Ellipsoïde de John-Loewner

Benjamin Hellouin

FGN algèbre 3

Définition 1. L'ellipsoïde défini par $q \in Q^{++}(\mathbb{R})$ est la boule unité associée à son produit scalaire, c'est-à-dire $\{x \in \mathbb{R}^n \mid q(x) \leq 1\}$. On le note \mathcal{E}_q .

Théorème 1. Soit K un compact d'intérieur vide de \mathbb{R}^n . Il existe un unique ellipsoïde de volume minimal contenant K.

On munit \mathbb{R} de sa structure euclidienne usuelle et on calcule le volume de \mathcal{E}_q . Soit $(e_1 \dots e_n)$ une base orthonormale pour q, de telle sorte que $q(x) = \sum_{i=1}^n a_i x_i^2$ (décomposition en carrés). On a alors :

$$vol(\mathcal{E}_S) = \int \dots \int_{a_1 x_1^2 + \dots + a_n x_n^2 \le 1} dx_1 \dots dx_n$$

$$= \int \dots \int_{t_1^2 + \dots + t_n^2 \le 1} \frac{dt_1 \dots dt_n}{\sqrt{a_1 \dots a_n}} \text{ avec le changement de variables } x_i = \frac{t_i}{a_i}$$

$$= \frac{V_0}{\sqrt{\det S}} \text{ où } V_0 \text{ est le volume de la boule unité dans } \mathbb{R}^n \text{ et } S = Mat \ q.$$

Existence: on cherche à minimiser cette fonction dans l'espace $\mathcal{A} = \{q \in Q^{++} \mid \forall x \in K, q(x) \leq 1\}$, dont on va montrer qu'il s'agit d'un compact. Comme det est une fonction continue, cela suffira à prouver l'existence d'un ellipsoïde de volume minimum.

 \mathcal{A} est fermé : si $q_n\to q,$ on a pour tout $x\in K$ $|q_n(x)-q(x)|\leq ||q_n-q||\cdot ||x||,$ donc $q_n(x)\to q(x).$ On en déduit que :

$$\forall x \in \mathbb{R}^n, q(x) = \lim q_n(x) \ge 0$$
 et $\forall x \in K, q(x) = \lim q_n(x) \le 1$

donc $q \in \mathcal{A}$.

 $\mathcal A$ est borné : comme K est d'intérieur non vide, il contient une boule B(a,r). Alors, si $||x|| \leq r,$ on a $\sqrt{q(x)} \leq \sqrt{q(x+a)} + \sqrt{q(-a)} \leq 2,$ soit $q(x) \leq 4.$ Pour $||x|| \leq 1,$ on a $q(x) = \frac{1}{r^2}q(rx),$ soit $||q|| \leq \frac{4}{r^2}.$

Ceci suffit à montrer que \mathcal{A} est compact, puisqu'on est en dimension finie. De plus \mathcal{A} est non vide : comme K est borné, il est contenu dans une boule B(0,M). Alors $q:x\mapsto \frac{||x||^2}{M^2}\in\mathcal{A}$.

Unicité : pour garantir l'unicité, on va montrer que l'espace $S^{++}(\mathbb{R}^n)$ est convexe et que la fonction $f:S\to \frac{1}{\sqrt{detS}}$ est strictement convexe. Soit $S,R\in$

 S^{++} . Il est possible de les diagonaliser simultanément, soit $\exists P \in GL_n(\mathbb{R}^n), S = {}^tPDiag(s_i)P$ et $R = {}^tPDiag(r_i)P$, et on a alors $tR + (1-t)S = {}^tPDiag(tr_i + (1-t)s_i)P \in S^{++}$.

$$\begin{split} f(tR+(1-t)S) &= \frac{1}{|\det P|} \left(\prod_i tr_i + (1-t)s_i \right)^{-1/2} \\ &= \frac{1}{|\det P|} \left(\prod_i e^{-\frac{1}{2}ln(tr_i+(1-t)s_i)} \right) \\ &\leq \frac{1}{|\det P|} \left(\prod_i e^{-\frac{1}{2}(tln(r_i)+(1-t)ln(s_i))} \right) \text{ par concavit\'e du logarithme} \\ &= \frac{1}{|\det P|} \left(e^{-\frac{1}{2}\sum_i (tln(r_i)+(1-t)ln(s_i))} \right) \\ &= \frac{1}{|\det P|} \left(e^{-\frac{1}{2}(tln(\prod_i r_i)+(1-t)ln(\prod_i s_i))} \right) \\ &< \frac{1}{|\det P|} \left(t \prod_i e^{-\frac{1}{2}ln(r_i)} + (1-t) \prod_i e^{-\frac{1}{2}ln(s_i)} \right) \text{ par stricte convexit\'e de l'exponentielle} \\ &= tf(R) + (1-t)f(S) \end{split}$$

donc f est strictement convexe. On en déduit que le minimum est unique, ce qui permet de conclure au résutat annoncé.