A Service Oriented Evolutionary Architecture: Applications and Results

Pablo García-Sánchez
Dept. of Computer Architecture and Computer Technology
University of Granada, Spain
pgarcia@atc.ugr.es

ABSTRACT
This paper shows the stage of development of a Service Oriented Architecture for Evolutionary Algorithms and the first results obtained in two different areas. The abstract architecture is presented, with its associated implementation using a widely used technology. Results attained in experiments with parameter adaptation in distributed heterogeneous machines are presented and the usage of the architecture in Evolutionary Art is also applied.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, and Search—Heuristic methods; D.2.12 [Software Engineering]: Interoperability—Distributed objects

General Terms
Algorithms

Keywords
Service Oriented Architecture, Framework, Parameter Setting, Distributed Algorithms, Island Model, Evolutionary Art

1. INTRODUCTION
Ian Foster defined in [6] the term Service-Oriented Science, that is, scientific research using interoperable and distributed networks of services, where the key of success is in the uniformity of interfaces, so researchers can discover and access services without developing specific code for each data source, program or sensor. Therefore, this paradigm has the potential to increase scientific productivity thanks to the wide set of available distributed tools, and also increase the automation of computation data analysis. On the other hand, other trends such as Cloud Computing [3] and GRID [5] are leading to heterogeneous computational devices working at the same time. Moreover, many laboratories do not utilize classic clusters, but the usual workstations used by scientists can behave in group as a heterogeneous cluster.

Nowadays, there exist many frameworks for Evolutionary Algorithms (EAs), but all of them are Object Oriented statically programmed, not taking the advantages that Service Oriented Computing is able to offer. As services must be well-defined, encapsulated and reusable, it is necessary to abstract enough to have a good EA design. In [7] authors discuss about genericity in evolutionary computation software tools. Although their discussion is based in Object Oriented programming, the genericity of an EA framework can be applied to develop Evolutionary Computation (EC) services, and extended with new functionalities.

Our previous work [8] presents an abstract Service Oriented Architecture for Evolutionary Algorithms (SOA-EA), describing the set of guidelines and steps to migrate from traditional development to SOA. It also presents a specific implementation, called OSGiLiath: an environment for the development of distributed algorithms, extensible via plug-ins architecture, and based on a wide-accepted software specification (OSGi: Open Services Gateway Initiative [12]).

This paper shows how this implementation has been used to obtain results in two different areas: one in the algorithmic scope (parameter tuning in heterogeneous devices [2]) and also in the application of EAs (Evolutionary Art [4]).

The rest of the work is structured as follows: after the state of the art, we present the developed service oriented architecture in Section 3. Then, the results of the first experiment in heterogeneous clusters are shown (Section 4), followed by an application in Evolutionary Art (Section 5). Finally conclusions and future lines of work are shown.

2. STATE OF THE ART
Even though the Service Oriented Architecture is extensively used in software development, it is not widely extended in the EA software scope. Firstly, there exist Object Oriented frameworks, such as Algorithm::Evolutionary, JCLEC or jMetal. Users implement specific interfaces of these frameworks (such as individual or crossover) and they group them in the source code. For example, creating an operator object that groups several operators. However, these frameworks are not compatible between them. For example, the operators created in JCLEC can not be used in jMetal (despite both are programmed in Java). Also, they can not control the services (operators) outside the source code. Parallelism and distribution are added in other frameworks, such as MALLBA, DREAM or ECJ, but using exter-
nal libraries (such as MPI or DRM), so the code that uses these libraries is mixed with the algorithm’s code.

Even being distributed, these frameworks can not communicate with each other. HeuristicLab is one of the few plug-in and service oriented frameworks. It uses web services for communication, but just to distribute the load, after consulting a central database of available jobs. The work [13] contains a comparison and the references of the previous frameworks.

Another related field is the heterogeneous evolutionary computing, where two areas exist: heterogeneous hardware and heterogeneous parameters. In the first area authors study or adapt algorithms depending on the machine configuration [2, 11]. In the area of heterogeneous parameters, setting in each island (node) a different sets of parameters can also increase the performance of distributed EAs, as explained in [10, 15].

Our work presents a combination of these ideas, where a parameter tuning given by the computational power of the machines is performed. To our knowledge, there are no works that modify parameters of the EA depending of the node where the island is being executed.

3. A SERVICE ORIENTED ARCHITECTURE FOR EVOLUTIONARY ALGORITHMS

In [8] we presented an abstract architecture composed by loosely coupled, highly configurable and language-independent services for Evolutionary Computation (called SOA-EA). As an example of implementation of this architecture, a complete process development using a specific service oriented technology (OSGi) was explained. With this implementation, less effort than classical development in integration, distribution mechanisms and execution time management has been attained. In addition, steps, ideas, advantages and disadvantages, and guidelines to create service oriented evolutionary algorithms were explained.

In [7], six criteria for qualify EA frameworks were presented: generic representation, fitness, operator, model, parameters management and configurable output. In our previous work we have shown how SOA follows these lines of genericity, but can also extend them:

- Genericity in the service interfaces: service interfaces are established to create new implementations. Furthermore, these interfaces must be abstract enough to avoid their modification.
- Programming language independence: for example, services implemented in Java can use services implemented in C++ and vice-versa.
- Distribution transparency: it is not mandatory to use a specific library for the distribution, or modify the code to adapt the existing operators.
- Flexibility: easy to add and remove elements to use the self-adaptation or other mechanisms.

A specific implementation of our architecture (called OSGiLiath) has been developed using the OSGi service oriented technology, with a number of services already developed. These services can be combined in several ways to obtain different algorithms, and can be dynamically bound to change the needed EA features. In addition, new services can be added in execution time using our implementation. No specific source code for a basic distribution needs to be added, and no source code has been modified to achieve the previous tasks.

4. ADAPTING THE POPULATION SIZE TO HARDWARE

One of the first experiments performed with OSGiLiath has been to establish the effect of the population size in homogeneous and heterogeneous clusters. The algorithm to be improved is a distributed Genetic Algorithm. The algorithm is steady-state: the offspring is mixed with the parents and the worst individuals are removed. A ring topology is used, and the best individual is sent after a fixed number of generations of each node (64). Two different parameter configurations have been used: 64 individuals per node (homogeneous size) and a different number of individuals proportional to the computational power of each node. The uniform crossover is used (with a rate of 0.5) and bit-flip mutation (with a probability of 1/genome size).

The problems to evaluate are the Massively Multimodal Deceptive Problem (MMDP) [9] and the OneMax problem [16]. Each one requires different actions/abilities of the GA at the level of population sizing, individual selection and building-blocks mixing. The chromosome length is 150 for MMDP and 5000 for OneMax.

To test the algorithm two different computational systems have been used: an heterogeneous cluster and an homogeneous cluster. The first one is formed by different computers of our lab with different processors, operating systems and memory size. The latter is a dedicated scientific cluster formed by homogeneous nodes. Table 1 shows the features of each system.

Acronyms for each configuration are HoSi (homogeneous population size), HeSi (heterogeneous population size), HoHa (homogeneous hardware) and HeHa (heterogeneous hardware).

Each different configuration has been tested 30 times. The number of individuals in each node of the HeSi configuration is proportional to the computational power of each node. In this case the computational power has been calculated comparing the average number of generations obtained in the nodes of the HoSi/HeHa configuration for the MMDP problem. Thus, the HeSi configuration uses 98, 84, 66, and 8 individuals (from N1 to N4). Note that, having two nodes with the same processors and memory (N1 and N2), they have different computational power.

4.1 Results

The objectives of parallel programming are to tackle large computational problems, increase the performance of algorithms in a finite time, or reduce time. In this work we focus in the last objective. As claimed by [1], the number of evaluations can be misleading in the parallel algorithms area. In our case, for example, the evaluation time is different in each node of the heterogeneous cluster, and the real algorithm speed could not be reflected correctly. The total number of generations, and the maximum number of generations of the slower node are shown. It is difficult to compare between HoHa and HeHa for the same reason: the evaluation time is different in each system (and also in each node).
4.1.1 MMDP Problem
Table 2 shows the results for the MMDP problem. In the HeHa system, adapting the population to the computational power of each node makes the algorithm end significantly faster. This can be explained by the evaluation time is different in all nodes. On the other hand, in the HoHa system, setting the same population sizes makes no difference in time, that is, changing this parameter does not influence the performance of the algorithm (no statistical significance attained).

4.1.2 OneMax Problem
Results for OneMax are shown in Table 3. In this problem, adapting the population sizes decreases significantly the time for solving in the heterogeneous cluster. In the homogeneous system, the effect of changing the population sizes is more evident, and this time the time are reduced significantly.

The efficiency on OneMax problems depends more on the ability to mix the building-blocks, and less on the genetic diversity and size of the population (as with MMDP). No genetic diversity is particularly required among the individuals. When properly tuned, a simple Genetic Algorithm is able to solve OneMax in linear time. Sometimes, problems like OneMax are used as control functions, in order to check if very efficient algorithms on hard functions fail on easier functions.

In conclusion, adapting the population size to computational power of the nodes of a heterogeneous cluster increases the speed in distributed EAs.

5. COMPARING HISTOGRAMS IN EVOLUTIONARY ART
OSGiLiath has also been used to study the differences in using the information of the HSV (Hue, Saturation, Value) and RGB (Red, Green, Blue) histograms during the evolution of an aesthetic image. A service to access to Processing [14], a programming framework designed for visual artists, have been implemented. In addition, services to measure the fitness, and implementations of individuals are also available in OSGiLiath. Processing is used inside the EA to model the individuals, generate their associate images and extract information from them (HSV, RGB and Average histograms) to fit with the histograms of a test image.

A steady-state evolutionary algorithm has been used. Each individual is randomly generated at the initialization of the EA. The genome size is 50 elements (circles of maximum radius of 128 pixels). Population size has been set to 32 individuals. Uniform crossover rate is 0.5, and a binary tournament has been chosen for selection. Mutation probability is 0.04 (the usual value of 1/genomessize). Finally, the image size for each individual is 256x256 pixels. The individuals have been compared with the histograms obtained from an aesthetic predefined image to guide the evolution.

Three different fitness functions using color histogram have been tested and added to OSGiLiath as services: difference between the HSV and RGB histograms, and an average difference of the two histograms at the same time. Table 4 shows the attained results. Experiments show that better results in terms of similarity are obtained using only the HSV comparison, where the average value is higher (due to the noisy information provided by the RGB). This is a basic image metric, only used by purposes of proof-of-concept and more complex measurements will be studied in future works.

6. CONCLUSIONS
Service Oriented Computing is a new trend where computational resources cooperate in an automatic way without taking into account programming language or operating system. Also, other trends, such as Cloud Computing are providing a massively amount of heterogeneous computational devices. This has been the motivation to develop SOA-EA and OSGiLiath.

The first applications have been a preliminary study about adapting the population size of an EA to computational power of different nodes in a heterogeneous cluster. Results show that adapting the population size decreases the execution time significantly in heterogeneous clusters, while changing this parameter in homogeneous clusters not always performs better. This is a promising start for adapting EAs to the computational power of each execution node.

As future work a scalability study will be performed, with more computational nodes and larger problem instances. Moreover, other parameters such as migration rate or crossover probability will be adapted to the execution nodes. This studies will lead to automatic adaptation during runtime, with different nodes entering or exiting in the topology during the algorithm execution or adapting to the current load of the system.

Finally, new experiments in the field of Evolutionary Art will be performed.

The project development is explained and also available for download and modification under a LGPL V3 License at http://www.osgiliath.org
Table 2: Results for the MMDP problem.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Max. generations</th>
<th>Total generations</th>
<th>Time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HoSi/HeHa</td>
<td>146401.48 ± 65699.69</td>
<td>380967.25 ± 165686.84</td>
<td>136914.03 ± 60028.48</td>
</tr>
<tr>
<td>HeSi/HeHa</td>
<td>96051.5 ± 45110.90</td>
<td>289282.3 ± 135038.10</td>
<td>109875.76 ± 49185.51</td>
</tr>
<tr>
<td>HoSi/HoHa</td>
<td>107334.46 ± 78167.19</td>
<td>393119.86 ± 241835.27</td>
<td>237759.43 ± 178709.86</td>
</tr>
<tr>
<td>HeSi/HoHa</td>
<td>149732.6 ± 81983.74</td>
<td>438171.16 ± 240169.19</td>
<td>245776.93 ± 134715.52</td>
</tr>
</tbody>
</table>

Table 3: Results for the OneMax problem.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Max. generations</th>
<th>Total generations</th>
<th>Time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HoSi/HeHa</td>
<td>4739.41 ± 305.32</td>
<td>12081.51 ± 776.35</td>
<td>72152.32 ± 4994.71</td>
</tr>
<tr>
<td>HeSi/HeHa</td>
<td>3438.03 ± 149.47</td>
<td>11277.33 ± 471.77</td>
<td>61870.2 ± 2518.74</td>
</tr>
<tr>
<td>HoSi/HoHa</td>
<td>3133.36 ± 101.70</td>
<td>12347.83 ± 394.99</td>
<td>62105.03 ± 1964.75</td>
</tr>
<tr>
<td>HeSi/HoHa</td>
<td>13897.86 ± 625.27</td>
<td>20725.63 ± 929.43</td>
<td>56120.53 ± 2491.92</td>
</tr>
</tbody>
</table>

7. ACKNOWLEDGMENTS

This work has been supported in part by FPU research grant AP2009-2942 and projects EvOrq (P08-TIC-03903), UGR PR-PP2011-5, project 83 of Campus CEI BioTIC and TIN2011-28627-C04-02.

8. REFERENCES