Objectives of the Tutorial

- This is a tutorial on black-box complexity. This is currently one of the hottest topics in the theory of randomized search heuristics.
- I shall try my best to:
 - tell you on an elementary level what black-box complexity is and how it shapes our understanding of randomized search heuristics
 - give an in-depth coverage of two topics that received much attention in the last few years
 - stronger upper bounds and the connection to guessing games
 - alternative black-box models
 - sketch several open problems
- Don’t hesitate to ask questions whenever they come up!

Bio-Sketch

- Benjamin Doerr is a senior researcher at the Max Planck Institute for Informatics and a professor at Saarland University.
- He received his diploma (1998), PhD (2000) and habilitation (2005) in mathematics from Kiel University.
- Together with Frank Neumann and Ingo Wegener, he founded the theory track at GECCO and served as its co-chair 2007-2009.
- He is a member of the editorial boards of Evolutionary Computation and Information Processing Letters.
- His research area includes theoretical aspects of randomized search heuristics, in particular, run-time analysis and complexity theory.

Agenda

- Part 1: Black-box complexity: A complexity theory for randomized search heuristics (RSH)
 - Introduction/definition
 - Lower bounds for all RSH (example: needle functions)
 - Thorn in the flesh: Are there better RSH out there? (example onemax)
 - Different black-box models – what is the right difficulty measure?
- Part 2: Tools and techniques (in the language of guessing games)
 - From black-box to guessing games
 - A general lower bound
 - How to play Mastermind
 - A new game
- Summary, open problems
Timeline

- **2002** Droste, Jansen, Tinnefeld, Wegener. A new framework for the valuation of algorithms for black-box optimization. FOGA
- **2009** Anil, Wiegand. Black-box search by elimination of fitness functions. FOGA
- **2010** Lehre, Witt. Black-box search by unbiased variation. GECCO
- **2011** Doerr, Winzen. Towards a Complexity Theory of Randomized Search Heuristics: Ranking-Based Black-Box Complexity. CSR
- **2011** Rowe, Vose. Unbiased black box search algorithms. GECCO
- **2012** Doerr, Kötzing, Winzen. Too Fast Unbiased Black-Box Algorithms. GECCO
- **2012** Doerr, Winzen. Playing Mastermind with constant-size memory. STACS
- **2012** Doerr, Winzen. Reducing the arity in unbiased black-box complexity. GECCO

Part 1: Complexity Theory for RSH

- Why a complexity theory for RSH?
 - Understand problem difficulty!
- How?
 - Black-box complexity!
- What can we do with that?
 - General lower bounds, thorn in the flesh
- Different notions of black-box complexity

Why a Complexity Theory for RSH?

- Understand problem difficulty!
 - Randomized search heuristics (RSH) like evolutionary algorithms, genetic algorithms, ant colony optimization, simulated annealing, … are very successful for a variety of problems.
 - Little general advice which problems are suitable for such general methods
 - Solution: Complexity theory for RSH
- Take a similar successful route as classical algorithmics!
 - Algorithmics: Design good algorithms and analyze their performance
 - Complexity theory: Show that certain things are just not possible
 - The interplay between the two areas proved to be very fruitful for the research on classic algorithms

Algorithms vs. Complexity Theory for RSH – An Example

- **Algorithm Analysis:** Prove how a certain algorithm solves a particular problem.
 - The (1+1) EA finds a minimum spanning tree with an expected number of $O(m^2 \log(m w_{max}))$ fitness evaluations.
- **Complexity Theory:** What can the best possible algorithm for this problem do or not.
 - No RSH can solve the Needle problem in an expected number of less than $(2^n+1)/2$ fitness evaluations.
- Bottom line: Spanning tree is easy for RSH, the Needle problem not.
Reminder: Classic Complexity Theory

- General approach: Complexity (difficulty) of a problem := Performance of the best algorithm on the hardest problem instance
- Example: “Sorting \(n \) numbers needs \(\Theta(n \log(n)) \) pair-wise comparisons.”
 - Problem: “Sorting an array of \(n \) numbers”
 - Instance (input to algorithm): An (unsorted) array of \(n \) numbers
 - Algorithms: All that run on a Turing machine
 - Performance (cost) measure: Number of pair-wise comparisons
 - \(T(A, I) \) = number of comparisons performed when algorithm \(A \) runs on instance \(I \)
 - Theorem: “Complexity of sorting = \(\min_A \max_I T(A, I) = \Theta(n \log(n)) \).”
- How does this work for RSH?
 - Algorithms = RSHs, Performance = number of fitness evaluations, …

Complexity Theory for RSH

- Algorithms: Randomized search heuristics (RSH)
 - may generate solutions and query their fitness
 - no explicit access to the problem description
 - \(\Rightarrow \) black-box optimization algorithm
- Performance measure \(T(A, I) \) = expected number of fitness evaluations until algorithm \(A \) running on instance \(I \) queries an optimum of \(I \)
- Black-box complexity: Expected number of fitness evaluations the best black-box algorithm needs to query the optimum of the hardest instance.
 - \(\min_A \max_I T(A, I) \)

BBC: What Can We Do With It?

- Black-box complexity: Expected number of fitness evaluations the best black-box algorithm needs to query the optimum of the hardest instance.
 - \(\min_A \max_I T(A, I) \)
- 3 uses:
 - Measure for problem difficulty [that’s how we designed the definition]
 - Universal lower bounds [next slide]
 - A thorn in the flesh [next to next slide]

BBC: Universal Lower Bounds

- Black-box complexity: Expected number of fitness evaluations the best black-box algorithm needs to query the optimum of the hardest instance.
 - \(\min_A \max_I T(A, I) \)
- Follows right from the definition: The black-box complexity is a lower bound on the performance of any RSH!
 - \(\text{BBC} := \min_A \max_I T(A, I) \leq \max_B T(B, I) = \text{performance of } B \)
- Example:
 - Theorem [DJTW’02]: The black-box complexity of the needle function class is \((2^n+1)/2 \).
 - Consequence: No RSH can solve the needle problem in sub-exponential time.
 - One simple proof replaces several proofs for particular RSH 😊
BBC: A Thorn in the Flesh

- If the black-box complexity is lower than what current best RSH achieve, you should wonder if there are better RSH for this problem!
- Example: OneMax functions
 - for all "bit-strings" \(z \in \{0,1\}^n \) let \(f_z : \{0,1\}^n \to \{0,\ldots,n\} ; x \mapsto \text{"number of positions in which } x \text{ and } z \text{ agree"} \)
 - all \(f_z \) have a fitness landscape equivalent to the classic OneMax function (counting the number of ones in a bit-string).
- Theorem [many, see later]: The black-box complexity of the class of all OneMax functions is \(\Theta(n / \log(n)) \).
- But: All standard RSH need at least \(\Omega(n \log(n)) \) time!
- Are there better RSH that we overlooked?
- Same motive as in classical theory: \(n \times n \) matrix multiplication can be done in time \(O(n^{2.372}) \), only lower bound is \(\Omega(n^2) \).

Alternative Black-box Models

- Previous slide: “Are there better RSH?”
- Alternative answer: The black-box model allows too powerful (unnatural) algorithms.
- Next \(x \) slides: Discuss alternative black-box models
 - very active research area in the last 3 years
 - no definitive answer
- Common theme: Instead of allowing all black-box optimization algorithms, only regard a restricted class!
 - restricted class should include most classic RSH

Alternative 1: Unbiased BBC

- Lehre&Witt (GECCO’10 theory track best paper award):
 - allow only unbiased variation operators: treat all bit-positions \((1, \ldots, n) \) and the two bit-values \((0, 1) \) equally!
 - equivalent: if \(\sigma \) is an automorphism of the hypercube, then the probability that \(y \) is an offspring of \(x_1, \ldots, x_k \) must be equal to the probability that \(\sigma(y) \) is an offspring of \(\sigma(x_1), \ldots, \sigma(x_k) \)
- Observation: Most RSH are unbiased
 - exception: one-point crossover
- Result: The unbiased, mutation-only BBC of OneMax is \(\Theta(n \log(n)) \)
 - as observed for random local search, (1+1) EA, …
- Anti-result [DKW’11]: Also the TRAP \(k \) function has an unbiased, mutation-only BBC of \(\Theta(n \log(n)) \).
 - contrasts the \(\Omega(n^4) \) performance of all classic RSH
 - Interesting [DJKLW’11]: Unbiased 2-ary BBC of OneMax: \(O(n) \).

Alternative 2: Ranking-Based BBC

- D&Winzen (CSR’11), suggested by Niko Hansen: ranking-based
 - do not regard the absolute fitness values, but make all decisions dependent only on how fitnesses of search points compare!
- Observation: Many RSH follow this scheme
 - exception: fitness-proportionate selection
- Bad news: OneMax has a ranking-based BBC of \(\Theta(n / \log(n)) \)
 - Good news: For BinaryValue…
 - BBC: \(\log(n) \)
 - ranking-based BBC: \(\Omega(n) \)
 - many RSH: \(\Theta(n \log n) \)
- Open problem: Partition…
 - BBC: \(O(n) \), heavily exploits absolute fitness values
 - Unbiased BBC: Maybe exponential?
Alternative 3: Memory-Restricted BBC

 - suggest to restrict the memory: store only a fixed number of search points and their fitness
 - inspired by bounded population size
 - conjecture: with memory one, the BBC of OneMax becomes the desired $\Theta(n \log(n))$

- D&Winzen (STACS’12): Disprove conjecture.
 - Even with memory one, the BBC of OneMax is $\Theta(n / \log(n))$.
 [I’ll give a proof in the second part of the tutorial]

Summary Alternative BBC Models

- Different models:
 - unrestricted (classic)
 - unbiased
 - ranking-based
 - memory-restricted

- None is yet “the ultimate complexity notion” for RSH

- Each expanded our understanding
 - what makes a problem hard
 - what makes a RSH powerful

- Many open problems…

Summary Part 1

- Black-box complexity (BBC): “Minimum number of search points that have to be evaluated to find the optimum”
 - Expected number of fitness evaluations the best black-box algorithm needs to query the optimum of the hardest instance.

- Min, max, $T(A, I)$

- Uses:
 - Measure of problem difficulty
 - Universal lower bounds
 - Thorn in the flesh

- Particular problem: What is the most useful class of black-box algorithms to be regarded?

Part 2: Tools and Techniques

Plan for the 2nd part of this tutorial:

- Explain, why BBC and guessing games are almost the same

- Use the language of guessing games to demonstrate some techniques
 - Random guessing: The BBC of OneMax or “how to play Mastermind with two colors?”
 - A simple “information theoretic” lower bound
 - Clever guessing:
 - Mastermind with n colors
 - [intermediate summary “tools and techniques”]
 - Memory-restricted BBC of OneMax = Mastermind with 2 rows

- A game derived from BBC studies 😊
A Formal Definition of BBC

Optimization problem: A set F of functions $f : \{0,1\}^n \to \mathbb{R}$.

Aim is to find the maximum of a given $f \in F$.

Language:
- An $f \in F$ is called an "instance of F"
- $\{0,1\}^n$ "search space"
- $x \in \{0,1\}^n$ "search point"

Example "Maximum Clique": For each graph G on the vertex set $\{1,\ldots,n\}$, $f_G(x)$ is the size of the vertex set represented by x, if this is a clique in G, and 0 otherwise. $F := \{f_G \mid G \text{ a graph with vertices } 1,\ldots,n\}$.

Black-box algorithm for F: A randomized algorithm A that finds the maximum of any $f \in F$ by asking f-values of search points only (no explicit access to the instance, e.g., the graph G in the clique example).

Performance $T(A,f)$ of A for $f \in F$: Expected time until an x with $f(x) = \text{OPT}(f)$ is queried.

Performance $T(A,F)$ of A on F: max$_{f \in F} T(A,f)$.

BBC of F: min$_A T(A,F)$, where A runs over all black-box algorithms for F.

From BBC to Guessing Games

Guessing game:
- BlackBox chooses a hidden $f \in F$.
- Algo tries to guess an x with $f(x)$ maximal
- For each incorrect guess, BlackBox tells $f(x)$ to Algo

Optimal strategy for Algo = optimal black-box algorithm
Optimal strategy for black-box = "most difficult" $f \in F$
Optimal number of rounds in the game = BBC(F)

Classic Guessing Game: Mastermind

2-player game
- CodeMaker hides a $\mathbf{4}$-digit $\mathbf{6}$-color code C.
- CodeBreaker tries to guess it using few guesses

Guess: Some color code G

Answer:
- Number of positions in which C and G agree ("black answer-pegs" [here: red])
- Number of additional code letters that occur in a wrong position ("white pegs")
2-Color Mastermind = BBC(OneMax)

- OneMax test function: \(f: \{0,1\}^n \rightarrow \{0,\ldots,n\}; x \mapsto \text{"number of ones in } x\text{"}
- easy to find the unique global optimum \((1,\ldots,1)\).
- RLS, \((1+1)\) EA, ... do this in \(\Theta(n \log n)\) time.

- (Generalized) OneMax function, OneMax problem:
 - For each \(z \in \{0,1\}^n \), let \(f_z: \{0,1\}^n \rightarrow \{0,\ldots,n\}; x \mapsto \text{"number of bits in which } x\text{ and } z\text{ agree"} \)
 - All \(f_z \) have isomorphic fitness landscapes
 - OneMax problem: \(F := \{f_z | z \in \{0,1\}^n\} \), the set of all OneMax functions

Observation: Mastermind with the two "colors" 0 and 1 corresponds to the black-box complexity \(\text{BBC}(F)\)

Mastermind: 3 (?) Results

- \(\Theta(n / \log n)\) guesses sufficient&necessary for \(k = 2 \) (BBC of OneMax)

- \(\Theta(n \log k / \log n)\) for \(k \leq n^{1-\epsilon} \)

- \(\Theta(n / \log n)\) for \(k = 2 \)

Proof: Random Guessing

- CodeBreaker’s strategy:
 - Guess \(\Theta(n / \log n)\) random codes.
 - Look at all answers.
 - With high probability, no secret code other than the true one leads to these answers [elementary, straight-forward computation]

Comments:

- \textit{Erdős probabilistic method} at its best.
- Best possible (apart from constant factors hidden in \(\Theta(\ldots)\))
- Note: Non-adaptive strategy – questions do not depend on previous questions and answers.

A General Lower Bound

- [DJW'06, in the language of games] Consider a guessing game such that
 - there are \(s \) different secrets
 - each query has at most \(k \geq 2 \) different answers.

 Then the expected number \(Q \) of queries necessary to find the secret is at least \((\log_2(s) / \log_2(k)) - 1 = \log_2(s) - 1 \).

- Information theoretic view: To encode the secret in binary, you need \(\log_2(s)\) bits. Each answer can be encoded in \(\log_2(k)\) bits. If \(Q \) rounds suffice, \(Q \log_2(k) \) bits could encode the secret. \(\dagger\)

- Game-theoretic view: In the game tree, each node has at most \(k \) children.

 Hence at height \(Q \), there are at most \(k^Q \) nodes. If \(s \) is bigger, then at some nodes, more secrets are possible. \(\dagger\)

\(\dagger\) Argument correct for deterministic strategies. For randomized ones, in addition, Yao’s minimax principle is needed.
Back to 2-Color Mastermind…

- Lower bound: \((1 + o(1)) \frac{n}{\log_2(n)}\)
 - Argument: \(2^n\) possible secrets, \(n+1\) possible answers
 - General lower bound: \(\log_2(2^n) / \log_2(n+1) = (1+o(1))n / \log_2(n)\)
 - Information theoretic view: “learn at most \(\log_2(n)\) bits per question”

- Upper bound computed precisely: \((2 + o(1)) \frac{n}{\log_2(n)}\)
 - Weaker by a factor of 2
 - Reason (informal): Typically, a random question yields an answer between \(n/2 - \Theta(\sqrt{n})\) and \(n/2 + \Theta(\sqrt{n})\).
 - “Learn \(\log_2(\Theta(\sqrt{n})) = (1/2) \log_2(n)\) bits per question”

- Big open problem (already mentioned in the Erdős-Rényi paper): What is the correct bound? Can you ask better questions?

Clever Guessing: Mastermind for \(k = n\)

- Random guessing (Chvátal): \(\Theta(n \log(n))\) needed and sufficient.
 - Informal justification:
 - The expected answer to a random question is 1.
 - “Learn only a constant number of bits per question”
 - Information theory: \(\log(n^n) / \log(constant) = n \log(n)\) questions

- Can we ask better questions?
 - Info-theory argument: We need to “learn more bits per question”
 - Problem: For the first question, the expected answer is 1, no matter what we ask (⇒ learn constant number of bits)
 - If something works, it must be adaptive: Current question uses previous answers!

Clever Guessing: First Step

- Story-line so far: Adaptively ask clever questions!
 - Difficulty: How to use previous answers?
 - One idea (inspired by Goodrich (IPL 2009)):
 - If you get the answer “0”, then for each position you know one color that does not appear there
 - Basically reduces the number of colors by one
 - Future questions: only use possible colors
 - Good news: the answer “0” is not too rare
 - for \(k = n\) colors, the probability that a random guess gets a “0”-answer, is \((1 - (1/n))^n = 1/e = 0.37\)

Clever Guessing: Reduce the Colors

- Story-line: Adaptively ask clever questions!
 - Plan: Get a “0”-answer and get rid of one color per position.
 - Lemma: For \(k\) colors and \(n\) positions, the probability that a random guess is answered “0”, is \((1 - (1/k))^n \geq 4^{-k}\).
 - Rough estimate: Reducing the number of colors from \(n\) to \(8n / \loglog(n)\) takes time \(n \frac{4^{(8n / \loglog(n))}}{4^{(n \log(n))}} = n \log(n)^2\).
 - With only \(8n / \loglog(n)\) colors possible at each position, a random guess has an expected answer of \(\log(\loglog(n))/8\)
 - “Learn \(\Theta(\logloglog(n))\) bits” [can be made precise]
 - “Theorem”: \(O(n \log(n) / \logloglog(n))\) questions suffice!
Clever Guessing: Reduce the Colors (2)

- Story-line: Adaptively ask clever questions by reducing the number of colors (by getting a "0"-answer)
 - gains so far: a \(\log \log(n) \) factor 😊

- Reducing the number of colors from \(k \) to \(k-1 \) per position:
 - so far: get a "0"-answer after at most \(4^{1/k} \) random guesses
 - Example: \(k = n/100 \)
 - Random guess has an expected answer of 100.
 - Time to wait for a "0" is \((1+o(1)) \cdot e^{100} \)
 - Waiting for something quite rare 😞
 - Better: Partition the \(n \) positions into blocks of size \(n/100 \) and ask randomly in each block (fill up the rest with dummy colors)
 - expected contribution per block: 1
 - waiting time for a "0" in a block: constant

Clever Guessing: Reduce the Colors (3)

- Story-line: Adaptively ask clever questions by reducing the number of colors.
 - So far: Ask randomly and hope for a "0"

- Improved reducing the number of colors from \(k \) to \(k-1 \):
 - Partition the \(n \) positions into \(n/k \) blocks of roughly equal size.
 - For each block:
 - Ask random colors in the block, put a dummy color in the rest
 - expected waiting time for a "0": at most 4
 - Total expected waiting time: \(4 \cdot n/k \) [previously: \(4^{1/k} \) 😊😊]

- Total time to reduce the number of colors from \(k \) to \(k/2 \):
 - at most \((k/2) \cdot 4 \cdot n/(k/2) = 4n \)

Clever Guessing: Reduce the Colors (4)

- Story-line: Adaptively ask clever questions.
 - Clever color reducing: From \(k \) to \(k/2 \) colors in \(4n \) queries

- Goodrich 2009: \(\log(n) \) times halving the colors finds the secret code in \(O(n \log n) \) questions [apart from constants, the same bound as Chvátal]

- We [D., Spöhel, Thomas, Winzen]:
 - Do the halving trick \(\sqrt{\log n} \) times
 - \(n / 2^{\log_2 n} \) colors possible at each position
 - Then do random guesses (using only possible colors)
 - expected answer: \(2 \cdot \log_2 n \)
 - "learn \(\log(2^{\log_2 n}) = \sqrt{\log n} \) bits per question"
 - Theorem: Solve Mastermind with \(k=2n \) colors in \(O(n \sqrt{\log n}) \) questions 😊

Intermediate Summary: Methods

- Information theoretic argument:
 - If for each query only \(k \) different answers exist and if \(F \) contains \(s \) functions with distinct unique optima, then the black-box complexity of \(F \) is at least \((\log_2(s) / \log_2(k)) - 1 \).

- Random guessing:
 - Often, a small number of random guesses together with the answers received uniquely determine the solution.
 - "Information theoretic hand-waiving": If a random query typically sees \(k \) answers each with probability at least \(O(1/k) \), then around \(\log_2(s)/ \log_2(k) \) question might suffice.

- Clever guessing: To get a better bound, you have to ask questions that reveal more information (example: reducing the colors in MasterMind).
A Second Example of “Clever Guessing”

- Original problem: Memory-restricted BBC of OneMax
- Memory-restriction: From one iteration to the next, the BB-algorithm may only store k search points together with their fitness.
- Conjecture [DJW’06]: For $k = 1$, the BBC becomes the $\Theta(n \log n)$ we know from the (1+1) EA.
- Transfer to guessing games [easy to see]:
 - This BBC problem is equivalent to Mastermind with two rows only.
- Theorem [DW’12]: You can win 2-row Mastermind with $O(n / \log n)$ queries.
 - Details: next few slides.
- Corollary: The memory-1 restricted BBC of OneMax is $\Theta(n / \log n)$.

Fewer Rows: Proof Ideas

- Original Mastermind: Guess $\Theta(n / \log n)$ random codes. Store all guesses and answers on the board. Think.
 - Needs $\Theta(n / \log n)$ rows.
- 3 ingredients of our proof:
 - Find parts of the code: Determine $\Theta(n^t)$ code letters with $\Theta(n^t / \log n)$ relatively random guesses (ϵ constant)
 - Do this $n^{1-\epsilon}$ times: find the code with $\Theta(n^t / \log n)$ rows.
 - Determine such a part with constant number of rows
 - Do this $n^{1-\epsilon}$ times: find the code with $\Theta(1)$ rows.
 - Do everything in two rows

Proof Idea (1): Find Parts of the Code

- Lemma:
 - Let $B \subseteq [n]$, $|B| = n^\epsilon$, “part”
 - Let G_1, G_2, \ldots be $\Theta(n^t / \log n)$ guesses such that
 - G_i is random in positions in B
 - All G_i are equal in positions in $[n] \setminus B$
 - Then with high probability these guesses and answers determine the secret code in B.
- Argument:
 - Basically, we play the game in B (and use the previous proof)
 - Only difficulty: The answers we get “are not for B only”, but for the whole guess
 - Same deviation for all guesses
 - Some maths: Not a problem, guesses also determine deviation
Proof Idea (2): Same with $O(1)$ Rows

- Plan: Simulate the previous slide in $O(1)$ rows
- Example: Find the first $L = \Theta(n^\varepsilon / \log n)$ code letters
 - $B_1 := \ell$ random letters.
 - Guess $B_1 1...1$ in row 1 and learn answer A_1.
 - Guess $B_1 A_1 1...1$ in row 2 and ignore answer.
 - $B_2 := \ell$ random letters.
 - Guess $B_2 1...1$ in row 1 and learn answer A_2.
 - Guess $B_1 A_1 B_2 A_2 1...1$ in row 3 and ignore answer.
- General:
 - Do an honest guess as on the previous slide.
 - Use the next guess to store guess+answer+what you learned before.
- Needs 3+ rows: current guess + old storage \(\rightarrow\) new storage

A_1: Suitably encoded with $O(\log n)$ of letters

Proof Idea (3): Two Rows Only

- Difficulty:
 - To enter a new guess, one of the two rows must be emptied.
 - You must store and guess in the same row.
 - Problem: Storage influences CodeMaker’s answers!
 - All control information must also be stored in this one row.
 - what is the block I’m just optimizing?
 - what am I currently doing (guessing, storing, finding the unique solution, finding the last few letters in a different way...)
- Solution:
 - technical.
 - read the paper at STACS'12 or arxiv.org/abs/1110.3619.

Summary: Memory-BBC of OneMax

- Result: The complexity of Mastermind remains at $\Theta(n^\varepsilon / \log n)$ guesses even if we allow only two rows.
- Key proof argument: Clever guesses inspired by random guesses
- Open problems / future work:
 - Our proof works for any constant number of colors – what happens for larger numbers of colors?
 - constant factors: “what’s hidden in the $\Theta(\ldots)$”
 - does a memory restriction lose us a constant factor?

Finally: A New Guessing Game

- So far: BBC is strongly related to guessing games
 - In particular: $\text{BBC(OneMax)} = \text{Mastermind}$
 - Therefore: Use game theoretic arguments to solve BBC problems
- Now [next few slides]: Use BBC problems to derive a fun game 😊
 - LeadingOnes Game
LeadingOnes Test Functions

- Classic test function:
 - LeadingOnes: \(\{0,1\}^n \rightarrow \{0,\ldots,n\} \); \(x \mapsto \max\{i \in \{0,\ldots,n\} \mid x_1 = \ldots = x_i = 1\} \)
 - "how many bits counted from the left are one"
 - Unique optimum \((1,\ldots,1)\)
 - "Harder than OneMax": Each non-optimal solution has only one superior Hamming neighbor

- LeadingOnes function class \(LO_n \):
 - Let \(\sigma \) be a permutation of \(\{1,\ldots,n\} \)
 - Let \(z \in \{0,1\}^n \) ("target string")
 - \(f_{\sigma} : \{0,1\}^n \rightarrow \{0,\ldots,n\} ; \; x \mapsto \max\{i \in \{0,\ldots,n\} \mid x_{\sigma(1)} = z_{\sigma(1)}, \ldots, x_{\sigma(i)} = z_{\sigma(i)}\} \)
 - "how many bits, counted in the order of \(\sigma \), are as in \(z \)"
 - Same fitness landscape as LeadingOnes

The LeadingOnes Game

- Transfer the BBC(LO) problem into a game:
 - CodeMaker: Picks a secret code \(z \) and a secret permutation \(\sigma \)
 - Round:
 - CodeBreaker guesses a bit-string \(x \in \{0,1\}^n \)
 - CodeMaker's answer: \(f_{\sigma}(x) = "\text{how many code letters in the order of } \sigma \text{ are correct?}" \)
 - How many rounds until CodeBreaker guesses the secret code \(z \)?
 - Practice: Fun to play with \(n=5 \) or \(n=6 \) [and that's the message of this slide]
 - Theory: next few slides, fun as well, but doesn't help you play the actual game

Black-Box Complexity of LeadingOnes

- Reminder: \(LO_n \) consists of all functions
 - \(f_{\sigma} : \{0,1\}^n \rightarrow \{0,\ldots,n\} ; \; x \mapsto \max\{i \in \{0,\ldots,n\} \mid x_{\sigma(1)} = z_{\sigma(1)}, \ldots, x_{\sigma(i)} = z_{\sigma(i)}\} \)
 - Black-box complexity of \(LO_n \), lower bound
 - \(\Omega(n) \), because you need \(\Omega(n) \) fitness evaluations even if \(\sigma = \text{id} \)
 - Black-box complexity of \(LO_n \), upper bounds
 - \(O(n^2) \), run-time of RLS, (1+1) EA, ...
 - \(O(n \log(n)) \): determine "the next bit" with \(\log(n) \) queries by simulating binary search (more details next slide)
 - Would be a natural lower bound:
 - "next bit"-position is a number in \(\{1,\ldots,n\} \), coding length \(\log(n) \)
 - A typical query teaches you a constant amount of information
 - DW (EA'11): \(O(n \log(n) / \log\log(n)) \) is enough...

The BinarySearch Trick

- Assume that you have a solution \(x \) with \(f_{\sigma}(x) = k \) and you know which \(k \) bit-positions are responsible for this. Denote by \(I \) the remaining bit-positions.
 - While \(|I| > 1 \) do
 - Choose \(J \subseteq I \) with \(|J| = |I|/2 \)
 - Obtain \(y \) from \(x \) by flipping the bits in \(J \)
 - If \(f_{\sigma}(y) > f_{\sigma}(x) \) then \(I := J \)
 - Else \(I := I \setminus J \)
 - Determines "the next bit" with at most \(\log(n) \) fitness queries
 - \(n \log(n) \) queries suffice to optimize \(LO_n \)
 - How can we do better?
Proving $O(n \log(n) / \log\log(n))$: Outline

- Assume that you have a solution x with $f_\sigma(x) = k$ and you know which k bit-positions are responsible for this. Denote by I the remaining bit-positions. Let $L := \log(n)^{1/2}$.

- **Step 1**: Use $L^2 = \log(n)$ iterations to find a y with $f_\sigma(y) = k + L$.
 - Flip the bits in I with probability $1/L$, accept if improvement.
 - Note: We don’t learn which L bit-positions lead to the improvement!!!

- **Step 2**: Use $\log(n)^{3/2} / \log\log(n)$ queries to determine the L bit-positions.
 - In y, flip the I-bits with probability $1/L$. Do so $\log(n)^{3/2} / \log\log(n)$ times.
 - Look at all outcomes with fitness $k+j$ and find out bit number $k+j+1$.
 - With high probability, the $\log(n)^{3/2} / \log\log(n)$ samples suffice to learn all L bit-positions.

- Step 1+2: $\log(n)^{3/2} / \log\log(n)$ fitness evaluations to gain $\log(n)^{1/2}$ bits...

Final Summary 😊

- Black-box complexity: Expected number of fitness evaluations the best black-box algorithm needs to query the optimum of the hardest instance.
 - $\min_{A} \max_{I} I(A,I)$
 - Note: lower bound on the performance of any EA, ACO, …

- Strongly related to guessing games
 - BBC(OneMax) = Mastermind
 - BBC(LeadingOnes) = what you should play in the next tutorial 😊

- Techniques:
 - Information theory: BBC $\geq \log(|\text{SearchSpace}|) / \log(|\text{fitness_values}|)$
 - Random guesses: Often $\leq \log(|\text{SearchSpace}|) / \log(|\text{typical_answers}|)$
 - Clever guesses: Be creative!