Historical roots:

- **Evolution Strategies (ESs):**
 - developed by Rechenberg, Schwefel, etc. in 1960s.
 - focus: real-valued parameter optimization
 - individual: vector of real-valued parameters
 - reproduction: Gaussian “mutation” of parameters
 - M parents, K>>M offspring

- **Evolutionary Programming (EP):**
 - Developed by Fogel in 1960s
 - Goal: evolve intelligent behavior
 - Individuals: finite state machines
 - Offspring via mutation of FSMs
 - M parents, M offspring

- **Genetic Algorithms (GAs):**
 - developed by Holland in 1960s
 - goal: robust, adaptive systems
 - used an internal “genetic” encoding of points
 - reproduction via mutation and recombination of the genetic code.
 - M parents, M offspring
Present Status:

• wide variety of evolutionary algorithms (EAs)
• wide variety of applications
 – optimization
 – search
 – learning, adaptation
• well-developed analysis
 – theoretical
 – experimental

Interesting dilemma:

• A bewildering variety of algorithms and approaches:
 – GAs, ESs, EP, GP, Genitor, CHC, messy GAs, …
• Hard to see relationships, assess strengths & weaknesses, make choices, …

A Personal Interest:

• Develop a general framework that:
 – Helps one compare and contrast approaches.
 – Encourages crossbreeding.
 – Facilitates intelligent design choices.

Viewpoint:
Starting point:

• Common features

• Basic definitions and terminology

Common Features:

• Use of Darwinian-like evolutionary processes to solve difficult computational problems.

• Hence, the name:

 Evolutionary Computation

Key Element:

An Evolutionary Algorithm

• Based on a Darwinian notion of an evolutionary system.

• Basic elements:
 – a population of “individuals”
 – a notion of “fitness”
 – a birth/death cycle biased by fitness
 – a notion of “inheritance”

An EA template:

1. Randomly generate an initial population.

2. Do until some stopping criteria is met:

 Select individuals to be parents (biased by fitness).
 Produce offspring.
 Select individuals to die (biased by fitness).

 End Do.

3. Return a result.
Instantiate by specifying:

- Population dynamics:
 - Population size
 - Parent selection
 - Reproduction and inheritance
 - Survival competition
- Representation:
 - Internal to external mapping
- Fitness

EA Population Dynamics:

- Population sizing:
 - Parent population size M:
 - degree of parallelism
 - Offspring population size K:
 - amount of activity w/o feedback

Examples:
- $M=1$, K small: early ESs
- M small, K large: typical ESs
- M moderate, $K=M$: traditional GAs and EP
- M large, K small: steady state GAs
- $M = K$ large: traditional GP
Selection pressure:

- Overlapping generations:
 - more pressure than non-overlapping

- Selection strategies (decreasing pressure):
 - truncation
 - tournament and ranking
 - fitness proportional
 - uniform

- Stochastic vs. deterministic

Reproduction:

- Preserve useful features
- Introduce variety and novelty

- Strategies:
 - single parent: cloning + mutation
 - multi-parent: recombination + mutation
 - ...

- Price’s theorem:
 - fitness covariance

Exploitation/Exploration Balance:

- Selection pressure: exploitation
 - reduce scope of search

- Reproduction: exploration
 - expand scope of search

- Key issue: appropriate balance
 - e.g., strong selection + high mutation rates
 - e.g., weak selection + low mutation rates

Representation:

- How to represent the space to be searched?
 - Genotypic representations:
 - universal encodings
 - portability
 - minimal domain knowledge
Representation:
• How to represent the space to be searched?
 – Phenotypic representations:
 • problem-specific encodings
 • leverage domain knowledge
 • lack of portability

Fitness landscapes:
• Continuous/discrete
• Number of local/global peaks
• Ruggedness
• Constraints
• Static/dynamic

The Art of EC:
• Choosing problems that make sense.
• Choosing an appropriate EA:
 – reuse an existing one
 – hand-craft a new one

EC: Using EAs to Solve Problems
• What kinds of problems?
• What kinds of EAs?
Intuitive view:

- parallel, adaptive search procedure.
- useful global search heuristic.
- a paradigm that can be instantiated in a variety of ways.
- can be very general or problem specific.
- strong sense of fitness “optimization”.

Evolutionary Optimization:

- fitness: function to be optimized
- individuals: points in the space
- reproduction: generating new sample points from existing ones.

Useful Optimization Properties:

- applicable to continuous, discrete, mixed optimization problems.
- no \textit{a priori} assumptions about convexity, continuity, differentiability, etc.
- relatively insensitive to noise
- easy to parallelize

Real-valued Param. Optimization:

- high dimensional problems
- highly multi-modal problems
- problems with non-linear constraints
Discrete Optimization:

- TSP problems
- Boolean satisfiability problems
- Frequency assignment problems
- Job shop scheduling problems

Multi-objective Optimization:

- Pareto optimality problems
- A variety of industrial problems

Properties of standard EAs:

- GAs:
 - universality encourages new applications
 - well-balanced for global search
 - requires mapping to internal representation

Properties of standard EAs:

- ESs:
 - well-suited for real-valued optimization.
 - built-in self-adaptation.
 - requires significant redesign for other application areas.
Properties of standard EAs:

• **EP:**
 – well-suited for phenotypic representations.
 – encourages domain-specific representation and operators.
 – requires significant design for each application area.

Other EAs:

• **GENITOR: (Whitley)**
 – “steady state” population dynamics
 – $K=1$ offspring
 – overlapping generations
 – parent selection: ranking
 – survival selection: ranking
 – large population sizes
 – high mutation rates

Other EAs:

• **GP: (Koza)**
 – standard GA population dynamics
 – individuals: parse trees of Lisp code
 – large population sizes
 – specialized crossover
 – minimal mutation

Other EAs:

• **Messy GAs: (Goldberg)**
 – Standard GA population dynamics
 – Adaptive binary representation
 • genes are position-independent
Other EAs:

- GENOCOP: (Michalewicz)
 - Standard GA population dynamics
 - Specialized representation & operators for real valued constrained optimization problems.

Designing an EA:

- Choose an appropriate representation
 - effective building blocks
 - semantically meaningful subassemblies

- Choose effective reproductive operators
 - fitness covariance

Designing an EA:

- Choose appropriate selection pressure
 - local vs. global search

- Choosing a useful fitness function
 - exploitable information

Industrial Example: Evolving NLP Tagging Rules

- Existing tagging engine
- Existing rule syntax
- Existing rule semantics
- Goal: improve
 - development time for new domains
 - tagging accuracy
Evolving NLP Tagging Rules

• Representation: (first thoughts)
 – variable length list of GP-like trees

• Difficulty: effective operators

Evolving NLP Tagging Rules

• Representation: (second thoughts)
 – variable length list of pointers to rules

• Operators:
 – mutation: permute, delete rules
 – recombination: exchange rule subsets
 – Lamarckian: add a new rule

Evolving NLP Tagging Rules

• Population dynamics:
 – multi-modal: $M > \text{small}$
 • typical: 30-50
 – high operator variance: $K/M > 1$
 • typical: 3-5 : 1
 – parent selection: uniform
 – survival selection: binary tournament

Evolving NLP Tagging Rules

• So, what is this thing?
 – A GA, ES, EP, …

• My answer:
 – a thoughtfully designed EA
Analysis tools:

- Schema analysis
- Convergence analysis
- Markov models
- Statistical Mechanics
- Visualization

New developments and directions:

- Exploiting parallelism:
 - coarsely grained network models
 - isolated islands with occasional migrations
 - finely grained diffusion models
 - continuous interaction in local neighborhoods

New developments and directions:

- Co-evolutionary models:
 - competitive co-evolution
 - improve performance via “arms race”
 - cooperative co-evolution
 - evolve subcomponents in parallel

New developments and directions:

- Exploiting Morphogenesis:
 - sophisticated genotype --> phenotype mappings
 - evolve plans for building complex objects rather than the objects themselves.
New developments and directions:

• Self-adaptive EAs:
 – dynamically adapt to problem characteristics:
 • varying population size
 • varying selection pressure
 • varying representation
 • varying reproductive operators
 – goal: robust “black box” optimizer

New developments and directions:

• Hybrid Systems:
 – combine EAs with other techniques:
 • EAs and gradient methods
 • EAs and TABU search
 • EAs and ANNs
 • EAs and symbolic machine learning

New developments and directions:

• Time-varying environments:
 – fitness landscape changes during evolution
 – goal: adaptation, tracking
 – standard optimization-oriented EAs not well-suited for this.

New developments and directions:

• Agent-oriented problems:
 – individuals more autonomous, active
 – fitness a function of other agents and environment-altering actions
 – standard optimization-oriented EAs not well-suited for this.
EA Generalizations:

- Meta-heuristics:
 - Heuristic for designing heuristics
 - E.g., hill climbing, greedy, ...
 - Adopt no-free lunch view
 - Instantiate EA template in a problem-specific manner

EA Generalizations:

- Nature-Inspired Computation:
 - Early example: simulated annealing
 - Today: evolutionary algorithms
 - Others: particle swarm, ant colony, ...

Conclusions:

- Powerful tool for your toolbox.
- Complements other techniques.
- Best viewed as a paradigm to be instantiated, guided by theory and practice.
- Success a function of particular instantiation.

More information:

- Journals:
 - Evolutionary Computation (MIT Press)
 - Trans. on Evolutionary Computation (IEEE)
 - Genetic Programming & Evolvable Hardware
- Conferences:
 - GECCO, CEC, PPSN, FOGA, ...
- Internet:
 - www.cs.gmu.edu/~eclab
- My book:
 - Evolutionary Computation: A Unified Approach
 - MIT Press, 2006