Théorème de Kakutani + théorème de Massera

Benjamin Hellouin

Gonnord-Tosel 1 et 2

Théorème 1 (Kakutani). Soit E un evn et K un compact convexe non vide de E. Soit $f: E \to E$ un endomorphisme (ou une application affine) continue, stabilisant K. Alors f admet un point fixe dans K.

Preuve. On considère la suite

$$x_n = \frac{1}{n+1} \sum_{i=0}^{n} f^i(a)$$

qui, par convexité de K, est incluse dans K. Par compacité de K, on en déduit que cette suite admet une sous-suite $x_{\varphi(n)}$ qui admet une limite $x \in K$. Comme f est affine, on a $T(x_n) - x_n = \frac{1}{n+1}(T^{n+1}(a) - a)$. K étant compact, il est borné, donc le terme de droite tend nécéssairement vers 0, et on a donc T(x) = x (pour toute valeur d'adhérence de la suite, d'ailleurs).

NB : contre-exemples possibles : la couronne centrée en 0 et la rotation (non convexe) / une bande et une translation (non compact).

Corollaire 1 (Massera). Soient T > 0, $A : \mathbb{R} \to \mathcal{M}_n(\mathbb{R})$ et $b\mathbb{R} \to \mathbb{R}$ deux application continues, T-périodiques. On s'intéresse au système d'équations différentielles linéaires suivant :

$$x' = Ax + b.$$

Si ce système admet une solution bornée sur \mathbb{R} , alors il admet une solution T-périodique.

Preuve. Soit $x_0 \in \mathbb{R}$. On utilise la méthode de variation de la constante pour chercher la solution valant x_0 en 0: si R est la solution de X' = AX valant 1 en 0, on cherche la solution sous la forme x(t) = R(t)y(t), soit :

$$x'(t) = AR(t)y(t) + R(t)y'(t) = AR(t)y(t) + b(t) \Leftrightarrow y'(t) = R(t)^{-1}b(t)$$

soit par intégration $x(t) = R(t)(x_0 + \int_0^t R(s)^{-1}b(s)ds)$. Soit P l'application qui à $x_0 \in \mathbb{R}$ associe la valeur en T de la solution valant x_0 en 0, autrement dit $P(x_0) = R(T)(x_0 + \int_0^T R(s)^{-1}b(s)ds)$. Notons que si $P(x_0) = x_0$, alors la conclusion s'ensuite par Cauchy-Lipschitz linéaire : la solution translatée est la solution initiale.

S'il existe une solution bornée x(t), alors P(x(t)) = x(t+T), donc P stabilise l'ensemble $\{x(nT) \mid n \in \mathbb{Z}\}$, donc également le convexe compact \overline{Conv} \overline{X} puisque P est affine. Par le théorème précédent, P admet un point fixe dans cet espace, ce qui permet de conclure.