorphous isotropic

b christaline - hexagonal

Fig. 2 DCEL data-structure. Edges are represented by pairs of

parallel blue arrows, vertices by red circles, and faces by green

polygons

A parallel data-structure for modular programming...

123

then defined by a cycle of half-edges at the boundary of the

face, in counter-clockwise order. The next and previous

pointers implement another cycle of half-edges around

vertices.

The nine locus of triangle types. We consider syn-

chronous computing media whose PE network is a triangle

mesh. We sub-sample 9 specific sets of points on the tri-

angle mesh, as shown in Fig 3. These 9 loci will enable us

to use 9 kinds of fields and operations between them,

reproducing the same functionalities offered by the DCEL,

but in a data-parallel framework.

First, we consider three simplicial loci (s-locus) which

include vertices (V), edge’s middles (E), and barycenters of

faces (F). Those points share the following simplicial

neighborhood relationship:

– An edge is adjacent to two vertices and two faces.

– A face is adjacent to three edges and three vertices.

The hop-count associated with this neighborhood defines a

distance between the simplicial points called the VEF-

distance. Two connected vertices are at VEF-distance 2

because an edge separates them.

Second, we introduce six transfer locus (t-locus) which

implement communication between s-locus. In between

each pair of adjacent points in (V,F), (resp. (V,E) , (E,F)),

we insert a point of the t-locus ‘‘fV’’ and another point of

the t-locus ‘‘vF’’ , (resp. ‘‘eV’’ and ‘‘vE’’, ‘‘eF’’ and ‘‘fE’’).

The two t-locus of each pair are called companion. The

upper (resp. lower) case designates the nearest (resp. fur-

thest) s-locus. The nearest s-locus is called the father. Two

t-locus with identical fathers such as eV and fV are called

brothers. The concept of brother and companion is exten-

ded from locus to the points making a locus. As highlighted

by dotted arrows in Fig. 3, the fV, and eV (resp eF and vF)

points alternate as we go around the common vertex (resp.

face) father. This interleaving between brother points

transcribes the DCEL cycle of half-edges around a vertex

(resp. face).

Density of locus. Only vertices correspond to real PEs,

the other points are handled as if they were virtual PEs.

Their density is defined as the number of virtual PEs per

real PE. Let the vertex (resp edge, face) count be v, (resp. e,

f). A maximal planar graph verifies 2e ¼ 3f , as can be

derived by taking the sum over every face of the number of

edges in each face which is 3. We also have v � e þ f ¼ 2,

(Euler’s formula) hence f ¼ 2v � 4; e ¼ 3v � 6. The den-

sity of V is 1, by definition. By neglecting the additive

constant, we find that the density of the E (resp. F) s-locus

is 3 (resp. 2). The density of all the t-loci is the same, since

companion t-loci are facing each other, and brother t-loci

are interleaved. By looking at the eF locus, we find that it is

6.

Fields. Fields are functions from virtual PEs of one of

the 9 loci, towards a domain representing a scalar type. The

type of a field combines the scalar type with the locus name

and is called a triangle-type. For example a boolV is a

function from the V locus towards f0; 1g. We also call it a

’’vertex boolean field’’. We use integer fields as well, with

a small number of bits to minimize computation cost.

Usually, 2 or 3 is sufficient. For example, a vertex field of

integers on three bits has type int3V. Such a field is used in

Maignan and Gruau (2008) to compute distance to a

moving target. The density of a triangle-type is the number

of bits needed to store a field, per real-PE. It is equal to the

density of the locus, multiplied by the number of bits

needed for the scalar. Most of the fields that we compute

are simplicial fields. To represent only simplicial fields, we

draw the Voronoı̈ Diagram of the three VEF loci taken

Fig. 3 The nine locus. s-locus are represented by circles for vertices,

triangles for faces, and rectangles for edges; t-locus are little black

squares. The clockwise (resp. counter-clockwise) dotted arrows

highlight the interleaving between the fV and eV (resp. vF and eF)

t-locus

(a) (b)

Fig. 4 Representing fields: a VEF tiles for simplicial fields alone.

Edges are rectangle, faces are triangles, vertices are polygons (b) tiles

for transfer fields are a subtiling

F. Gruau

123

together, as shown in Fig. 4(a) and color the tiles according

to the corresponding field values.

Sometimes, when we decompose a field function oper-

ator by operator, and intermediate steps are represented by

transfer fields. We use the sub-tilling shown in Fig. 4(b): a

central sub-tile represent an s-locus, while the peripheral

sub-tile represent t-locus.

Primitive operations. Primitive operations on fields can

move, duplicate or combine bits of data, using the locus

neighborhood derived from the triangle mesh (Fig. 3).

We distinguish three kinds of operations:

1. One-to-one communication denoted with arrows, from

one t-locus:

– to its companion t-locus: transfer noted "
– to its brother t-locus: rotation noted � or � .

2. Multi-cast from one s-locus to one of its son’s t-locus,

noted �v, �e, or �f .

3. Reduction from one t-locus to its father s-locus, such as

=^, =_, =�, =þ,

Rotation is possible because two brother s-locus are

interleaved. There exist two rotations shown in Fig 5,

clockwise, and the reciprocal counter-clockwise. When the

father is a vertex (resp. a face) the rotation corresponds to

the traversal of half-edge cycles in the DCEL, around a

vertex (resp. face).

A multi-cast specifies an upper script indicating the one

of the two possible son towards which information is sent.

For example �e multi-casts bits from each vertex to its

adjacent eV points, or from each face to its three adjacent

eF points. When a function like x 7! �e x as a domain

including distinct locus (here V and F), it is said to be

overloaded. We often use overloading to minimize the set

of introduced symbols.

A reduction applies a commutative, associative opera-

tion on the neighbors such as the logical conjunction or the

addition. This operation is specified after a slash. For

example, since the logical binary AND is noted ^, the

conjunction reduction is noted =^.
New fields can also be computed using ‘‘non-spatial’’

operations, i.e. operations taking place within the PEs of a

given locus such as x 7!:x. They apply to fields of any

locus and produce a new field on the same locus.

3 A tool-box of macro-operators

First, we program functions that implement macro opera-

tor, i.e. small building-blocks of generic interest that we re-

use often. We will consider macro-operators for compu-

tation and communications.

3.1 Macro-operators for computation.

A given S-locus cannot distinguish between its adjacent

T-loci, therefore computation needs to be specified using

reductions.

Simplicial reductions. A useful sequence of operations

consists of a multi-cast, followed by a transfer and finally a

reduction. Bits travel from one s-locus to another, by

transiting through the two intermediate companions t-lo-

cus. It is called a simplicial reduction since the source and

the target are both simplicial fields. For example, bits can

move from V to E by passing through eV, and then vE, as

shown in Fig 6. We use the following notation, when the

reduction is a conjunction ^, a disjunction _ or the

exclusive or �:

8E ¼ =^� " ��e; 9E ¼ =_� " ��e; dE ¼ =�� " ��e ð1Þ

The upper script E indicates the target locus. We can also

similarly define 8V , 8F ,9V , 9F ,dV , dF . Because of over-

loading of x 7! �e x, the mapping x 7!8EðxÞ (resp. 9E; dE) is

also overloaded. It can be applied to a boolV or a boolF.

Computing simple blob features with simplicial reduc-

tions. We consider spatially extended objects called blobs

whose support spans a set of vertices encoded using a

boolV. A single boolV x can represent several distinct x-

blobs. Blobs are separated by considering connected

components for vertex-adjacency. Using one or two sim-

plicial reductions, we can compute fields representing

simple and useful blob features illustrated in Fig. 7:

– Function x 7! frontierEðxÞ ¼ dEðxÞ (resp.

insideEðxÞ ¼ 8EðxÞ, outsideEðxÞ ¼ 8Eð:xÞ) is the set

of edges adjacent to both an empty and filled (resp. to

only filled, to only empty) vertices. Function x 7!

(a) (c)

(b)

Fig. 5 Rotation between brother t-locus, applied on an integer field,

values are encoded by gray tones. a between eV and fV b between eF

and vF, c between vE and fE

(a) (b) (c) (d)

Fig. 6 Decomposition of x 7!8EðxÞ. a Initial boolV. b Multicast to a

booleV c Transfer to a boolvE d Reduction to a boolE

A parallel data-structure for modular programming...

123

insideFðxÞ ¼ 8FðxÞ is the set of faces adjacent to only

filled vertices.

– Function x 7! insideVðxÞ ¼ 8VðinsideEðxÞÞ (resp. out-

sideVðxÞ ¼ 8VðoutsideEðxÞÞ is the set of filled (resp.

empty) vertices surrounded by vertices in the same blob

(resp. hole).

– Function x 7! neighborhoodVðxÞ ¼ 9Vð9EðxÞÞ computes

the neighborhood.

Transfer reductions. By applying a reduction on the fields

produced using the clockwise and anti-clockwise rotations,

we obtain a second set of six reductions for a given

reduction operator. It maps one t-locus to its brother. For

example, with ^, the function x 7! ¼ ð�xÞ ^ ð�xÞ defines
six new reductions denoted by 9 with a subscript specify-

ing the target locus: 9eV , 9vE, 9eF , 9fE, 9fV , 9vF .

3.2 Macro-operators for communication.

Central symmetry. Let the fan-out of a simplicial point

be the fan-out of its multi-cast. It is always three (resp two)

for a face (resp. an edge). For the hexagonal medium, the

fan-out of vertices is equal to 6. but in the general amor-

phous case, it can range from 5 to 7 as shown in Fig. 1.

When a t-locus verifies that the fan-out f of its father s-

locus is uniform, there are always 2 � f interleaved broth-

ers. Thus, a central symmetry noted $ can be defined by

composing f elementary rotations, as illustrated in Fig. 8. It

is idempotent $ � $¼ Id. It maps an eF field to a vF field

and vice-versa, whereas it maps a vE (resp. fE) field to a vE

(resp. fE) field.

Apex neighbors. The central symmetry on faces is used

to implement a composite communication called apex. On

a triangle mesh, each edge has two distant vertices called

apex-vertices, lying at distance 2, adjacent to the two faces

next to the edge. Conversely, each vertex has also distant

edges lying at distance 2, also called apex-edges. The

function x 7!apexðxÞ ¼" � $ � " ðxÞ implements a one-to-

one composite communication from a vertex tile to its

apex-edge’s tile, from the fV to the fE locus. The effect is

illustrated in Fig. 9. Data moves from the vertex to the face

tiles, within the face tiles (central symmetry), and finally

from the face to the edge tiles. Because of the overloading

of ‘‘"’’, the apex function also implements the reciprocal

transformation from an edge to its apex vertices and is

idempotent: apex�apex¼Id.

4 Computing the blob-predicate

We will now use our tool-box of macro-operators to pro-

gram a more elaborate field functions, also of generic

interest, which is the central example of this paper. It

represents the blob-predicate which identifies points where

blobs can move.

4.1 Analysis of the blob-predicate

Global meeting points. Let x be a boolV, we recall that

x-blobs (resp. x-holes) are connected components of filled

(resp. empty) vertices. Let the vertex frontier be the set of

vertices adjacent to the E-frontier. We have:

x 7!frontierVðxÞ ¼ 9VðfrontierEðxÞÞ. It is decomposed into

an inside frontier frontierVinðxÞ ¼ x ^ frontierVðxÞ, and an

outside frontier: frontierVoutðxÞ ¼ :x ^ frontierVðxÞ: The

inside and outside frontier can also be defined for holes,

which is simply the negative field :ðxÞ. The inside frontier
of blobs is the outside frontier of holes and vice versa.

Blobs move on the medium by emptying (resp. filling) a

given vertex on the inside (resp. outside) frontier. How-

ever, such a move can cause a division (resp. a merge) of

supports. To prevent division or merge we must identify

which filling and which emptying is OK. We need to dis-

tinguish two cases, depending on whether the gap between

two x-blobs insideE(x)

frontierE(x) neighborhoodV (x)outsideV (x)

insideF (x)

Fig. 7 Boolean Fields (in black) encoding simple features of the same

two x-blobs (in gray). A boolV (resp. boolE, boolF)is represented as a

set of hexagons (resp. rectangles, triangles)

(a) (b)

Fig. 8 Central symmetry applied on an integer field represented with

gray tones. a between eF and vF b from vE to itself, or fE to itself

(a) (b) (c) (d)

Fig. 9 Apex communication.a fV field b transfer to a vF field

c central symmetry to a eF field (d) transfer to a fE field

F. Gruau

123

the two blobs (resp. holes) that could potentially merge is

one vertex or two vertices wide. Divide (resp. merge) can

happen:

1. When emptying (resp. filling) a single vertex.

2. When simultaneously emptying (resp. filling) two

adjacent vertices.

The first case is addressed by computing two boolV

functions x 7! divVðxÞ and x 7! mergeVðxÞ. In the second

case, what we need to identify is edges whose two vertices

on each side are not allowed to simultaneously empty

(resp. fill). We call the corresponding functions x 7! divEðxÞ
and x 7! mergeEðxÞ. They compute a boolE from a boolV.

Those four functions are illustrated in Fig. 10. Merge-

points can be characterized as follows:

Definition 1 Let x be a boolV representing blobs.

mergeVðxÞ is true for empty vertices adjacent to two dis-

tinct x�blobs. mergeEðxÞ is true for an edge e , if

(i) e is adjacent to the out-frontierV of two x-blobs

(ii) mergeVðxÞ is false for the vertices adjacent to e.

Condition (ii) means that simultaneous filling on both

sides is a requirement. More precisely, if filling just one

side of the edge causes a merge, then that edge is not a

merge-edge. Divide-points can be obtained by replacing

‘‘blob’’ with ‘‘hole’’ since dividing a blob is equivalent to

merging two holes. We regroup the four functions into two

functions computing meeting-points, distinguishing only

vertice-meetings from edge-meetings:

meetVðxÞ ¼ mergeVðxÞ _ divVðxÞ;

meetEðxÞ ¼ mergeEðxÞ _ divEðxÞ
ð2Þ

Local meeting-points. What we just defined is global

meeting-points, but those cannot be computed in bounded

time, because blobs can be arbitrarily big, and with a non-

convex shape. To obtain a definition of local meeting-

points, we rewrite definition 1; we replace ‘‘blob’’ with

‘‘locally-induced blobs’’ which are obtained by intersecting

blobs with a ball of a small radius, centered on the potential

studied meeting-point. Local meeting-points are not nec-

essarily global. Locally, one can see two filled components

that do not touch. But they may meet if we look much

further. What really matters though, is that global meeting-

points are always local meeting-points, so detecting local

meeting-points is an overkill, but works out, for our pur-

pose of preserving blobs.

4.2 The meeting-vertex function, x 7! meetV(xÞ.

In order to compute the local version of x7! meetVðxÞ for a
vertex v, we therefore consider the radius-2 ball centered

on v, shown in Fig. 11. Because we used a triangle-mesh,

the vertices on the perimeter of this ball form a cycle and

the locally-induced blobs are 1D segments of consecutive

filled vertices. Let x 7!nðxÞ be their count;

In Fig. 11(a and b), we have nðxÞ ¼ 2. Each segment is

delimited by two edges painted in black, there are four of

them in Fig. 11 (a1 and b1). Those edges are part of

frontierEðxÞ, and are also apex-edges of v. Finally, n(x) is

equal to the number of apex-edges belonging to the fron-

tier, divided by two.

nðxÞ ¼ ð=þðapexðfrontierEðxÞÞÞÞ=2: ð3Þ

If nðxÞ ¼ 2, filling v merges (resp. emptying v divides into)

the two induced blobs. If nðxÞ ¼ 3 the same reasoning

applies with three induced blobs. Finally, if nðxÞ� 1, no

division nor merge happens, hence:

meetVðxÞ ¼ nðxÞ� 2 ð4Þ

4.3 The meeting-edge function x 7!meetE(xÞ.

For the local version of x 7! meetEðxÞ, we consider the

radius-3 ball centered on a given edge e, shown Fig. 12. It

includes three kinds of vertices: two immediate neighbors

at distance 1, two apex neighbors at distance 2, and 6 more

remote neighbors at distance 3. The immediate and apex

neighbors form a rhombus. We will need a function

x 7!8	ðxÞ which takes a boolV x and computes a boolE true

for an edge if x is true within the rhombus centered on that

edge. It can be computed as:

x 7!8	ðxÞ ¼ 8Eð8FðxÞÞ ð5Þ

Note that because of overloading of x 7!8FðxÞ , this formula

also applies to a boolE to detect if all the four edges within

(a) (b) (c)

Fig. 10 Meeting-points in black, a a boolV x representing 2 blobs in

gray, x=0 beyond the border. b a merge-vertex and a merge-edge (c) a

div-vertex and a div-edge

(b0)

component 1

component 2

(b1)(a0)

component 1

component 2

(a1)

Fig. 11 Locally induced blobs (in gray) for a the merge-vertex, and b
the dividing-vertex of Fig. 10(b,c). The added black rectangles in

(a1,b1) are the apex edges in frontierEðxÞ

A parallel data-structure for modular programming...

123

the rhombus are true. The definition 1 implies that e is a

local merge point, if and only if there are two locally

induced blobs b1 and b2 verifying:

– (i) b1 and b2 occupy remote vertices outside each side

of the rhombus.

– (ii) The rhombus itself is totally empty.

Both (i) and (ii) follow from point (ii) of definition 1 which

stresses that filling just one immediate vertex neighbor of e

should not merge b1 and b2. Point (i) is checked if and only

if both immediate vertex neighbors of e belong to Fron-

tierVðxÞ. This is computed as 8EðFrontierVðxÞÞ. Putting

together (i) with (ii) we obtain:

mergeEðxÞ ¼ 8EðfrontierVðxÞÞ ^ 8	ð:xÞ ð6Þ

A div-edge of blob is a merge-edge of holes. By replacing x

by :x we obtain:

divEðxÞ ¼ 8EðfrontierVð:xÞÞ ^ 8	ðxÞ ð7Þ

But frontierVð:xÞ ¼ frontierVðxÞ, so we can factorize.

meetEðxÞ ¼ 8EðfrontierVðxÞÞ ^ ð8	ðxÞ _ 8	ð:xÞÞ ð8Þ

The expression ð8	ðxÞ _ 8	ð:xÞÞ means the rhombus’ four

vertices are either all full, or all empty. Equivalently, it can

be computed as the absence of frontier edge within the

rhombus: 8	ð:frontierEðxÞÞ. We finally derive:

meetEðxÞ ¼ 8EðfrontierVðxÞÞ ^ 8	ð:frontierEðxÞÞ ð9Þ

5 A computing medium for the Voronoı̈
Diagram (VD)

5.1 Triangular computing media

A computing medium is specified by a function updating a

configuration:

Definition 2 Let si¼1...n be some triangle-types and the

product C ¼
Qn

i¼1 si. A triangular computing medium is a

function f : C7!C.

A configuration of this medium is a vector of n fields of

type si, i ¼ 1. . .n. The mapping f is the updating function.

It is decomposed into n components:

ðx0; . . .; xnÞ7!ðf0ðx0Þ; . . .; fnðxnÞÞ, where each of the fi uses

the current configuration to compute one of the fields of the

next configuration. Starting from an initial configuration

x0 ¼ ðx00. . .x0nÞ, we iterate t times and obtain the configu-

ration at time t: xt ¼ f tðx0Þ ¼ f ðf t�1ðx0ÞÞ ¼ ðxt
0. . .x

t
nÞ. The

sequence x0; x1; . . .; xt represents the successive states of

the medium. For a given i in 1. . .n a component ðxt
iÞt2N

represents the successive values of the field of type si. It is

stored on the medium’s PEs and is therefore called a

mutable field. The memory density of the medium is the

number of bits that need to be stored, per vertex. It is the

sum of the densities of si, i ¼ 1. . .n. In this introductory

paper, we consider only media with a single mutable field,

n ¼ 1. Moreover, it will always be a boolV, thus the

memory density is 1.

Exemple 1: The growing medium.

This elementary medium is defined by x 7! neighbor-

hoodVðxÞ ¼ 9Vð9EðxÞÞ. From an initial set of seeds present

in x0, it let them grow, until they meet and merge, and fill

the whole medium. We will transform it into a medium

computing the VD, simply by stopping the growth just

before the merges happen.

5.2 Exemple 2: Computing the discrete VD

Definition of discrete VD. Consider a boolV x encoding a

set of vertices called seeds. The discrete Voronoı̈ cell of

one of the seeds, is the set of vertices strictly nearer to it

than to other seeds. Note that this definition also holds for

non-punctual seeds, i.e. x-blobs. The Voronoı̈ Dia-

gram (VD) is a representation of all the Voronoı̈ cells. In

the continuous case, it can be drawn as a set of polygons. In

the discrete case, the representation is less obvious due to

the following discrete artifact: If two nearby seeds are at

odd (resp. even) distance from one another, their Voronoı̈

cells are separated by a vertex (resp. an edge). To take into

account both cases, we represent the VD as a set of vertices

(a boolV) together with a set of edges (a boolE). In the

following definition, the distance considered is the VEF-

distance which is the hop-count between vertices, edges,

and faces:

Definition 3 Let x be a boolV. The discrete Voronoı̈

Diagram of x-blobs is the set of edges and vertices

equidistant to at least two nearest x-blobs.

The VD is thus a combination of a boolE and a boolV:

VD(x)=(VDVðxÞ, VDEðxÞ). Let closureV :

boolV
boolE 7!boolV be defined as clo-

sureVðx; yÞ ¼ x _ 9VðyÞ. We remark that closureVðVD(x))
encodes VD(x) using only vertices. It also has the key

topological property of separating the seeds. This makes it

(b)(a) (c)

Fig. 12 Locally induced blobs (in gray) for a the merge-edge, b the

dividing-edge of Fig. 10. In c the radius 3 ball centered on an edge

contains vertices at distances 1,2 and 3

F. Gruau

123

another legitimate representation of the VD, using only

vertices, that we call the vertex-VD.

The VD medium. It uses a single mutable field x which is

a boolV. Instead of marking the vertex-VD, x will mark the

complement. It consists of Voronoı̈ cells deprived of ver-

tices adjacent to another distinct Voronoı̈ cell. We call

them ’’strict Voronoı̈ Cell’’. At time t ¼ 0, x0 represents the

seeds. The update re-use the growing medium’s update,

except it does not grow on closureVð merge(x)) where

merge(x) = (mergeVðxÞ, mergeEðxÞ); In other words, the

VD-medium is defined by x 7! neighborhoodðxÞ ^ :clo-
sureVðmerge(x)). Fig. 13 (resp. Fig. 14) illustrates three

iterations of this update, for a crystalline (resp. amorphous)

medium. Since merge-points were defined precisely to

avoid merging blobs, the growth of blobs is stopped when

the growing blobs come close to each other, one or two

vertices away. As a result, each seed grows until it fills

exactly its associated strict Voronoı̈ cell. Convergence

happens in time tc smaller than half the diameter of the

medium.

Theorem 1 The medium x 7!neighborhoodðxÞ^ :clo-

sureVðmerge(x)) fills exactly the strict Voronoı̈ cell of all

the seeds present in the initial configuration.

Proof We first notice that the vertex-VD is preserved from

one iteration to the next: vertex-VDðxtþ1Þ ¼ vertex-

VDðxtÞ. This is shown by decomposing vertex-VDðxtÞ in

two parts:

1. The part not adjacent to xt is preserved because growth

is uniform.

2. The part adjacent to xt is precisely Ct ¼ closureV

(mergeðxtÞÞ, which means it is already detected as part

of the vertex-VD at time t and remains empty.

The configuration ðxtÞt2N is increasing and will therefore

converge at a time tc. Ct is included in the vertex-VD of xt

and also keeps growing. At time tc, xtc is surrounded by Ctc ,

otherwise it would keep growing at tc þ 1. The connected

components of vertices within the complement of Ctc are of

two types: either totally empty or totally marked. The

totally marked components partition ðxtcÞ, and each one

contains a seed. They are precisely the strict Voronoı̈ Cell

of xtc -blobs, because their vertex-VD contains Ctc , and Ctc

surrounds them, and therefore separates them from the rest

of the medium. Furthermore, since the vertex-VD is pre-

served, so are the strict Voronoı̈ cells, which is the com-

plement. So the strict Voronoı̈ cells of xtc are also the strict

Voronoı̈ cells of x0. h

Robustness Our computation of the VD is robust: we can

choose not to update a PE’s flip-flop with a small uniform

probability. This will generate random fluctuation in the

uniform growing and will result in computing a non-de-

terministic VD, but correct on average. Failure of com-

puting the next state can thus be considered a valid option,

and this probably facilitates things when considering

synchronization.

Multi-vertices. Let us study the unmarked components

in the complementary of Ctc . They are part of the vertex-

VD as we defined it. They are surrounded by Ctc which is

also unmarked, therefore, they can be detected as out-

sideVðxtcÞ. They contain vertices equidistant to at least

three seeds, because vertices equidistant to only two seeds

will be reached by the two waves sent by those two seeds,

ane end up being marked in black. We call those ‘‘multi-

vertices’’. In Figs. 13 and 14 , we choose a set of seeds to

illustrate the apparition of such an unmarked component,

and indeed, it contains a multi-vertex equidistant to three

seeds. As Fig. 15 shows, a multi-vertex component can be

arbitrary big when the seeds are regularly spaced on a big

t=2

t=0 t=1

t=3

Fig. 13 Iteration of the hexagonal medium computing the strict

Voronoı̈ cells in a boolV field xt (light gray). At t ¼ 0, x0 contains the
seeds which grows to fill exactly the strict Voronoı̈ Cell. Edges and

vertices of mergeðxtÞ are in black. A multi-vertex is in dark gray

t=2

t=0

t=3

t=1

Fig. 14 Iteration of the amorphous medium of Fig. 1 computing the

strict Voronoı̈ cells, graphical conventions are identical to those of

preceding figure

A parallel data-structure for modular programming...

123

discrete circle so that the circle’s center is equidistant to all

the seeds. In the discrete case, such situations can occur

with a non-zero probability, and we do witness them every

now and then. This demonstrates that the discrete VD is not

necessarily ‘‘thin’’ as in the continuous case.

6 Compilation in synchronous sequential
circuits

High-performance simulation of a triangular medium is

obtained by first compiling it as a circuit. This compilation

also enables a comparison with Cellular Automata (CA),

the normal way of specifying crystalline computing media.

Cellular circuits. A synchronous sequential circuit is

made of gates, wires, and memory elements. We use flip-

flops for memory. The output of each flip-flop only changes

when triggered by the clock pulse, so changes to the logic

signals throughout the circuit all begin at the same time, at

regular intervals, synchronized by the clock. A given tri-

angular medium is compiled into a circuit, by putting

together circuit parts associated with each of its operations.

For example:

– a multi-cast is a fan-out wiring

– A boolean transfer communication is a wire crossing a

simplicial tile.

– A boolean reduction is a tree of binary logic gates.

– A boolean mutable field is a flip-flop.

The compiled circuit is called a cellular circuits, the word

‘‘cellular’’ conveys the idea of translation-invariance

implied by triangle-types. Fig. 16 represents a tile of the

cellular circuit compiled from the growing medium.

Complexity of a cellular circuit. It is measured by three

quantities:

1. The radius is the VEF-distance to the furthest simpli-

cial tile taking part in the update of a given tile. It

measures how far information must travel.

2. The memory density is the number of flip-flops needed,

per vertex.

3. The gate density is the number of binary gates needed,

per vertex.

The gate density measures the simulation time-cost. The 6-

input logical OR of Fig. 16 needs a tree of 5 binary OR

gates. The OR gate in the edge tile is binary, the density of

edges is 3. The total density is 5?3=8 OR-gates. In gen-

eral, for a s-locus l, the gate density g(l) of a logical

reduction towards l is:

gðlÞ ¼ ðfanoutðlÞ � 1Þ � densityðlÞ ð10Þ

Folded form of cellular circuits. A compact way of

representing cellular circuits is shown in Fig 17(a), where

it is applied to the growing circuit. A fan-out multi-cast is

drawn as a single thick wire. When a transfer happens, it is

illustrated using a single simplicial tile instead of all the

neighbors. As the computation progress, new tiles need to

be drawn, when the radius is increased. The update of a

mutable field connects the most distant tile (with the

highest radius), with the initial tile containing the corre-

sponding flip-flop. The folded form allows us to directly

read that the radius is 2. Folding enables to represent

complex cellular circuits, such as the accelerated growing-

circuit family parameterized by k:

Ck ¼ x 7!neighborhoodkðxÞ. It does k iterations of growing

in one single update. It is shown in Fig 17(b), for k ¼ 2.

We will now use this family ðCkÞk[0 to illustrate a prop-

erty of triangle-types.

Processing high radius, a comparison with CAs. The

concept of radius also exists for CAs: it is the radius of the

(a) (b) (c)

Fig. 15 Large multi-vertex component. (a) Some seed (gray),

meeting-points (black). Strict Voronoı̈ cells are limited to the seed

themselves (b) closureV ðmergeðxtc ÞÞ (black) separates vertice in strict

Voronoı̈ cells, plus (c) a zone including two multi-vertice (black)

equidistant to six seeds
Fig. 16 A tile of the circuit compiled from the growing medium for

the hexagonal lattice. The filled square is a flip-flop 1-bit register. The

circles are logical ORs

(a) (b)

Fig. 17 Folded representation of the cellular circuit for (a)

x 7!neighborhoodðxÞ (b) x 7!neighborhood2ðxÞ. Thick arrows repre-

sent multicast wires to all neighbors, and thin arrows a single wire

within the same tile

F. Gruau

123

neighborhood considered for computing the next state. A

neighborhood of radius r contains Oðr2Þ vertices. With

CAs, for executing one iteration, all these PEs are con-

sidered one by one. Therefore the cost of simulation grows

quadratically with r. In contrast, with triangle-types, one

iteration is decomposed into r l-steps, each of radius 1.

This achieves a linear complexity of only O(r) instead of

Oðr2Þ. The Ck family illustrates this fact: it has a radius 2k

and a gate density of 8 � k, also linear in k. Why is there

such a miraculous gain of complexity? Each l-step
includes a simplicial reduction interleaving computation

with communication; in this way, a computation done for

one vertex immediately benefits neighbor vertices.

CAs usually use the minimum radius of 1, which means

only the immediate neighborhood is considered. In con-

trast, with triangle-types, computing fields with a high

radius is the normality, not the exception. A different

portion of the landscape can be explored. The third simu-

lation filmed in Gruau (2018) uses a radius of 25.

The VD circuit. The folded form of the VD circuit is

shown in Fig 18. The radius is 4. The gate density is 55. It

is obtained by summing over the reduction, using for-

mula 10, and also deriving an implementation in binary

logical gates, of ‘‘SUM/2’’ and ‘‘[2’’. Note that this

number 55 measures the complexity of the computation in

a more precise way than just the number of states which is

the traditional measure applied to CAs.

The folded form also illustrates how modularity can

improve performance by factorizing computation. The

auxiliary field x 7!FrontierEðxÞ is computed once, but

reused twice for computing

x 7!mergeVðxÞ ¼ meetVðxÞ ^ :x and x7!mergeEðxÞ.
High-Performance circuit simulation. It can be obtained

using a specific crystalline medium, namely the hexagonal

lattice with 64 columns. This lattice is updated row by row,

in a pipeline way. This enables two optimizations:

1. The SIMD capability of standard PC is exploited: 64

binary logic gates are evaluated in a single corre-

sponding logic operation on long integers; similarly 64

bits are communicated with a single bit rotation.

2. Rows of generated intermediate fields are consumed at

the same rate as they are created. Only r rows have to

be stored, where r is the radius.

On a 2018 Asus laptop, with a 1,5 GHz i7 processor we

measured over 64 gate-updates per CPU clock cycle, thus

proving that the SIMD optimization can indeed create a

speed-up of 64.

In-medium simulation. Recall that only vertices corre-

spond to real PEs, the other locus: edges, faces, and t-locus,

are handled as virtual PEs. Ultimately the simulation must

be conducted in the computing medium itself. The gates

assigned to a virtual PE must be re-assigned to the nearest

real PE, nearest in hop-count. It two real PEs happen to be

at an identical distance, a fixed rule can be used, taking into

account position in space. It must make sure that each real

PE is assigned approximately the same number of virtual

PEs.

7 The vortex function

We provide another example of field functions to con-

firm the general applicability of triangle-types. It applies a

transfer-reduction, which we did not use yet. It also illus-

trates a more elaborate information flow with two transfers.

We often have to compute distance fields towards

moving sources, encoded on int3V. The method is detailed

in Maignan and Gruau (2008). When a bug occurs, it

produces a triplet of values d1; d2; d3 on the three vertices

around a given face, verifying d1\d2, d2\d3, d3\d1.

This incoherence is possible because the distances are

encoded using 3 bits, and comparison is done modulo 8.

For example, the values d1 ¼ 0, d2 ¼ 3, d3 ¼ 6 verify the

three inequalities. When such a bug happens, the face

becomes the center of a vortex, around which distance

values start to increase endlessly. We detect vortex in order

to stop the execution immediately and identify the bug. The

vortex field identifies faces, it is a boolF. It is computed

from a boolvE representing the sign of the distance gra-

dient on two bits. The pair of boolvE on each side of an

edge can be (0,1), (1,0) or (0,0) depending wether the

distance on one side is strictly greater, strictly smaller or

equal to the other side. A transitive inequality d1\d2,

d2\d3, d3\d1 causes as an alternation of 0s and 1s on the

three booleV-pairs around a vortex i.e, the value reads as

0,1,0,1,0,1, or 1,0,1,0,1,0. This simple pattern is detected

by applying a first layer of XOR gates, and a second layer

x

∀�(¬x)

neighborhood(x)frontierE(x)

frontierV (x)

nbcc(x)

mergeE(x)

mergeV (x)

closure(m
erge(x)

next
state

meetV (x)

Fig. 18 Folded form of the VD circuit. thin gates are fed by thin

arrows, they represent non-spatial computation within the same tile

A parallel data-structure for modular programming...

123

of binary AND gates which check that the XORs are all

true. XORs are applied to two kinds of pairs:

1. The pair of two boolvE on each side on an edge.

2. The pair of two boolvE adjacent to a given vertex.

A closer look shows that the first kind of XORs is not

required, For the second kind, we need to first do a transfer,

and then apply a transfer-reduction dfV . The mapping from

sign to vortex is computed as follows:

vortex ¼ =^� " � dfV� " ðsignÞ ð11Þ

The different steps of this composition are illustrated in

Fig. 19. The folded circuit is represented in Fig. 20. The

XOR density is 6, the AND density is 4, in total the gate

density is 10.

8 Conclusion

Programming a fine-grained 2D computing medium such

as 2D Cellular Automata (CA) or more generally non-

crystalline amorphous media is a difficult task. More

specifically, simulating large objects which are extended in

space also requires exploiting the 2D topology and this

increases the difficulty. This paper presented a parallel data

structure called ‘‘triangle-type’’ that simplifies the pro-

gramming task, in this particular context. The triangle-type

assumes that the Processing Elements (PEs) of the medium

are connected as a triangle mesh to expose the 2D-topol-

ogy. The primitive triangle-types are fields of values

located on the vertices, edges, and faces of the triangle

mesh, as well as three pairs of points located between

vertices, edges, and faces. All those points are handled as

virtual PEs. The primitive operators do simple processing

of fields using one-to-one communications, multi-casts,

and reductions.

Throughout this paper, we focused on demonstrating

how triangle-types enable a simple modular way of pro-

gramming. We started by pointing out small combinations

of operators that realize meaningful macro-operators. We

then assembled macro-operators to produce more complex

computations: First, we computed the blob-predicate which

specifies points in space where a simulated large object can

extend without merging with other objects, or diminish

without dividing itself into two objects. Second, we re-used

the blob-predicate to program a computing medium that

converges to the Voronoı̈ Diagram (VD) of a set of initial

seeds. The update function of this medium specifies uni-

formly growing the seeds until just before merging occurs.

This technique was inspired by Adamatzky (1996); Mani-

atty and Szymanski (1997) who propagated waves on a 2D-

grid CA and defined the VD when the waves collide. With

triangle-types, we computed it on the hexagonal grid, and

more generally, on any triangle mesh. Furthermore, the

simple algorithmic essence of the wave technique is cap-

tured, and neighbors need not be considered one by one, as

is typically done with CAs. This illustrates how a more

abstract programming style is enabled. The VD is not a

trivial example; many CA publications have been created

on this subject. However, this exemple probably may not

convey the correct idea about the general applicability of

triangle-types. We provide another example of a function

that uses a transfer-reduction and computes ‘‘vortex’’.

More generally, what is the scope of triangle-types? Let

us first make explicit one limitation. Our ultimate target

hardware is amorphous computing media. Their lack of

structure is such that neighbors of a given PE cannot be

distinguished. In this context, the only way of computing in

a deterministic way is to use reductions on values provided

by neighbors. Indeed, a reduction applies a commutative,

associative operation. Thus, the order in which the neigh-

bors are considered does not matter. For crystalline media,

this achieves a property known as rotation-invariance

(Toffoli and Margolus 1990). Totalistic CA (Wolfram

1983), which sums the immediate neighbor’s integer state,

is an example of rotation-invariant CA. With triangle-

types, we use any type of reductions, not just the sum.

More fundamentally, we define 12 different types of

neighborhoods on which to reduce: six for simplicial

reductions, and six for transfer reductions. This increases

expressiveness to the point that being forced to compute

using only reductions is not considered a constraint. Quite

the contrary, it feels natural. Rotation-invariance is not a

limit for our purpose. We implement artificial physics

laws, so we always compute rotation-invariant quantities

anyway. Embedding rotation-invariance in the operations

themselves incorporates useful domain-specific
Fig. 19 The different steps for computing the vortex field from the

sign field, following equation 11. Black (resp. gray) encodes true,

(resp. false)

sign

vortex

Fig. 20 Folded form of the vortex circuit. Transfer tiles need to be

represented

F. Gruau

123

information at the syntactic level which alleviates the

programming task.

Does the scope of application of triangle-types include

any rotation-invariant function? We are convinced of a

more general property. Our experience is that as soon as

processing can be specified in terms of the 2D geometry,

then it can be efficiently programmed using triangle-types.

This encompasses real or artificial physics, as well as

digital image processing. We have been using triangle-

types for over 12 years, and solving many problems such as

distances to moving targets (Maignan and Gruau 2008),

convex hulls (Maignan and Gruau 2010), Gabriel graphs

(Maignan and Gruau 2011), homogeneization in 1D

(Maignan and Gruau 2009) and 2D (Gruau 2018). Above

all, we have assembled a complex computing medium that

can simulate Self Developing Network (SDN) of mem-

branes. The goal of this SND-medium is to broaden the

scope of what can be computed on a medium and ulti-

mately reach general-purpose computing. An execution,

interpreting a flow of host-instructions dictating the

development of a virtual 2D-grid of membranes can be

viewed in Gruau (2018).

Expressiveness itself is not the only ingredient necessary

for a good programming layer of computing media. The

simulation means updating thousands of PEs, over hun-

dreds of time steps, which can be very time-consuming.

High performance is needed for interactive simulation, and

this is the second crucial advantage of triangle-types.

Therefore we also described how 2D-type can be compiled

into circuits whose execution exploits the SIMD capabili-

ties of a standard laptop. The VD-medium uses 1 bit of

state, 55 gates per PE. It is simple enough to be run in an

interactive mode, without optimization. In contrast, the

SDN-medium uses 77 bits of state and 13878 gates, and it

requires the SIMD optimization for preserving

interactivity.

In summary, triangle-types enable the programming of

complex computing medium, as well as their interactive

execution. It thus opens the door to explore a new land-

scape of parallel models.

Acknowledgements We thank Luidnel Maignan for his fruitful

comments.

References

Abelson H, Allen D, Coore D, Hanson C, Homsy G, T. F, Knight J,

Nagpal R, Rauch E, Sussman GJ, Weiss R, (2000) Amorphous

computing. Commun ACM 43(5):74–82

Adamatzky A (1996) Voronoi-like partition of lattice in cellular

automata. Math Comput Model 23(4):51–66

Audrito G, Viroli M, Damiani F, Pianini D, Beal J (2019) A higher-

order calculus of computational fields. ACM Trans Comput Log

(TOCL) 20(1):1–55

Beal J, Dulman S, Usbeck K, Viroli M, Correll N(2013) Organizing

the aggregate: languages for spatial computing. In: Formal and

practical aspects of domain-specific languages: recent develop-

ments, IGI Global, pp. 436–501

Beal J, Pianini D, Viroli M (2015) Aggregate programming for the

internet of things. Computer 48(9):22–30

Bhattacharjee K, Naskar N, Roy S, Das S (2020) A survey of cellular

automata: types, dynamics, non-uniformity and applications. Nat

Comput 19(2):433–461

Chopard B, Droz M(1998) Cellular automata modeling of physical

systems. 01

Coore D(1999) Botanical computing: a developmental approach to

generating interconnect topologies on an amorphous computer.

Ph.D. thesis, MIT

Gruau F(2018) Video illustrating the medium for self developing

network. https://youtu.be/8yVkfD0_G9s or https://www.lri.fr/

� gruau/#development

Gruau F, Eisenbeis C, Maignan L(2008) The foundation of self-

developing blob machines for spatial computing. phys D

Nonlinear Phenom 237

Gruau F, Maignan L(2018) Spatial types: a scheme for specifying

complex cellular automata to explore artificial physics. In: TPNC

2018. LNCS, vol. v, p. pp

Gruau F, Malbos P(2002) The blob: a basic topological concept for

hardware-free distributed computation. In: UMC 2002. LNCS,

vol. 2509, pp. 151–163

Kahn J.M, Katz R.H, Pister K.S(1999) Next century challenges:

mobile networking for ‘‘smart dust’’. In: Proceedings of the 5th

annual ACM/IEEE international conference on mobile comput-

ing and networking. pp. 271–278

Maignan L, Gruau F(2008) Integer gradient for cellular automata:

principle and examples. In: SASO 2008, IEEE

Maignan L, Gruau F(2009) A 1D cellular automaton that moves

particles until regular spatial placement. Parallel Process Lett

19(2): 315–331, http://dx.doi.org/10.1142/S0129626409000249

Maignan L, Gruau F(2011) Gabriel graphs in arbitrary metric space

and their cellular automaton for many grids. ACM Trans Auton

Adapt Syst 6(12:1)–12:14. https://doi.org/10.1145/1968513.

1968515,

Maignan L, Gruau F(2010) Convex hulls on cellular automata. In:

Proceedings of the 9th international conference on Cellular

automata for research and industry. ACRI’10, Springer-Verlag,

Berlin, Heidelberg , pp 69–78. http://dl.acm.org/citation.cfm?id=

1927432.1927440

Maniatty WA, Szymanski BK (1997) Fine-grain discrete voronoi

diagram algorithms in l1 and l1 norms. Math Comput Model

26(4):71–78

Rauch E (2003) Discrete amorphous physical models. Int J Theoret

Phys 42(2):329–348

Schlömer T, Heck D, Deussen O(2011) Farthest-point optimized

point sets with maximized minimum distance. In: Proceedings of

the ACM SIGGRAPH

Toffoli T, Bach T(2001) A common language for ‘‘programmable

matter’’ (cellular automata and all that). Bull It Assoc Artif Intell

14(2): 187–201, http://pm1.bu.edu/*tt/publ/aiia.ps.gz

Toffoli T, Margolus NH (1990) Invertible cellular automata: a review.

Phys D Nonlinear Phenom 45(1–3):229–253

Van Kreveld M, Schwarzkopf O, deBerg M, Overmars M(2000)

Computational geometry algorithms and applications. Springer

A parallel data-structure for modular programming...

123

http://dx.doi.org/10.1142/S0129626409000249
https://doi.org/10.1145/1968513.1968515
https://doi.org/10.1145/1968513.1968515
http://dl.acm.org/citation.cfm?id=1927432.1927440
http://dl.acm.org/citation.cfm?id=1927432.1927440
http://pm1.bu.edu/%7ett/publ/aiia.ps.gz

Wolfram S (1983) Statistical mechanics of cellular automata. Rev

Mod Phys 55(3):601–644

Zhou H, Jin M, Wu H(2013) A distributed delaunay triangulation

algorithm based on centroidal voronoi tessellation for wireless

sensor networks. In: MobiHoc ’13. ACM

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article

under a publishing agreement with the author(s) or other rightsh-

older(s); author self-archiving of the accepted manuscript version of

this article is solely governed by the terms of such publishing

agreement and applicable law.

F. Gruau

123

	A parallel data-structure for modular programming of triangulated computing media.
	Abstract
	Introduction
	The triangle type: a parallel data-structure based on triangle mesh
	A tool-box of macro-operators
	Macro-operators for computation.
	Macro-operators for communication.

	Computing the blob-predicate
	Analysis of the blob-predicate
	The meeting-vertex function, x\mapsto meet^V\lpar x).
	The meeting-edge function x\mapstomeet^E\lpar x).

	A computing medium for the Voronoï Diagram (VD)
	Triangular computing media
	Exemple 2: Computing the discrete VD

	Compilation in synchronous sequential circuits
	The vortex function
	Conclusion
	Acknowledgements
	References

