Evolutionary Computation With GPUs

Pierre Collet
SONIC
Stochastic Optimisation and Nature Inspired Computing
BFO – LSIIT
Université De Strasbourg
pierre.collet@unistra.fr

Simon Harding
IDSIA
SUPSI, USI
Lugano, Switzerland

Organisation of the tutorial

- General scope (P. Collet)
 - GPGPU Super-computers
 - Clusters of GPGPU machines
- GPU Programming 101 (S. Harding)
 - Programming model
 - CUDA 101
 - Alternatives to Cuda
- EASEA platform (P. Collet)
 - Benchmarks and real problems

Moore's Law

- Doubling of transistor density every 2 years.
- Will hold until 2029 according to Pat Gelsinger (Intel)

AMD Phenom II X4 940 BE running at 6Ghz in a bath of liquid nitrogen at -195°C...
GPUs are coming fast

- One slide presented at SC’10 by Bland (Oak Ridge):

Results of Application Readiness Review of Titan Accelerator-Based system

- "Use of the GPU did lead to a performance relative to power cost improvement in almost all cases."
- "There is significant upside potential in GPU performance as we learn how to effectively use manycore architectures and develop new algorithms."
- "GPUs are a harbinger of all future processors to come and there is ample evidence that designing applications for today's GPUs will positively impact the performance of all multicore and manycore processors both today and in the future."
- "Giving OLCF users access to a machine that is competitive as both a CPU and GPU system will provide an excellent transition vehicle for manycore applications development."

Future computers will be massively parallel

- In Nov 2007, the fastest machine was 500 Tflops (212,992 PowerPC 440 cores clocked at 700MHz).
- In Oct 2010, Tianhe-1a is capable of 2.5 Pflops. It is composed of 112 computer cabinets, 12 storage cabinets, 6 communications cabinets, and 8 I/O cabinets, for a total of 3,584 blades, containing 14,336 2.93GHz CPUs and 3 million 575MHz GPU cores.
- Exaflop machines are predicted to appear by 2020, and Zetaflop machines by 2030.

Question: how do you parallelize programs to efficiently use such machines?

EC and massive parallelism

- Evolutionary Algorithms are generic optimization methods that are intrinsically parallel.
- They can exploit ANY kind of parallelism (SIMD, SPMD, MIMD, ...)
- EA parallelism scales well (possibly supralinear speedup !)
- Perfect paradigm for Peta and Exascale computing, provided one can handle 4 levels of parallelism:
 - Massive parallelism on one GPU card
 - Parallelizing over several GPU cards
 - Parallelizing over several GPU machines
 - Parallelizing over several clusters of GPU machines

GPU PROGRAMMING 101
Getting started

- We need to learn a bit about the hardware
- Which in turn teaches us something about the software engineering approaches
- Which in turn leads on to programming GPUs

Coming up

- We will primarily look at CUDA
- But will also mention some alternatives:
 - Shaders
 - Products from GASS, Tidepowrd and Microsoft
 - OpenCL

Device

- GPU
- PCI-E bus interface
- Host
- Multiprocessor
- Shared memory
- Thread processors
Nvidia 480:
- 15 multiprocessors
- 32 cores per multiprocessor
- 480 cores in total
- 64Kb Shared memory per multiprocessor
- 1.5Gb Global memory

What is CUDA?
- C/C++ based language for GPGPU programming
- From Nvidia
- Only works on their graphics cards
- But it’s really common in the field...

Programming model
- It’s all about threads
 - Thousands of threads are OK
 - Thread is also called a kernel
- Each core runs a thread
- Threads are bundled together in blocks
- Blocks are bundled together in grids

Programming model
- Each thread can see the local memory of that processor core
- Threads within a block see the same shared memory
- Between blocks, there is the global memory
Programming model

- Each thread can calculate an ID using predefined variables available in the kernel:
 - `gridDim`: Dimensions of the grid in blocks
 - `blockDim`: Dimensions of the block in threads
 - `blockIdx`: Block index within the grid
 - `threadIdx`: Thread index within the block
- Dimensions are defined when the kernels are launched.

CUDA 101

- Let’s write a program to add two vectors of numbers together
 - E.g. `[0,1,2,3,4] + [5,6,7,8,9] = [5,7,9,11,13]`
- Do this in parallel
 - Each thread will deal with one index in the vectors

```c
__global__ void add( int *a, int *b, int *c )
{
    int index = threadIdx.x + blockIdx.x * blockDim.x;
    c[index] = a[index] + b[index];
}
```

CUDA threads don’t return this way

Means it runs on the device, and can be called from the host

We’ll pass pointers to 2 arrays to add together – and a pointer of where to store the results.
Now we need to get this running...

Let’s write a main method

```c
int main( void )
{
    return 0;
}
```

```c
int main( void )
{
    int DataLength = 2048 * 2048;
    int DataSize = DataLength * sizeof(int) ;
    int *a, *b, *c; //Pointers for HOST SIDE DATA
    a = (int*)malloc(DataSize);
    b = (int*)malloc(DataSize);
    c = (int*)malloc(DataSize);

    //Put some numbers in a and b
```

```c
    // Pointers to the device side data
    int *dev_a, *dev_b, *dev_c;
    cudaMalloc( (void**)&dev_a, DataSize );
    cudaMalloc( (void**)&dev_b, DataSize );
    cudaMalloc( (void**)&dev_c, DataSize );
    cudaMemcpy(dev_a, a, size, cudaMemcpyHostToDevice);
    cudaMemcpy(dev_b, b, size, cudaMemcpyHostToDevice);
```
CUDA 101

```c
int ThreadsPerBlock = 512;
int NumberOfBlocks = DataLength / ThreadsPerBlock;
add<<<NumberOfBlocks, ThreadsPerBlock>>>(
    dev_a, dev_b,
    dev_c
);
```

//Get the results back from GPU memory
```c
cudaMemcpy(
    c,
    dev_c,
    DataSize,
    cudaMemcpyDeviceToHost
);
```

//Tidy up
```c
free( a );
free( b );
free( c );
cudaFree( dev_a );
cudaFree( dev_b );
cudaFree( dev_c );
```

//Exit!
```c
return 0;
```
Another CUDA example

// Define the data size
#define N (2048*2048)

// Define the block size
#define THREADS_PER_BLOCK 512

__global__ void dot(int *a, int *b, int *c)
{
 __shared__ int temp[THREADS_PER_BLOCK];
 int index = threadIdx.x + blockIdx.x * blockDim.x;
 temp[threadIdx.x] = a[index] * b[index];
 __syncthreads();
 if(0 == threadIdx.x) {
 int sum = 0;
 for(int i = 0; i < THREADS_PER_BLOCK; i++)
 sum += temp[i];
 atomicAdd(c , sum);
 }
}
Another CUDA example

```c
__global__ void dot( int *a, int *b, int *c )
{
    __shared__ int temp[THREADS_PER_BLOCK];
    int index = threadIdx.x + blockIdx.x * blockDim.x;
    temp[threadIdx.x] = a[index] * b[index];
    __syncthreads();
    if( 0 == threadIdx.x ) {
        int sum = 0;
        for( int i = 0; i < THREADS_PER_BLOCK; i++ )
            sum += temp[i];
        atomicAdd( c , sum );
    }
}
```

Why atomicAdd?

- Why not `c+=sum`?
- `c+=sum` is not safe – race conditions
 - Read value at `c`
 - Read value of `sum`
 - Write new value back to `c`
- With many things happening at once, the values could be corrupted.
- atomicAdd solves this.

CUDA

- This tutorial only provides the real basics.
- Lots more to learn
 - Especially if you want highly optimized CUDA
- Lots of resources on line:
 - Google is your friend here.
Using CUDA from elsewhere

◆ If you have existing code you want to leverage
 ➢ Especially in Java, .net, Python
◆ Or you just hate programming in C
 ➢ Memory management!
◆ Wrappers maybe the way forward!

According to wikipedia

◆ There are MANY options:

<table>
<thead>
<tr>
<th>Language bindings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortran, FORTRAN90, CUDA, PGI CUDA Fortran Compiler</td>
</tr>
<tr>
<td>Lua, J, KappaJCUDA</td>
</tr>
<tr>
<td>DL, GnuCUDA</td>
</tr>
<tr>
<td>Mathematica, CUDAlink</td>
</tr>
<tr>
<td>MATLAB, Parallel Computing Toolbox and Distributed Computing Server, as well as 3rd party packages like Jacket</td>
</tr>
<tr>
<td>.NET, CUDA.NET</td>
</tr>
<tr>
<td>Perl, KappaJCUDA</td>
</tr>
<tr>
<td>Python, PyCUDA, KappaCUDA</td>
</tr>
<tr>
<td>Ruby, KappaCUDA</td>
</tr>
<tr>
<td>Java, JCUDA, JGpuBlas, Jcuda6, Jcuda8</td>
</tr>
<tr>
<td>Haskell, Data Access Accelerate</td>
</tr>
<tr>
<td>.NET, CUDA, NVIDIA, CUBLAS, CUFFT</td>
</tr>
</tbody>
</table>

Quick note!

◆ Nvidia also supply BLAS and FFT libraries
◆ These are also wrapped in other languages
 ➢ And in fact can be very easy to use from other languages.

```python
import numpy from pycublas import CUBLASMatrix
A = CUBLASMatrix( numpy.mat([[1,2,3],[4,5,6]],numpy.float32) )
B = CUBLASMatrix( numpy.mat([[2,3],[4,5],[6,7]],numpy.float32) )
C = A*B print C.np_mat()
```
(code from Wikipedia)

pyCuda

```
mod = comp.SourceModule(""
  __global__ void multiply_them(float *dest, float *a, float *b) { const int i = threadIdx.x; dest[i] = a[i] * b[i]; }
"")
multiply_them = mod.get_function("multiply_them")
a = numpy.random.randn(400).astype(numpy.float32)
b = numpy.random.randn(400).astype(numpy.float32)
dest = numpy.zeros_like(a)
multiply_them(drv.Out(dest), drv.In(a), drv.In(b),
block=(400,1,1))
print dest-a*b
```
pyCuda

- [link](http://mathema.tician.de/software/pycuda)

GASS CUDA.NET

- [link](http://www.hoopoe-cloud.com/Solutions/CUDA.NET/)
 - For .net / mono
 - Wraps up calls to .cubin files
 - i.e. Can load and run functions from precompiled CUDA kernels
 - Has been used for GP

jCuda

- [link](http://www.jcuda.de/)
 - Java wrapper
 - Again wraps up calling of CUDA functions
 - Lots of examples, well supported

Don’t like the look of CUDA?

- What else is there that has been used in the EA community and elsewhere?
Cg

- C for graphics
- Pretty much obsolete technology
- See paper “A Data Parallel Approach to Genetic Programming using Programmable Graphics Hardware” by Darren Chitty

RapidMind

- Obsolete
- Company bought up by Intel
- Seems to have moved to new product: Array Building Blocks
- See “A SIMD Interpreter For Genetic Programming on Graphics Cards” by W. Langdon and W. Banzhaf

Cg – D. Chitty

1. Initialise OpenGL and setup graphics window
2. Copy data inputs into separate textures
3. Create a cgContext object
4. Generate the initial population
5. For each individual:
 - Convert chromosomes to Cg source code using recursive functions
 - Compile and load program using Cg Toolkit
 - Bind program and textures to the cgContext object
 - Render the Cg program on the data
 - Get output from the CPU
 - Compare result with desired output and assign a fitness to the individual
6. For each generation:
 - Generate a new population using crossover and mutation
 - Evaluate population by performing step 5
7. Close and output best result

```cpp
float4 FragsentProgram (in float2 coords : TEXCOORD0,
uniform sampler2D InputTexture0,
uniform sampler2D InputTexture1,
uniform sampler2D InputTexture2,
uniform sampler2D InputTexture3) : COLOR
{
    float4 X = tex2DCT (InputTexture0, coords);
    float4 Y = tex2DCT (InputTexture1, coords);
    float4 Z = tex2DCT (InputTexture2, coords);
    float4 V1 = X;
    float4 V2 = Y;
    float4 V3 = Z;
    float4 V4 = X*Y;
    float4 V5 = Y*Z;
    float4 V6 = Z*X;
    float4 V7 = V1*V2;
    float4 V8 = V2*V3;
    float4 V9 = V3*V1;
    return(V12);
}
```
Shader programming

◆ As the name suggests, this is really about graphics
◆ But it is possible to abuse for computations
◆ See “Linear Genetic Programming GPGPU on Microsoft’s Xbox 360” by G. Wilson and W. Banzhaf for an example using HLSL

MS Accelerator

◆ Research platform
◆ .net library for vector maths
◆ See “Fast Genetic Programming & Developmental Systems” by S. Harding and W. Banzhaf

MS Accelerator

```
ParallelArrays.InitGPU();
float[,] CPU_Array1 = new float[4096,4096];
float[,] CPU_Array2 = new float[4096, 4096];

// Populate CPU arrays here
float[,] GPU_Array1 = new Disposable<float>(ParallelArrays(CPU_Array1));
float[,] GPU_Array2 = new Disposable<float>(ParallelArrays(CPU_Array2));
float[,] GPU_Array3 = ParallelArrays.Add(GPU_Array1, GPU_Array2);
float[,] GPU_Array4 = ParallelArrays.Divide(0.1234f, GPU_Array3);
float[,] CPU_Result = new float[4096, 4096];
ParallelArrays.ToArray(GPU_Array4, out CPU_Result);
// Process CPU_Result array here
ParallelArrays.UnInit();
```

GPU.NET

◆ Commercial product from TidePowerd
◆ http://www.tidepowerd.com/
◆ Converts compiled .net code to device code
◆ See new paper tomorrow in the CIGPU session: “Implementing Cartesian Genetic Programming Classifiers on Graphics Processing Units using GPU.NET” by S. Harding and W. Banzhaf
GPU.Net

```csharp
private static void Addgpu(float[] a, float[] b, float[] c)
{
    // Get the thread id and total number of threads
    int ThreadId = BlockDimension.X * Block.X + ThreadIndex.X;
    int TotalThreads = BlockDimension.X * GridDimension.X;
    // Loop over the vectors 'a' and 'b', adding them
    // pairwise and storing the sums in 'c'
    for (int ElementIndex = ThreadId; ElementIndex < a.Length; ElementIndex += TotalThreads)
    {
        c[ElementIndex] = a[ElementIndex] + b[ElementIndex];
    }
}
```

OpenCL

- http://www.khronos.org/opencl/
- Open standard for GPU and parallel programming
 - Multivendor
 - Diverse hardware (CPU, FPGA, GPU etc)
- See competition entry “CUDA and OpenCL-based asynchronous PSO” by Y. Nashed et al.

- Still relatively unexplored by the community
- Wrappers exist for access from other languages
- Other tech uses it. See WebCL
OpenCL

```c
// Kernel void vector_add(float *src_a, float *src_b, float *res, int num)
{
    // get global id(0) returns the ID of the thread in execution.
    // As every threads are launched at the same time, executing the same kernel,
    // each one will receive a different ID, and consequently perform a different computation.
    const int idx = get_global_id(0);

    // How each work item asks itself: "Is my ID inside the vector's range?"
    // If the answer is 'yes', the work item performs the corresponding computation.
    if (idx < num)
        res[idx] = src_a[idx] + src_b[idx];
}
```

What does the future hold?

- Who knows?
- Hardware: Intel multiple cores, AMD’s APUs
- Software: TPL, New updates to CUDA, OpenCL

Different kinds and levels of parallelism

- Low-level massive parallelism:
 - GeForce GTX 580 contains 512 cores running in an SPMD model:
 - One single program (one context).
 - Cores grouped by 32, running in SIMD mode, but different bundles can run on different parts of the code.
 - Several cards in one machine: MIMD model.
- High-level parallelism:
 - Several machines together (cluster of machines).
 - Several clusters together.

EASEA: an evolutionary platform for massive parallel machines

- First version of EASEA (EAsy Specification of Evolutionary Algorithms) presented at EA’99
- 2000-2003: EASEA is the programming language of the DREAM (Distributed Resource Evolutionary Algorithm Machine).
- 2008: EASEA is an evolutionary platform to automatically parallelize evolutionary algorithms on 4 levels of parallelism:
 - parallelization on one GPU card,
 - parallelization on several GPU cards,
 - parallelization on several heterogeneous machines
 - parallelization on several heterogeneous clusters of GPU machines.
- 2012 EASEA will run on the French Grid
EASEA: a language that can handle GPGPUs

- EASEA stands for Easy Specification of Evolutionary Algorithm.
- In order to code an evolutionary algorithm in EASEA, the user only needs to write (in C) the application-specific code, i.e.:
 - Initialisation function (how to initialise the genome)
 - Evaluation function (dependent on the problem)
 - Crossover operator (how to recombine 2 genomes)
 - Mutation operator (how to mutate the genome).

*EASEA is available on Sourceforge: http://sourceforge.net/projects/easea/

Weierstrass initialisation and evaluation code

```c
\GenomeClass::initializer :  
for(int i=0; i<N; i++) {  
    Genome.x[i] = random((float)-1,(float)1);  
}

\GenomeClass::evaluator :  
float res = 0.;  
float val[N];  
for (int i = 0;i<N; i++) {  
    val[i] = 0.;  
    for (int k=0;k<ITER;k++)  
        val[i] += pow(2.,-k*.25) *sin(pow(2.,k)*Genome.x[i]);  
    res += Abs(val[i]);  
}  
return (res);  
```
Weierstrass crossover and mutation code

\GenomeClass::crossover :
 for (int i=0; i<N; i++) {
 float alpha = random(0.,1.);
 child->Genome.x[i] = alpha*parent1->Genome.x[i] + (1.-alpha)*parent2->Genome.x[i];
 }

\GenomeClass::mutator :
 for (int i=0; i<N; i++)
 if (tossCoin(pMutPerGene))
 Genome.x[i]+=SIGMA*random((float)0,(float)1);
 Genome.x[i]=MAX(X_MIN,MIN(X_MAX,Genome.x[i]));

Evolutionary Algorithm parameters

✦ Standard EA parameters need to be provided:

\Default run parameters :
 Number of generations : 100
 Mutation probability : 1
 Crossover probability : 1
 Population size : 20000
 Genitors selector: Tournament 7
 Offspring size : 100%
 Competing Parents : 50%
 Parents reduce : Deterministic
 Final reduce: Deterministic
 Elitism : On
 Evaluator goal : Minimise

EASEA compilation and execution

✦ Then, typing:

 $ easea weierstrass -cuda

 on the command line will create C++ code for the evolutionary
 algorithm, and parallelized C code for the CUDA sdk.

✦ A makefile is automatically generated, so simply typing:

 $ make

 will compile for the GPGPU.

✦ Then, typing:

 $./weierstrass

 will launch the optimisation of the Weierstrass function on the CPU,
 with parallel evaluations on the GPGPU card.

✦ Thanks to CUDA, all GPGPU NVIDIA cards are supported.

Island model parallelisation

The function to optimise is:

\[f(x) = 20 + x_1^2 + x_2^2 - 10 \cos(2\pi x_1) - 10 \cos(2\pi x_2) \]
Island parallelism

High-level massive parallelism (island model)

Many PF machines for Exascale Computing?

Benchmark for the island model: Rastrigin

$$f(x) = 10 + x^2 + y^2 - 10\cos(2\pi x) - \cos(2\pi y)$$
Island model speedup on Rastrigin-1000

Linear speedup with the number of machines

Weierstrass function \((h=0.35, 2\text{ dimensions})\)

\[
\sum_{i=1}^{100} 2^{-0.35\sin(2^i x)} + \sum_{i=1}^{120} 2^{-0.35\sin(2^i y)}
\]

GTX275 vs Core i7 950 speedup

- GPU/CPU speedup on 1000 dimensions Weierstrass \(h=0.35\).

Island model on Weierstrass \(h=0.35\) 1000 dim
Island model speedup on Weierstrass $h=0.35$

- Linear speedup until value 525, where one machine only stalls in a local optimum (average over 20 runs).
- Beyond, the island model brings supra-linear speedup, but still in a linear way (on value 425, speedup of 22 for 5 machines, 45 for 10 machines, 82 for 20 machines).
- Impossible to find values under 425 with one machine only while this is reached in 10 mn on 20 machines.
- For value 425, the actual speedup obtained with 20 machines over a single core of core i7-950 is $160 \times 80 = 12800$! 1 day = 35 years !

Zeolite hunt:
- Zeolites are porous crystalline structures with many applications in industry made of oxygen atoms around a silicon or aluminium atom.
- A replication of the unit structure allows to obtain the pores.
- Zeolites are used for filtering, catalysis, energy storing, medicine, absorbing liquids, odours (cat litter), ...

GPU speedup on zeolite problem: ≈ 120

1, 5, 10 and 20 GPU machines

Submission to Science !
EC is ready for EC!

- EC is a generic massively parallel optimization method that can exploit peta and exascale computing.
- Not rocket science anymore: EASEA regularly runs on 20 machines with 256 cores = 5000 cores on many different problems (cf. Zeolite problem).
- Developments: new algorithms must be coined for HUGE populations (100K to 1M individuals on one island).
- New practices must be developed (increasing mutation, dealing with heterogeneous machines, ALPS-like algorithms, …)
- Current problem: finding large enough problems to get such machines to heat up.

More GPU at GECCO

- Tomorrow:
 - CIGPU - Computational Intelligence using Consumer Hardware
- Thursday:
 - Parallel Evolutionary Systems
- Friday:
 - GPU Competition

EA,GPU elsewhere

This work has been sponsored by…