Inversion de Fourier dans S

Benjamin Hellouin

Stein & Shakarchi, Chap.5: Fourier transform

Théorème 1. $Si \ f \in S(\mathbb{R}), \ alors$

$$f(x) = \int_{\mathbb{R}} \hat{f}(t)e^{2\pi ixt}dt.$$

Preuve. Soit $G_{\delta}(x)=e^{-\pi\delta x^2}$ pour $\delta>0$. On a $\hat{G}_{\delta}(t)=\int_{\mathbb{R}}e^{-2i\pi xt-\pi\delta x^2}dx$. On remarque que $G_{\delta}'(x)=-2\pi\delta xG_{\delta}'(x)$; puisque $G_{\delta}\in S(\mathbb{R})$, on en déduit $2i\pi t \hat{G}_{\delta}(t) = -2\pi \delta x \hat{G}_{\delta}(t)$. Or $\hat{G}'_{\delta}(t) = -2i\pi x \hat{G}_{\delta}(t)$ (dérivation sous l'intégrale), d'où $\hat{G}'_{\delta}(t) = \frac{i}{\delta} 2i\pi t \hat{G}_{\delta}(t) = \frac{-2\pi t}{\delta} \hat{G}_{\delta}(t)$

Donc $\hat{G}_{\delta}(t)$ est de la forme $\alpha e^{-\pi t^2/\delta}$ où $\alpha = G_{\delta}(0)$ qui est l'intégrale d'une gaussienne. On calcule cette intégrale, notée I, par la méthode connue :

$$I^{2} = \int_{\mathbb{R}} e^{-\pi \delta x^{2}} dx \int_{\mathbb{R}} e^{-\pi \delta y^{2}} dy = \int_{\mathbb{R}^{2}} e^{-\pi \delta (x^{2} + y^{2})} dx dy$$

par le théorème de Fubini. En effectuant le changement de variables polaire, on obtient $I^2 = \int_0^{+\infty} \int_0^{2\pi} e^{-\pi \delta r^2} r dr d\theta = 2\pi \left[\frac{e^{-\pi \delta r^2}}{-2\pi \delta}\right]_0^{\infty} = \frac{1}{\delta}$. On en déduit $\alpha = \frac{1}{\sqrt{\delta}}$.

On note $K_{\delta}(t)=\hat{G}_{\delta}(t)=rac{1}{\sqrt{\delta}}e^{-rac{2\pi}{\delta}t^{2}}$. On va maintenant prouver que, pour tout $f \in S$, on a $\int_{\mathbb{R}} K_{\delta} f = \int_{\mathbb{R}} G_{\delta} \hat{f}$, le terme de gauche étant une approximation de l'unité quand $\delta \to 0$. On a en effet :

$$\int_{\mathbb{R}} \int_{\mathbb{R}} G_{\delta}(x) e^{-2i\pi xy} f(y) dx dy = \int_{\mathbb{R}} \int_{\mathbb{R}} G_{\delta}(x) e^{-2i\pi xy} f(y) dy dx \quad \text{par Fubini},$$

ce qui est exactement la proposition recherchée. Dans le membre de droite, on a $G_{\delta}(t) \to 1$ quand $\delta \to 0$ pour tout t, et $|\hat{f}(x)G_{\delta}(x)| \leq |\hat{f}(x)| \in L^1$ car $f \in S$, d'où par convergence dominée

$$\int_{\mathbb{R}} G_{\delta}(x)\hat{f}(x)dx \xrightarrow{\delta \to 0} \int_{\mathbb{R}} \hat{f}(x)dx.$$

D'autre part, comme on l'a dit, le terme de droite est une approximation de l'unité, c'est-à-dire que :

- $-\int_{\mathbb{R}} K_{\delta}(x) dx = \frac{1}{\sqrt{\delta}} \int_{\mathbb{R}} G_{1/\delta}(x) dx = 1$ $-\forall \varepsilon > 0, \forall \eta > 0, \exists \delta > 0 \int_{|x| > \eta} K_{\delta}(x) dx < \varepsilon.$

Pour le deuxième point, il suffit de voir que $\int_{|x|>\eta} K_{\delta}(x) dx = \int_{|x|>\eta/\sqrt{\delta}} e^{2\pi x^2} dx$ par le changement de variables $x\mapsto \frac{x}{\sqrt{\delta}}$, et que cette intégrale tend vers 0 quand

 $\delta \to 0$.

On va maintenant conclure. On a

$$\int_{\mathbb{R}} f(x) K_{\delta}(x) dx - f(0) = \int_{\mathbb{R}} (f(x) - f(0)) K_{\delta}(x) dx \quad \text{(premier point)}$$

$$\left| \int_{\mathbb{R}} f(x) K_{\delta}(x) dx - f(0) \right| \leq \int_{|x| \leq \eta} |f(x) - f(0)| K_{\delta}(x) dx + 2||f||_{\infty} \int_{|x| > \eta} K_{\delta}(x) dx,$$

ceci étant vrai pour tout η . En particulier, soit $\varepsilon > 0$ et η tel que $|x| \le \eta \Rightarrow |f(x) - f(0)| \le \varepsilon/2$. Alors $\left| \int_{\mathbb{R}} f(x) K_{\delta}(x) dx - f(0) \right| \le \varepsilon/2 + \varepsilon/2$ par les points 1 et 2, pour δ assez petit.

En reprenant l'égalité précédente, $f(0)=\int_{\mathbb{R}}\hat{f}(x)dx$ à la limite. Pour conclure, on applique ce résultat à $F_x:y\mapsto f(x+y)\in S$:

$$f(x) = F_x(0) \int_{\mathbb{R}} \hat{F}_x(t) dt = \int_{\mathbb{R}} \int_{\mathbb{R}} f(x+y) e^{-2i\pi yt} dy dt$$
$$= \int_{\mathbb{R}} \int_{\mathbb{R}} f(z) e^{-2\pi (z-x)t} dz dt = \int_{\mathbb{R}} \hat{f}(t) e^{2\pi xt} dt$$