Evolutionary computation for supervised learning

Supervised learning

- Inferring a model from observational data
- Main objective: to produce models that generalize
- Two types: classification and regression
- Wide range of applications
 - Pattern recognition, medical diagnosis, irregularity detection, forecasting (e.g. finance, weather), high-level control, etc.

Evolutionary computation

- Bio-inspired meta-heuristics
- Black-box optimization
 - Derivative-free
 - Non-convex objectives
 - Non-conventional representations

Supervised learning presents many challenges that can be solved through optimization

- How can evolutionary computation be useful to improve supervised learning?

Aim and scope

- Questions tackled in this tutorial
 - What is supervised learning and what are its main issues?
 - Where is EC successful for doing supervised learning?
- This tutorial is:
 - A short presentation of relevant notions related to supervised learning
 - A selection of various approaches for evolutionary supervised learning
 - A proposal on how EC can successfully achieve or support supervised learning
- This tutorial is not:
 - An exhaustive survey on the application of EC to supervised learning
 - On how to improve EC with machine learning techniques (e.g. surrogate models)

Outline

- Overview of supervised learning
 - Presentation of supervised learning
 - Classification and regression
 - Model selection and generalization
- Applying EC to supervised learning
 - Feature selection and construction
 - Model optimization
 - Ensemble methods
 - Learning methodologies
- Perspectives and concluding remarks
Part I

Supervised Learning Overview

C. Gagné (U. Laval)
EC for Supervised Learning
GECCO 2013 Tutorial 5 / 68

Why machine learning?

- Machine learning consists in using computers for optimizing an information processing model according to some performance criteria based on observations, be it data examples or past experiences.
- When we know the good processing model to use, there is no need to do learning!
- Machine learning can be useful when:
 - We do not have expertise on the problem (e.g. rover on Mars)
 - We have an expertise, but cannot explain it (e.g. face recognition)
 - Solutions to the problem are changing over time (e.g. packet routing)
 - Solutions must be personalized (e.g. biometric identification)

Example

A credit company wants to estimate automatically the risk level of its clients.
Available measures: client incomes (x_1) and client savings (x_2).
Database of clients tagged as high risk (red) or low risk (green).

If $x_1 > 0.32$ and $x_2 > 0.27$ then low risk else high risk.
Model and observations

- **Goal**: to infer a **general processing model** from specific observations
 - The model must be a correct and useful approximation of the observations
 - Observations are cheap and often available in high volume; knowledge is rare and expensive
 - Example in data mining: link customers transactions to their buying behaviour
 - Suggestion of similar items on Amazon (books, musics), Netflix (movies), etc.

Views of machine learning

- To optimize a model from observations according to a performance criterion
 - **Statistical view**: to infer from samples
 - **Computing view**: to build algorithms and representations efficient at generating and evaluating the models
 - **Engineering view**: to solve problems without having to specify or customize manually the processing models

Supervised learning

- Supervised learning
 - Goal: to learn a projection between observations X as input and associated values Y as output
- Mathematical model
 - $y = h(x; \theta)$
 - $h(\cdot)$: general model function
 - θ: model parameters

Supervised learning diagram

```
Observations  X_i
              Teacher  T_i
          h(X_i)
Supervised system
      +
     e(X_i)
```

C. Gagné (U. Laval) EC for Supervised Learning GECCO 2013 Tutorial 9 / 68

C. Gagné (U. Laval) EC for Supervised Learning GECCO 2013 Tutorial 10 / 68

C. Gagné (U. Laval) EC for Supervised Learning GECCO 2013 Tutorial 11 / 68

C. Gagné (U. Laval) EC for Supervised Learning GECCO 2013 Tutorial 12 / 68
Classification

- Y is discrete and corresponds to class labels
- $h(\cdot)$ is a discrimination function

Applications of classification

- Pattern recognition
 - Face recognition: to recognize peoples notwithstanding the variations (pose, lighting, glasses, make-up, hairs)
 - Handwritten character recognition: to recognize characters notwithstanding the different writing styles
 - Speech recognition: temporal dependencies, use dictionaries of valid words/structures
- Decision support in health: to propose diagnosis from the symptoms
- Knowledge extraction and compression: to explain large databases with simple rules
- Irregularity detection: to identify frauds, intrusions, etc.

Face recognition

ORL database from AT&T Laboratories Cambridge: http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

Handwritten character recognition

Learning from examples

- Observations:
 \[x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \]
- Class labels:
 \[r = \begin{cases} 1 & \text{if } x \text{ is high risk} \\ 0 & \text{if } x \text{ is low risk} \end{cases} \]
- Set of \(N \) observations:
 \[\mathcal{X} = \{x^t, r^t\}_{t=1}^N \]

Classification hypotheses

- \(h(x; \theta) \): parametric classification function
- \(\theta \): specific parametrization to the function
- \(\theta = \theta_s \): most specific hypothesis (blue)
- \(\theta = \theta_g \): most general hypothesis (magenta)

Regression

- \(Y \) is a real value
- \(h(\cdot) \) is the regression function
- Example: to forecast sale price of used car according to its mileage
 - Observations: mileage (\(x \))
 - Forecast: sale price (\(y \))
- Applications to forecasting
 - Finance
 - Weather
- Applications to high-level control
 - Steering wheel of an autonomous car (CMU NavLab)
 - Joints of a robotic arm

Model complexity and noise

- Noise in the data
 - Lack of precision
 - Labelling errors
 - Latent measures
- At equal performances, prefer the simplest model
 - Easier to use and to train (time and space complexity)
 - Easier to explain (intelligibility)
 - Generalize better (Occam’s razor)
Polynomial regression

- First order with one variable:
 \[h(x|w_1, w_0) = w_1 x + w_0 \]
- Solution with partial derivatives on empirical error
- Solutions with 1st, 3rd, and 6th order polynomial
 - 6th order is almost “perfect”, but generalize badly
 - 3rd order capture better the data than 1st order

Models selection

- Supervised learning is an *ill-posed* problem
 - The observations are not sufficient to provide an unique solution
- We thus need an *inductive bias*, by making assumptions on the space of hypothesis (function \(h(x|\theta) \) to use)
- Main objective: **generalization**
 - We need a model that perform well on new data
 - Overfitting: hypotheses \(h(x|\theta) \) are too complex given the data
 - Underfitting: hypotheses \(h(x|\theta) \) are too simple given the data
- Regularization: include a model complexity penalty in the optimization objective

Supervised learning trade-offs

- A trade-off must be made between three elements:
 - Hypotheses complexity, \(C \)
 - Training dataset size, \(N \)
 - Generalization error (on new observations), \(E \)
- When \(N \) increases, then \(E \) decreases
- When \(C \) increases, then \(E \) decreases for a while, and then increases

Bias-variance trade-off

\[
\mathbb{E}[(r - \hat{h})^2] = (r - \mathbb{E}[h])^2 + \text{Var}(h)
\]

\(\text{bias}^2 \)
Empirical validation

- To estimate generalization error, we need data unused during training
- Classical approach, partition the dataset
 - Training set (50%)
 - Validation set (25%)
 - Test set (25%)
- Usual procedure
 - Generate hypotheses $h(x|\theta)$ from the training set
 - Evaluate generalization error of these hypotheses on the validation set and return the one that minimizes it
 - Report as final performance the results on the test set
- With small datasets, there are other approaches
 - Partition dataset in K folds
 - Use $K - 1$ folds for training and the remaining fold for validation
 - Repeat K times with all possible combinations and report the average validation error
 - Extreme case: K is equal to the dataset size (one training per data)

Three dimensions of supervised learning

- Representations
 - Parametrized hypotheses: $h(x|\theta)$
 - Instances, hyperplanes, decision trees, rules sets, neural networks, graphical models, etc.
- Evaluation
 - Empirical error: $E(\theta|X) = \frac{1}{N} \sum_{t=1}^{N} \ell(r_t, h(x_t|\theta))$
 - Recognition rate, precision, recall, square error, likelihood, posterior probability, information gain, margin, cost, etc.
- Optimization
 - Procedure: $\theta^* = \arg\min_{\theta} E(\theta|X)$
 - Combinatorial optimization, gradient descent, linear/quadratic programming, etc.

Using EC for supervised learning

- Combinatorial optimization (bit strings and permutations)
 - Data selection (e.g. prototypes)
 - Feature selection
 - Members selection in ensembles
- Real-valued optimization
 - Hyperparameter tuning
 - Unconventional performance measure
 - Prototype construction
- Genetic programming
 - Symbolic regression
 - Feature and classifier model
 - Distance measure and kernel function
- General approaches
 - Member production for ensemble
 - Dynamic evaluation data selection (e.g. competitive coevolution)
 - Learning methodologies and data handling
Pattern recognition pipeline

Segmentation → Feature extraction → Classification / regression → Decision / combining

Where EC can intervene

Segmentation → Feature extraction → Classification / regression → Decision / combining

Feature selection

• Curse of dimensionality
 ▶ Adding one dimension increases exponentially the input space
 ▶ 100 equidistant data in 1D ⇒ 10^{20} data in 10D for the same sampling density
 ▶ High dimensionality: increased time and space complexity

• Feature selection (Guyon and Elisseeff, 2003)
 ▶ Objective: to find a subset of K input variables among the D original variables (features) while limiting the impact on performance
 ▶ Number of possible subsets: \[\binom{D}{K} \]
 \[\binom{10}{5} = 252, \quad \binom{50}{10} \approx 10^{10}, \quad \binom{100}{20} \approx 10^{20} \]
 ▶ Combinatorial optimization problem

Filter vs wrapper

• Filter approach for feature selection
 ▶ Use a statistical measure to evaluate the link between the features and the labels (e.g., mutual information)
 ▶ Usually very fast as the statistical measure is cheap to compute
 ▶ The statistical measure may have little to do with the learning method used

• Wrapper approach for feature selection
 ▶ Train a model for every feature subset candidates
 ▶ Expensive, as a complete training is done for each fitness evaluation
 ▶ Will capture all complex interactions between the features and the method used
Feature selection with EC

- Feature selection has been tackled with EC since a long time (Siedlecki and Sklansky, 1989)
- Multiobjective bit string GA is obvious for that (Emmanouilidis, Hunter, and MacIntyre, 2000; Oliveira et al., 2003)
 - Each bit represents whether a feature is selected
 - Evaluation often done following a wrapper approach
 - Optimizing the performance (e.g. minimizing error rate) while minimizing the number of features selected
- Many have used EC-based feature selection for producing classifiers
 - Acting on the features is algorithm-independent and may influence the classifiers generated
 - Particularly useful for generating a diverse pool of classifiers (see later)

Instance-based classification

- k-Nearest Neighbour (k-NN) classification
 - Assign class label according to the majority label of the k nearest instances
 - Classical approach: select nearest instances in the training set
 - No training required, testing complexity of $N \times M$ (N: train set size, M: test set size)
- Reducing the instance pool size by prototype selection
 - Removing redundant and noisy instances
 - Reduce testing time and space complexity
 - A variety of heuristics has been proposed (Garcia et al., 2012; Wilson and Martinez, 2000)
- Another combinatorial optimization problem!

Prototype selection

- As with feature selection, bit string GA is good for prototype selection (Derrac, García, and Herrera, 2010)
 - Each bit identify whether an instance is used as prototype
 - Kuncheva and Bezdek (1998) used a single objective with a weighted sum of performance and number of prototypes
 - Require however to select from a relatively small pool of instances (when representing a selection as a bit string)
- Simultaneous prototype and feature selection (Kuncheva and Jain, 1999)

Prototype construction

- Prototype selection: select instances from a pool
 - Why not creating new prototypes from scratch!
 - Prototype construction might produce smaller but more representative set of prototypes
- Common approaches for prototype construction
 - Clustering the data set (e.g. K-means)
 - Learning vector quantization (a kind of supervised K-means)
- Evolutionary prototype construction (Derrac, García, and Herrera, 2010; Kuncheva and Bezdek, 1998)
 - Used real-valued algorithm to evolve x values of a given number of prototypes
 - Another approach: sequential optimization, where each run evolves a bunch of prototypes with Particle Swarm Optimization (PSO) (Nanni and Lumini, 2009)
 - Michigan-style PSO for prototype construction (Cervantes, Galván, and Isasi, 2009)
Real-valued EC for supervised learning?

- Should we optimize the real-valued parameters with EC?
 - Optimization in learning often solved through convex optimization procedure
 - SVM: quadratic programming
 - Neural networks: gradient descent (backpropagation)
 - Variants of Boosting (e.g. LPBoost)
 - When convex optimization works well, do not try to beat it with EC
 - Convex optimization techniques are well-known, converge usually faster and/or to better solutions (with guarantees)
- However, real-valued EC has its niches
 - Prototype construction
 - Hyperparameter tuning
 - Unconventional optimization objectives (e.g. non-convex, non-differentiable)
 - Multiobjective optimization

AUC-ROC

- ROC curves (Fawcett, 2006)
 - x-axis: false positive rate
 - y-axis: true positive rate
 - Given a real-valued output, position on the curve correspond to a threshold
 - Allow evaluating performance for different types of errors or varying class balance
- Area under the ROC curve (AUC-ROC)
 - Evaluate the capacity to discriminate two classes for all threshold values
 - Independent of the class balance
 - Strong links with the Wilcoxon–Mann–Whitney statistical test and Gini coefficient
 - Hard to handle by convex optimization methods
- Evolving classifiers using the AUC-ROC as fitness measure (Sebag, Azé, and Lucas, 2004)

Hyperparameter tuning

- Hyperparameters: parameters of the learning algorithm
 - Learning rate and regularization coefficient
 - Number of hidden layers and neurons
 - Number of neighbours
 - Parametrization of kernel functions
- Sensitivity to these values varies
 - Sometime, ballpark figures are good enough
 - In other cases, fine tuning of hyperparameters is required
 - For some algorithms, there are complex interactions between hyperparameters
- Grid search
 - Testing all combinations of hyperparameter values
 - Efficient for 1 to 3 parameters, using relatively coarse set of values
- Evolutionary algorithms for hyperparameters
 - Tuning regularization coefficient (C) and Gaussian kernel covariance matrix of SVMs with CMA-ES (Friedrichs and Igel, 2005)
 - Tuning SVMs with multiobjective GA (TP, FP, and #SV) (Suttorp and Igel, 2006)
Neuroevolution

Artificial neural networks often used for classification and regression

- Classical network: Multilayer Perceptron (MLP)
- New trend: deep networks

Optimizing neural network topologies

- Hyperparameter tuning: optimizing the number of layers and neurons of MLPs
- Neuroevolution of Augmenting Topologies (NEAT) (Stanley and Miikkulainen, 2002)
 - Evolve both the weights and topology of the network
 - Try to find a balance between fitness and speciation
 - Start with simple topologies and develop them incrementally
- In general, neuroevolution has not appeared particularly fit for supervised learning
 - Much better at control/reinforcement learning tasks

Genetic programming

Genetic Programming (GP) is a natural approach for supervised learning

- Classification/regression model can be seen as a computer program
- Specifying the GP configuration for evolving the model is straightforward in many cases

- Evolve variable-length model
 - Allow to produce models of varying complexity
 - Bloat problem can be fought through regularization, much like what is done in supervised learning (Amil et al., 2009)
 - Models produced are symbolic and intelligible
- Applications of GP to classification (Espejo, Ventura, and Herrera, 2010)
 - Feature construction
 - Decision trees
 - Rule-based systems
 - Discriminant functions

Symbolic regression

- Introductory example for GP (Koza, 1992)
 - Infer an equation in its analytical form from a set of test cases
 - Arithmetic operators as branches (e.g. +, -, *, /, sin, cos, exp, log)
 - Variables of the problem (i.e. \(x_1, \ldots, x_D\)) and constants (e.g. 0, 1, \(\pi, ERC\)) as terminals
- Still relatively efficient for doing regression
 - Particularly interesting when symbolic equations are requested
 - Does an implicit feature selection
- See the GECCO workshop on symbolic regression and modelling

Feature construction

- Feature construction
 - Creating new features from the existing ones
 - Usually allow to reduce the input size of the model
 - Particularly interesting when done through some non-linear mapping
 - Wrapper and filter methods can be used
- Domain knowledge is usually difficult to obtain
 - Building automatically features should help to extract useful information and use the good representation
- Feature construction with GP
 - Make use of symbolic regression to construct features
 - Evolve all features at the time (Sherrah, Bogner, and Bouzerdoum, 1997) or one feature constructed at the time (Bot, 2001)
 - Multiobjective feature construction with GP (Zhang and Rockett, 2009)
Evolving distance measure or kernel function

- Distance measure: evaluate how dissimilar are two values
 - Central component of instance-based classifiers (e.g. k-NN)
 - Most common is Euclidean distance, but others are possible
 - Using GP to evolve the distance measure of classifiers (Gagné and Parizeau, 2007)
 - Evolve a \(d(x, y) \) with vector instructions (i.e. similar to Matlab)
- Kernel function: measure similarity of two data
 - Central in SVM and other kernel methods
 - Allow mapping the input space in an higher dimension one, without working explicitly in it (kernel trick)
 - Kernels can be a composition of other kernels
 - Evolving kernels with GP (Gagné et al., 2006; Sullivan and Luke, 2007)
 - Branches and terminals allows to define basic kernels that are combined through the evolution
 - Allow customization of the kernel function to the problem domain

Bias-variance trade-off with ensembles

- \(h_j \) are i.i.d., with expectation \(E[h_j] \) and variance \(\text{Var}(h_j) \)

\[
E[h] = E\left[\sum_{j=1}^{L} \frac{1}{L} h_j \right] = \frac{1}{L} E[h_j] = E[h_j]
\]

\[
\text{Var}(\tilde{h}) = \text{Var}\left(\sum_{j=1}^{L} \frac{1}{L} h_j \right) = \frac{1}{L^2} L \text{Var}(h_j) = \frac{1}{L} \text{Var}(h_j)
\]

- Variance decreases as the number of members (\(L \)) increases
 - With ensembles, we can reduce variance without altering bias
 - And so is reduced the mean square error

\[
E \left[(r - h)^2 \right] = (r - E[h])^2 + \text{Var}(h)
\]

Where EC can intervene (bis)

- Segmentation
- Feature extraction
- Classification / regression
- Decision / combining

Cross-cutting elements:
- Learning methodologies
- Coevolution

Weak members are sufficient to make ensembles

- No need to obtain ultra high performances, better than 50% (better than random) is good enough
- Often easier to generate diversity with weak algorithms
Diversity and negative correlation

- Ensemble variance, general case
 \[
 \text{Var} (\bar{h}) = \frac{1}{L^2} \text{Var} \left(\sum_j h_j \right) = \frac{1}{L^2} \left[\sum_j \text{Var} (h_j) + 2 \sum_{i<j} \text{Cov}(h_i, h_j) \right]
 \]
- Reduce further variance with negatively correlated members
- Square error can be reduced, as far as negative correlation does not alter bias
- Diversity of responses in ensembles
 - Goal when creating ensembles: members are not making mistakes on the same data
 - Extreme case without diversity: \(L \) copies of the same member
- Evolutionary ensembles with negative correlation learning (Liu, Yao, and Higuchi, 2000)
 - Make ensemble of neural networks for regression
 - Individual networks trained with backpropagation + negative correlation
 - Using EC to generate the members of the ensemble

Overproduce and select

- Overproduce: generate a varied pool of classifiers
- Select: choose a subset of classifiers from the pool, maximizing a given measure (performance and/or diversity)
 - Feature selection techniques transpose well to member selection
- EC is good for overproduction
 - Diversity in the population is a already a desired property of EC
 - Diversity measures are often hard to use with convex optimization
 - Population of solutions = pool of classifiers
 - Generating a diverse pool through evolutionary feature selection (Oliveira, Morita, and Sabourin, 2006)
- Evolutionary member selection
 - Dynamic selection of members at runtime with NSGA-II, according to the data to classify (Dos Santos, Sabourin, and Maupin, 2008)
 - Overfitting cautious member selection methodology relying on multiobjective GA (Dos Santos, Sabourin, and Maupin, 2009)

Ensembles for free

- Evolving a population of classifiers
 - Why not making an ensemble of classifiers, using the population as a pool?
 - Diversity of the population = diversity of the pool?
- Ensemble learning for free with EC (Gagné et al., 2007)
 - Using EC to produce a population of classifiers
 - Fitness function enforcing diversity by assigning a fixed credit for each test case
 - The ensemble is build by selecting members from the population
 - \textit{Off-EEL}: select the members from the final generation
 - \textit{On-EEL}: build the ensemble during the evolution, incrementally
 - Somehow related to Michigan-style algorithms

Bagging and Boosting

- Bagging: generate passively varied classifiers through random resampling of training set
- Boosting: produce varied classifiers by modifying sampling weights of data according to their difficulty
- BagGP and BoostGP (Iba, 1999)
 - Split the population into subpopulations
 - Resample training set for each subpopulation, using Bagging or Boosting
 - Make ensemble with the best individual of each subpopulation
- GPboost: modify weighting of test cases of several sequential GP runs (Paris, Robilliard, and Fonlupt, 2002)
Dynamic subset selection

- Dataset size for evolutionary learning is a concern
 - Many individuals evaluated with a large dataset ⇒ expensive computation
 - Not all instances need to be used for evaluating all individuals at each generation
- Dynamic Subset Selection (DSS) (Gathercole and Ross, 1994)
 - Evaluate fitness with a training subset of “difficult” instances
 - Compute a weight for each training instance according to its age and difficulty
 - Assign a selection probability according to the normalized instance weight and target training subset size
 - Renew subset at each generation
- A variant of DSS has been successfully applied to train GP classifiers with a dataset of 500,000 instances (Song, Heywood, and Zincir-Heywood, 2005)

Competitive coevolution

- Competitive coevolution (Hillis, 1990)
 - Evolving species with antagonistic goals (i.e. parasite-host model)
 - Can reduce significantly the number of test cases for each individual
 - Host species: symbolic regression with GP
 - Parasite species: test cases evolved with real-valued GA
 - Good at improving generalization, by renewing test cases at each generation
- Coevolving nearest neighbour classifiers (Gagné and Parizeau, 2007)
 - Species 1: distance measure with GP
 - Species 2: prototype selection with multiobjective GA (cooperative)
 - Species 3: selection of evaluation data with GA (competitive)
 - Competitive coevolution limits greatly overfitting, with reduced distance measure and prototypes set size

Oversearching

- Discriminate charlatans from competent financial counsellors (Jensen and Cohen, 2000)
 - Ask counsellors to predict whether stock markets will go up or down on a day
 - Request to make predictions for 14 days, a candidate is deemed competent if he predicts correctly 11 days or more
 - A charlatan makes random guesses (50%/50%), so have 2.87% chances of passing the test
 - Does not work for selecting a counsellor among n
 - Probability that a charlatan passes the test among n: 1 – (1 – 0.0287)^n
 - For n = 10, ≈ 25% chances one charlatan will pass the test, for n = 30, ≈ 58% chances
 - For high n, almost sure that charlatans will pass the test, even thought they are not doing better than random guesses
- Oversearching: searching for solutions in huge model spaces
 - By testing too many candidate solutions, may select one that fit well the training set, but does not generalize well
 - Common issue when doing supervised learning with EC

Learning methodologies

- Recommendations to avoid overfitting and oversearching (Igel, 2012)
 - Use as much data as possible, to improve training and fitness evaluation reliability
 - When relevant, use a distinct dataset from the training set for evaluating the fitness (use an evaluation set)
 - If possible, renew evaluation dataset at each generation
 - Generalization performance must be evaluated on data not used for computing the fitness (use a validation set)
 - Number of evaluations before oversearching should be evaluated, which is dependent of the amount of data available
 - Final results shall be reported on a distinct dataset (use a test set)
 - Up to four datasets may be required in a proper methodology
 - Training set: to train classifiers
 - Evaluation set: to evaluate fitness of individual on new data
 - Validation set (a.k.a. final selection set): to select the individual to retain from an evolution and/or do early stopping
 - Test set: to evaluate generalization performances and compare different algorithms
Part III
Perspectives and Concluding Remarks

C. Gagné (U. Laval) EC for Supervised Learning GECCO 2013 Tutorial 57 / 68

Where is EC useful for supervised learning?

- Optimizing classification/regression models with EC
 - Many state-of-the-art models rely on convex optimization methods (e.g. SVM)
 - EC not likely to figure well compared to these approaches
 - But EC can achieve excellent results in specific cases
 - Prototype selection/construction for instance-based learning
 - Hyperparameter tuning, when there is a complex relation among these (e.g. C and σ of Gaussian SVMs)
 - Non-convex, non-differentiable performance measure (e.g. AUC-ROC)
 - Intelligible models (e.g. symbolic regression)

C. Gagné (U. Laval) EC for Supervised Learning GECCO 2013 Tutorial 58 / 68

Where is EC useful for supervised learning? (cont.)

- Building representations
 - Feature selection/construction
 - Distance measures and kernel functions
 - Segmentation level of the pattern recognition pipeline
- Building ensembles
 - Generating pool of diverse models
 - Selecting members for making the ensembles
 - Population of models = an ensemble!
- Many optimization challenges in supervised learning
 - EC can be very useful where other “classical” methods fail
 - Combinatorial optimization
 - Multiobjective optimization
 - Variable-length and symbolic representations (i.e. GP)

C. Gagné (U. Laval) EC for Supervised Learning GECCO 2013 Tutorial 59 / 68

Methodological guidelines

- Dataset size trade-off of evolutionary learning
 - Avoid using small datasets
 - Learning has moved beyond the few hundreds instances found in most toy datasets
 - With small datasets further partitioning gets difficult
 - Big dataset implies long fitness evaluation
 - EC is expensive in terms of number of candidate solutions evaluated
- Proper supervised learning with EC requires up to 4 datasets
 - Training set, evaluation set, validation set, and test set
- Oversearching issue
 - Large datasets are required to avoid good performances by chance
 - Selecting best-of-run with a validation set
 - Validation set good also for early stopping
- Renewing the evaluation set during the evolution
 - Competitive coevolution, dynamic subset selection, etc.

C. Gagné (U. Laval) EC for Supervised Learning GECCO 2013 Tutorial 60 / 68
New Horizons

- **Deep learning** (Bengio, 2009)
 - “The biggest data science breakthrough of the decade”
 - Techniques to train neural network with many layers (deep networks)
 - Several EC techniques can be tackled to develop better network (e.g. neuroevolution)
- **Large-scale learning** (Bottou and Bousquet, 2011)
 - Big data learning: how to apply efficiently (performance- and computation-wise) supervised learning to huge databases?
 - Implicit parallelism of EC can allow relatively fast processing on parallel machines, along with some clever data management
- **Semi-supervised learning** (Zhu, 2007)
 - Big databases, with only a small subset of data labelled
 - Learn structures from unlabelled data, tag then with labelled one

Conclusion

- Many researchers in machine learning have low esteem of EC
 - Just a bunch of ad hoc bio-inspired stochastic methods (not so ad hoc)
 - There is no theoretical proofs supporting the methods (that’s not true!)
 - Very expensive computation required, close to brute force search (sometimes true)
- Tackle the good problems, where classical learning fails
 - Some problems are ignored in machine learning, as they do not fit the tools they are used to
- Be audacious but humble
 - Learning community is hyperactive and so moving quickly
 - Before doing anything, understand what the community knows on the problem and the solutions proposed
References III

References IV

References V

References VI

