Caractérisation des polynômes

Benjamin Hellouin

Théorème 1. Soit Ω un ouvert connexe non vide de \mathbb{R}^n , $f:\Omega \to \mathbb{R}$ de classe C^{∞} . On suppose que pour tout $x \in \Omega$, on peut trouver $(m_1,\ldots,m_n) \in \mathbb{N}^n$ tels que $\delta_i^{m_i}f(x)=0$.

Alors f est polynômiale sur Ω .

1 En dimension 1

Remarque 1.

- Si f est polynômiale sur tout intervalle fermé d'un intervalle, elle est polynômiale sur cet intervalle (approximation par segments croissants);
- Si f est polynômiale sur I_1 et I_2 avec $\overline{I_1} \cap \overline{I_2} \neq \emptyset$, alors les deux polynômes sont égaux (Taylor en $x \in \overline{I_1} \cap \overline{I_2} + continuité$).

Lemme 1. Si f n'est pas polynômiale, alors il existe un intervalle fermé sur lequel f n'est pas polynômiale et ne s'annule pas.

Preuve: Soit $a \in I$ tel que $f(a) \neq 0$. Si f est polynômiale sur $[a, +\infty \cap I]$ et $[a, +\infty \cap I]$ et soit

$$X = \{t \in]a, +\infty[: f|_{[a,t]} \text{ est polynômiale}\}$$

Si X est vide, on a un intervalle sur lequel f n'est pas polynômiale et ne s'annule pas.

Sinon, on prend $s=\sup X<+\infty$ et f est polynômiale sur [a,s[, donc sur [a,s] par continuité. On peut supposer f(s)=0, et comme $f|_{[a,s]}$ est polynômiale non nulle, au moins une des dérivées est non nulle. La formule de Taylor-Young donne $f(s+h)-f(s)=f^{(j)}(s)\frac{h^j}{j!}+o(h^{j+1})$, donc f ne s'annule pas sur un certain voisinage $\mathcal{B}(s,u)\backslash\{s\}$. Mais alors f n'est pas polynômiale sur]s,s+u] par définition de s.

Preuve de la dimension 1 : Soit f non polynômiale. Alors, par le lemme précédent, on construit S_0 un intervalle fermé où f n'est pas polynômiale et ne s'annule pas. Mais alors $f'|_{S_0}$ n'est pas polynômiale, donc on peut trouver un intervalle fermé S_1 tel que f et f' ne sont pas polynômiales et ne s'annulent pas. Par récurrence, on a une suite décroissante (S_n) d'intervalles fermés, et $x \in \bigcap_{n \in \mathbb{N}} S_n \neq \emptyset$ vérifie $\forall i, f^{(i)}(x) \neq 0$.

2 En dimension n

On suppose que Ω est un cube $I_1 \times \cdots \times I_n$. Soit f une fonction vérifiant les hypothèses. On pose $F_m = \{x \in \Omega : \forall i, \delta_i^m(x) = 0\}$. F_m est croissant pour

l'inclusion, et on a $\bigcup_m F_m = \Omega$ par hypothèse. Or tous les F_m ne sont pas tous d'intérieur vide, sinon Ω serait d'intérieur vide. Donc, pour un certain F_m , on a un pavé ouvert $J_1 \times \cdots \times J_n \subset F_m$.

On fixe maintenant $(x_2 \dots x_n) \in J_2 \times \dots \times J_n$. Alors $x_1 \mapsto f(x_1 \dots x_n)$ est polynômiale et nulle sur un intervalle, donc nulle, et $I_1 \times J_2 \times \dots \times J_n \subset F_m$, et on itère.

On porte le résultat à un ouvert connexe en considérant un pavé autour de chaque point.