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Résumé

Les automates cellulaires sont étudiés à la fois comme des systèmes dynamiques discrets
et comme un modèle de calcul massivement parallèle. L’étude empirique laisse apparaître des
phénomènes d’auto-organisation, c’est-à-dire l’émergence d’un comportement structuré à par-
tir d’une configuration initiale aléatoire. Dans le cadre de cette thèse, nous étudions l’évolution
d’une mesure de probabilité initiale sous l’action d’un automate cellulaire, le comportement
asymptotique typique étant décrit par la(les) mesure(s) limite(s).

Premièrement, nous caractérisons les mesures accessibles asymptotiquement par les auto-
mates cellulaires. Cette approche rejoint divers résultats récents caractérisant des paramètres
de systèmes dynamiques par des conditions de calculabilité. Les résultats obtenus mettent en
évidence la variété des comportements asymptotiques possibles et décrivent la puissance de
calcul des automates cellulaires sur les mesures de probabilités.

Deuxièmement, nous proposons un cadre d’étude de l’auto-organisation pour des classes
d’automates cellulaires pouvant être vus comme des systèmes de particules en interaction. De
la dynamique des particules, nous déduisons des propriétés sur le comportement asymptotique
de l’automate cellulaire et sur la vitesse de convergence de divers paramètres.

Enfin, nous étudions le problème de randomisation : trouver un automate cellulaire sous
l’action duquel une large classe de mesures initiales converge vers la mesure uniforme. Nous
proposons des candidats pour cette question ouverte, soutenus par des résultats expérimen-
taux, ainsi que quelques nouveaux résultats liés.

Mots clés : automate cellulaire, système dynamique, théorie ergodique, calculabilité, anal-
yse calculable, système de particules en interaction, marche aléatoire, mouvement brownien,
randomisation
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Abstract

Cellular automata are discrete dynamical systems as well as a massively parallel model of
computation. Empirical observations suggest the existence of self-organisation phenomena,
that is, the emergence of an organised behaviour from an initial configuration chosen at ran-
dom. In this thesis, we study the evolution of an initial probability measure under the action
of a cellular automaton, the asymptotic behaviour being described by the limit measure(s).

First, we characterise measures that are asymptotically reachable by cellular automata.
This approach is similar to several recent results characterising parameters of dynamical sys-
tems by computability conditions. The results reflect the variety of possible asymptotic be-
haviours and describe the measure-theoretical computational power of cellular automata.

Then, we introduce a framework for studying self-organisation in classes of cellular au-
tomata that can be seen as an interacting particle systems. From the particle dynamics, we
deduce properties on the asymptotic behaviour of the automaton and on the rate of conver-
gence of various parameters.

Last, we study the randomisation problem: find a cellular automata such that a large class
of initial measures converge under its action towards the uniform measure. We introduce
candidates for this open question, backed up by experimental evidence, as well as some new
related results.

Keywords : cellular automata, dynamical system, ergodic theory, computability, computable
analysis, interacting particle system, random walk, Brownian motion, randomisation
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2 CHAPTER 0. INTRODUCTION

Section 0.0

Background and motivations

0.0.1 Cellular automata

Cellular automata are a model consisting in the discrete time evolution of an infinite set of
cells arranged along a regular grid, each cell being in a state chosen among a finite state space.
An assignment of a state to each cell is called a configuration. At each step, the state of each
cell is updated synchronously depending on the state of other cells in its proximity, following
a local update rule, producing a new configuration.

The model in its current form was introduced by Von Neumann [vN66] as a mechanical
model exhibiting an algorithmic self-replicating behaviour, inspired by Ulam’s physical model
of crystal growth on a two-dimensional lattice. In the same book, he proved that cellular
automata were capable of universal computation. While cellular automata originated as a
physical and computational model, its uses range nowadays from biology and chemistry to
massively parallel computation and cryptography.

The mathematical study of cellular automata only arose in the 60s. In particular, Hedlund’s
seminal result [Hed69] showed that they could be seen as space-homogeneous continuous
functions of the symbolic space AZ (Curtis–Hedlund–Lyndon theorem). This gave access to
the tools of the theory of dynamical systems, especially symbolic dynamics, and is at the heart
of modern mathematical works on cellular automata, this thesis being no exception.

In the 80s, Wolfram undertook an empirical investigation of one-dimensional cellular au-
tomata (where the grid is Z) with small alphabets and simple local rules [Wol84a], in contrast
with physical models that often used two or more dimensions. By iterating the automata on
initial configurations chosen at random, he found that some of them exhibited surprisingly
complex and organised behaviours with an emergence of regular structures and patterns, a
phenomenon he called self-organisation.

Wolfram suspected that the way even simple local rules could give birth to a complex global
order could shed light on the emergence of complexity in nature, and also that self-organisation
was related to the computational universality of the model [Wol84b].

Following this idea, his employee Cook showed that even very simple cellular automata
were capable of universal computation [Coo04].

From now on, we consider one-dimensional cellular automata.
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0.0.2 Self-organisation and typical asymptotic behaviour

There has been various attempts to give a rigorous content to Wolfram’s intuitive notion of self-
organisation. Before trying to prove rigorously empirical remarks, it is necessary to discuss the
objects that are best suited to describe this notion.

Since self-organisation relates to an increase of order after an “organisational” transitional
regime, it is natural to consider various objects relative to the asymptotic behaviour of the
automata. Furthermore, the notion itself only makes sense when considering disordered initial
states, as opposed to e.g. constant or periodic configurations. The various topological objects
that have been proposed to describe the asymptotic behaviour of the automaton fail to capture
this idea.

This is the reason why we consider instead that the initial configuration is drawn at ran-
dom, which is consistent with Wolfram’s empirical approach, and we investigate the typical
asymptotic behaviour, or in other words the asymptotic properties that hold for almost every
initial configuration. This is discussed in more detail in Section 0.1.3, with some examples,
taking inspiration from [KM00].

The conclusion of this discussion is that the description of the typical asymptotic behaviour
of a cellular automaton F that is best suited to our purposes is as follows. Starting from
an initial probability measure µ, such as the uniform measure, we consider F∗µ the measure
describing the distribution of configurations after one step of the automaton. Iterating this pro-
cess, we obtain a sequence of measures (F t∗µ)t∈N describing the distribution of configurations
after t steps.

To define a notion of asymptotic measure, we use pointwise convergence topology which
can be defined in the following manner. ν is defined as the limit measure of (F t∗µ)t∈N if, for
any finite word u, the probability that u appears in a fixed position in F t(x), where x is drawn
according to µ, converges to the probability that it appears in this position in y, where y is
drawn according to ν. Of course the sequence can have multiple limit points and the resulting
set of measures is called the µ-limit measures set of F .

These measures can be seen as “physically” relevant for F in the sense that if one draws
many initial configurations at random according to µ and iterates F on them many times, the
resulting set of configurations will be distributed according to a law that is close to one of these
measures. A similar approach is used to define SRB measures in continuous dynamical systems,
which are invariant measures obtained when starting from the Lebesgue measure [You02].

Within this framework, describing the limit measure(s) has been done for only few concrete
nontrivial examples. Known results are essentially of two types:

• convergence towards a simple measure, such as a measure supported by a periodic point:
for example, the cyclic cellular automaton on three states introduced in [Fis90b] con-
verges towards a linear combination of Dirac measures supported by uniform configura-
tions [HdMS11]. Chapter 2 gives many similar examples;

• convergence towards the uniform measure: some cellular automata respecting a group
structure converge in Cesàro mean towards the uniform measure [Lin84, FMMN99,
MM98, PY02]. See Chapter 3 for more details.
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0.0.3 Probabilistic algorithmics

We now take another, very different point of view about the interest of these limit measures.

An important part of standard algorithmics is concerned with the use of randomness, which
is of practical (actual programs) and theoretical (computability, complexity analysis) inter-
est. Having access to a source of random bits (an ideal fair coin) to take random decisions
brings beneficial consequences on the behaviour of many algorithms: avoiding the existence
of “pathological cases” on which the algorithm always performs at its worst, improving se-
curity through unpredictability in cryptography, etc. If the computation is deterministic, we
must assume that the randomness comes from an external source (atmospheric noise, com-
puter clock...). As far as the theoretical analysis of algorithms is concerned, we assume that
the algorithm has access, in addition to its input, to a perfect source of random bits, that is:

fair probability 1
2 to obtain 0 and 1;

independent the values of the different bits are independent of each other;

unbounded depending on the input, the algorithms have access to an arbitrarily large num-
ber of bits.

To formalise this notion, we assume the algorithm has access to a sequence of random bits
(xi)i∈N ∈ {0, 1}N sampled uniformly among all such sequences, and can use these random bits
one by one as needed.

This definition raises a natural question: does considering a nonuniform source of random-
ness influence the computational power of our algorithms? This could be for example a biased
coin or a coin with some correlations. This notion of source of randomness is described by the
choice of a probability measure on {0, 1}N. We will see that this question is linked to the ability
to simulate algorithmically these nonuniform sources.

Let us define the notion of simulating a source of randomness. A probability measure on
{0, 1}N is computable if there exists an algorithm1with an input x ∈ {0, 1}N drawn according
to the uniform measure, that never stops, outputting successive bits yi (i ∈ N) such that the
sequence y = (yi)i∈N is distributed according to µ. Notice that the algorithm does not stop,
but any finite number of bits is drawn in finite time with probability 1.

Questions related to the simulation of randomness were first raised in [vN51], and practical
algorithmic techniques were introduced in the seminal papers of [KY76]. The complexity of
these simulations and the case where information about the source is incomplete were widely
studied: see among many examples [Ueh95, PL06, DI06]. Furthermore, as long as we allow
probabilistic algorithms that loop indefinitely with probability 0, it is possible to show that
using any computable source of randomness does not let us solve more problems than a perfect
source [DLMSS56] (we may, however, lose computational power in the case of a “bad” source).

Since cellular automata is a model of computation, we can extend these notions . In this
context, it is more natural to consider Z-indexed sequences, which does not change anything

1The formal definition would require to fix an ideal computational model, such as Turing machines, λ-
calculus, combinatorial circuits, etc. However, we feel that we would not gain in clarity. Historically, this theory
was developed using Turing machines.
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about the previous definitions. If the initial configuration is taken as the input source of ran-
domness (i.e. is drawn according to some input measure), then by analogy the limit measure
can be considered as the output measure. Notice that the massively parallel nature of the
model implies that computation is performed on the whole sequence of random bits at the
same time, and we do not have access to “fresh” random bits after time 1.

0.0.4 Contents of this thesis

We consider these two approaches as complementary, and all results in this thesis will be
presented from both points of view: a dynamical system in which an organised behaviour
emerges, and a model of computation that computes probability measures.

Section 0.1 introduces general definitions on symbolic spaces, cellular automata, probabil-
ity measures and typical asymptotic behaviour that are needed throughout the thesis.

In Chapter 1, we tackle the general question of which measures or sets of measures can be
reached as µ-limit measures set, that is, at the limit after iteration of any cellular automaton
on a simple initial measure such as the uniform measure. Our main result is that these mea-
sures and sets of measures can be entirely characterised by computability conditions. The two
steps of the proof are, first, to show that for a computable initial measure µ, computability
obstructions appear on the µ-limit measures set; second, to build for each such measure or set
of measures an ad hoc cellular automaton that reaches it at the limit.

The main motivation for this question is to explain the wide variety of typical asymp-
totic behaviours observed in computer simulations. Since the uniform measure as well as any
measure that can be sampled algorithmically is (by definition) computable, the computability
hypothesis is natural. In addition, in the context of simulating sources of randomness the com-
putational power of this model is found to be equivalent to the computational power of Turing
machines.

In Chapter 2, we try to prove some self-organisation results for simple cellular automata, as
opposed to the highly sophisticated constructions of the previous chapter. A family of cellular
automata exhibits a similar kind of self-organisation, where regions consisting in a simple
repeated pattern emerge and grow in size, while the boundaries between them can be followed
from an instant to the next, moving in space and colliding, giving birth to some kind of particle-
like dynamics.

We show that when these dynamics are simple enough, it is possible to deduce some prop-
erties of the typical asymptotic behaviour of the cellular automaton; more precisely, if the
particles have different speeds and collisions are destructive, only one type of particle can sur-
vive asymptotically. In some cases, this approach can be refined further to obtain quantitative
results on some parameters relative to the particles, or to obtain more information on the limit
measure.

In Chapter 3, we consider the randomisation phenomenon, which is a kind of self-organisation
phenomenon where a cellular automaton converges to the uniform measure for a large class of
initial measures. Despite empirical observations and partial positive results for weaker notions
of convergence, not a single cellular automaton was proven to exhibit this behaviour. The
problem of finding such a cellular automaton is referred to as randomisation problem.
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We performed simulations on a class of cellular automata having algebraic and dynamical
properties, which led to a conjecture backed up by experimental evidence about how these
properties are linked to randomisation. Nevertheless, a full proof is still out of reach. We
investigated the related question of rigidity, which is the study of how the only invariant mea-
sure under the action of an automaton is the uniform measure, at the price of some additional
hypotheses. This approach makes sense for randomisation candidates, that leave the uniform
measure invariant, and could be the first step of a full proof.

All diagrams were made with the Sage mathematical software [S+12].
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Section 0.1

Definitions

In this section, we introduce general definitions that we use throughout the thesis with some
illustrating examples. First, in Section 0.1.1, we introduce the symbolic space AZ and cellular
automata which are particular actions on this space. Then, in Section 0.1.2, we introduce the
standard measure-theoretical probabilistic framework on those spaces in order to give a rigor-
ous content to the notion of drawing the initial configuration at random. Last, Section 0.1.3
is devoted to various notions of asymptotic behaviour in cellular automata, discussing which
ones are best suited to our study of self-organisation.

0.1.1 Symbolic spaces and cellular automata

Words and configurations

In all this section, A and B are finite alphabets . We consider AZ the set of (one-dimensional)
configurations onA, andA∗ = ⋃

n∈NAn, the set of finite words. Intuitively, consider infinitely
many contiguous cells organised along a line, and to each cell associate a letter (or colour)
taken from this finite alphabet corresponding to the state of this cell.

If u ∈ An, the length of u is |u| = n. For two words u ∈ An and v ∈ Am, u · v ∈ An+m is
the concatenation of u and v.

In all the following, we write [i, j] for {i, i+ 1, . . . , j}.

Definition 0.1.1 (Subwords).
For x ∈ AZ and V ⊂ Z not necessarily finite, we denote xV = (xi)i∈V . In particular, for

u ∈ A∗, we write u @i x for x[i,i+|u|−1] = u. We say u ∈ A∗ is a subword of x (or appears in
x), and we write u @ x, if u @i x for some i ∈ Z.

These definitions extend to define subwords u of a finite word v ∈ A∗, by restricting our-
selves to the cases where i ∈ [0, |v| − |u|].

Definition 0.1.2 (Cylinders).
For a finite word u ∈ A∗ and i ∈ Z, we define the corresponding cylinder:

[u]i = {x ∈ AZ : u @i x} and [u] = [u]0.

and for a subset S ⊂ A∗, the corresponding cylinder is [S]i = ⋃
u∈S [u]i.

The notation [u] proves useful when we consider parameters that are independent of the
coordinate.

The set AZ is endowed with the product topology (also called Cantor topology), which is
metrisable.
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Definition 0.1.3 (Cantor distance).
The Cantor distance between two points x, y ∈ AZ is defined as:

d(x, y) = 2−∆(x,y) where ∆(x, y) = min{|k| : k ∈ Z, xk 6= yk}.

Intuitively, two configurations are close to each other if they are similar on a large central
finite window.

Cylinders are clopen and form a base for the Cantor topology. This topology makes AZ

compact: indeed, there is only a finite number of cylinders of any given length, and from a
sequence inAZ one can extract a convergent subsequence by fixing a central word of increasing
length, choosing at each step a cylinder containing infinitely many members of the sequence.

Definition 0.1.4 (Frequency).
The frequency of a finite word u in another finite word v is defined as:

Freq(u, v) = Card{i ∈ Z : u @i v}
|v| − |u|+ 1 (0 if not defined).

The frequency of a finite word u in a configuration x ∈ AZ is defined as:

Freq(u, x) = lim sup
n→∞

Freq(u, x[−n,n]).

This last definition can be rewritten:

Freq(u, x) = lim sup
n→∞

1
(2n+ 1)Card{i ∈ {−n, . . . , n} : u @i x}.

Those definitions extend naturally to sets of words S ⊂ A∗:

Freq(S, v) = Card{i ∈ Z : ∃u ∈ S, u @i v}
|v| −minu∈S |u|+ 1 (0 if not defined).

Shifts and subshifts

Definition 0.1.5 (Shift function).
Define the shift function σ : AZ → AZ as:

∀x ∈ AZ, σ(x)i = xi−1.

σ is an action of AZ on itself, and we consider the orbits and invariant subsets under the
action of σ.

Definition 0.1.6 (σ-periodic configurations).
A configuration x ∈ AZ is σ-periodic if, and only if there is an integer n such that

σn(x) = x. The minimal such n is the period of x.

In particular, let u ∈ A∗ be a finite word. It generates a σ-periodic configuration ∞u∞
inductively:
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• ∞u∞i = ui if 0 ≤ i < |u|;
• σ|u|(∞u∞) = ∞u∞.

and each σ-periodic configuration x of period p can be written x = ∞u∞ for some u ∈ Ap.

Proposition 0.1.1. The set of σ-periodic configurations is dense in AZ.

Proof. For a configuration x ∈ AZ and n ∈ N, define yn = ∞x[0,n] · x[−n,−1]
∞. It is clear

that x and yn are equal on the finite window {−n, . . . , n}, and therefore d(x, yn) ≤ 2−n.

Definition 0.1.7 (Subshifts).
A (one-dimensional) subshift is a closed σ-invariant set Σ ⊆ AZ (i.e. σ(Σ) = Σ).

Equivalently, a subshift Σ can be defined by a (not necessarily finite) set of forbidden
words F ⊂ A∗ by putting:

∀x ∈ AZ, x ∈ Σ⇐⇒
def
∀u ∈ F , u 6@ x.

Definition 0.1.8 (Languages).
For a subshift Σ ⊆ AZ and n ∈ N, the language of Σ is defined as:

Ln(Σ) = {u ∈ An : ∃x ∈ Σ, u @ x} and L(Σ) =
⋃

n∈N
Ln(Σ).

A subshift Σ is entirely described by L(Σ), in the sense that x ∈ Σ⇔ ∀u @ x, u ∈ L(Σ).

Definition 0.1.9 (Subshifts of finite type, Sofic subshifts).
A subshift of finite type (SFT for short) is a subshift that can be defined by a finite set

of forbidden words. In other words, a subshift Σ is of finite type if and only if it is entirely
described by Lr(Σ) for some r ∈ N. The smallest such r is the radius of the SFT.

A sofic subshift is a subshift that can be defined by a rational set of forbidden words, i.e.,
is the language accepted by some finite automaton.

Examples.

Orbit of a configuration For any configuration x ∈ AZ, the closure of the set {σi(x) : i ∈ Z}
is a subshift. It is finite if, and only if, x is a σ-periodic configuration.

Checkerboard subshift The checkerboard subshift is the subshift of finite type on alphabet
{0, 1} defined by the set of forbidden words {00, 11}. It contains exactly two configura-
tions: ∞01∞ and ∞10∞.

Odd subshift The odd subshift is the subshift on {0, 1} containing all configurations whose
finite clusters of 1 have odd length. It is a sofic subshift defined by the set of forbidden
words {012n0 : n ∈ N}.

Definition 0.1.10 (de Bruijn graph of a subshift).
To a subshift Σ we associate its de Bruijn graph of order n:



10 CHAPTER 0. INTRODUCTION

00

10 01
11

Figure 0.1: De Bruijn graph of order 2 of the SFT defined by F = {11}.

• the set of vertices is V = An

• the set of edges is E = {u0 . . . un−1 → u1 . . . un : u0u1 . . . un ∈ Ln+1(Σ)}.

For a subshift of finite type of radius less than r, there is a correspondence between con-
figurations of the subshift and infinite paths in the de Bruijn graph of any order n ≥ r. In
other words, a subshift of finite type is entirely described by its de Bruijn graph of rank large
enough.

Definition 0.1.11 (σ-transitive subshift).
A subshift Σ ⊂ AZ is σ-transitive if there is a configuration x ∈ Σ such that (σn(x))n∈Z

is dense in Σ.

Definition 0.1.12 (Minimal subshift).
A subshift Σ is minimal if it contains no other subshift than Σ and ∅.

Cellular automata

Definition 0.1.13 (Factor and cellular automaton).
A (one-dimensional) factor is a continuous function π : AZ → BZ that commutes with

the shift function: π ◦ σ = σ ◦ π.

A (one-dimensional) cellular automaton (CA for short) is a factor F : AZ → AZ.

Theorem 0.1.2 (Curtis–Hedlund–Lyndon theorem [Hed69]).
Equivalently, a cellular automaton F can be defined by the choice of a finite neighbour-

hood N ⊂ Z and a local rule f : AN → A, where we define:

∀x ∈ AZ, F (x) = (f(xi+N ))i∈Z,

and the same is true for factors. See Figure 0.2 for an example.

Proof. Let F : AZ → AZ be a continuous function that commutes with σ. Since AZ is
compact, F is uniformly continuous, and therefore for δ large enough we have for any
configurations x, y ∈ AZ : d(x, y) < 2−δ ⇒ F (x)0 = F (y)0. This means that, for any
u ∈ A2δ+1, all configurations x such that x[−δ,δ] = u have the same letter in column 0.
Denote this letter f(u) ∈ A.

Since F commutes with σ, the same is true for any position: F (x)k = F (σ−k(x))0 =
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. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . . . . .

. . . . . .

F f ︷ ︸︸ ︷

Figure 0.2: One step of a cellular automaton with alphabet {�,�} and local rule f acting on
neighbourhood {−1, 0, 1}. This CA is the elementary cellular automaton #26 (defined below).

f(x[k−δ,k+δ]). Therefore F is defined by the local rule f acting on the neighbourhood
[−δ, δ].

Conversely, if F is defined by a local rule f acting on a neighbourhood N , then by
definition F it is σ-invariant; furthermore, if x and y are two configurations such that
d(x, y) < 2−δ, then x[−δ,δ] = y[−δ,δ]. Taking r > 0 such that N ⊆ [−r, r], this means that
d(F (x), F (y)) ≤ 2−δ+r. In other words, F is 2r-Lipschitz, hence continuous.

This theorem establishes a correspondence between the topological vision of a σ-invariant
continuous function and the algorithmic and combinatoric vision of a function defined “by
blocks”.

Factors and cellular automata can be naturally extended to higher dimensional lattices Zd
or even any monoid, and the previous equivalence still holds. In the context of this thesis, we
only consider one-dimensional cellular automata, which is why we limited the definitions to
the one-dimensional case for clarity.

Definition 0.1.14 (Space-time diagram).
We represent the time evolution of a one-dimensional cellular automaton starting from an

initial configuration x ∈ AZ by a two-dimensional space-time diagram (F t(x)i)t∈N,i∈Z. In
our diagrams, space is horizontal, time goes from bottom to top. We also replace 0, 1, 2 by
colours, using the convention � = 0,� = 1,� = 2. . . Of course, only a finite window 0 ≤ t ≤ T
and −N ≤ i ≤ N for some T,N ∈ Z is represented. See Figure 0.4 for an example.

Definition 0.1.15 (Elementary cellular automata).
A cellular automaton is elementary if it is defined on alphabet A = {0, 1} by a local rule

acting on the neighbourhood N = {−1, 0, 1}.

An elementary cellular automaton (ECA) is entirely defined by choosing an image in {0, 1}
for the local rule for each value in {0, 1}3, for a total of 255 possibilities. Writing elements
of {0, 1}3 in decreasing lexicographic order, these images form a 8-bit binary number n (see
Figure 0.3). We call the corresponding CA Elementary cellular automaton #n, or Rule
n, and we denote it Fn.

Examples (Some elementary cellular automata).
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︷ ︸︸ ︷

1

︷ ︸︸ ︷

0

︷ ︸︸ ︷

1

︷ ︸︸ ︷

1

︷ ︸︸ ︷

1

︷ ︸︸ ︷

0

︷ ︸︸ ︷

0

︷ ︸︸ ︷

0

f

Figure 0.3: Local rule for elementary cellular automaton #184 = 101110002

Rule 184 (Traffic automaton) F184 is called traffic automaton as it can be seen as the
evolution of a (discrete) traffic jam, where the black cells (1) are cars and the white cells (0)
are free space. The cars progress by one cell to the right as long as there is free space to do
so.

Figure 0.4: Space-time diagram of the traffic automaton from an initial configuration drawn
uniformly at random.

Rule 110 The cellular automaton F110 has been shown to perform universal computation
[Coo04], in the following sense: starting from a finite word encoding a Turing machine number
and an input, surrounded by an F110-invariant background ∞00010011011111∞ (corresponding
to blank symbols on the tape), the time evolution of the automaton simulates the behaviour
of the Turing machine.

Figure 0.5: Space time diagram of the Rule 110 automaton from an initial configuration drawn
uniformly at random.

This example underlines that the cellular automata model remains Turing-powerful, even
with two symbols, “very local” updates and dimension one. Despite the simplicity on the
definition, elementary cellular automata exhibit already highly complex behaviours.
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0.1.2 Probability measures on symbolic spaces

Let B be the Borel sigma-algebra of AZ. Denote byM(AZ) the set of probability measures on
AZ defined on the sigma-algebra B. Since the cylinders {[u]n : u ∈ A∗, n ∈ Z} form a basis
of the product topology on AZ, a measure µ ∈ M(AZ) is entirely characterised by the values
µ([u]n).

Definition 0.1.16.
Let µ ∈ M(AZ). We say that the property P is true µ-almost everywhere (µ-a.e.), or

for µ-almost all configurations, if µ
(
{x ∈ AZ : P (x)}

)
= 1. In that case, we write:

∀µx ∈ AZ, P (x).

Generally we consider invariant measures under the action of σ. Since the action of a
cellular automaton commutes with σ, this implies that the properties of the resulting space-
time diagrams are independent from its position in space (i.e. the coordinate corresponding to
the central column).

Definition 0.1.17 (Image measure).
Let Φ : AZ → BZ be a measurable function and µ ∈M(AZ). The image measure of

µ by Φ is defined by Φ∗µ(B) = µ(Φ−1(B)) for all B ∈ B.

If Φ∗µ = µ, then µ is Φ-invariant. We denoteMΦ(AZ) the set of Φ-invariant proba-
bility measures.

Throughout the thesis, the initial configuration is drawn according to a σ-invariant probability
measure µ ∈ Mσ(AZ). In that case, the value of µ([u]n) is independent from the choice of
n ∈ Z, which is why we often consider µ([u]) = µ([u]0).

Definition 0.1.18 (Support of a measure).
The support of a measure µ ∈ Mσ(AZ), denoted supp(µ), is the closure of the set of

configurations x ∈ AZ such that any open neighbourhood of x have positive measure.

In particular, µ ∈Mσ(AZ) has full support if supp(µ) = AZ.

Examples.

Dirac measures The Dirac measure supported by x ∈ AZ is defined as δx(B) = 1x∈B for
B ∈ B. Generally δx is not σ-invariant.

Measures supported by a periodic orbit For a word w ∈ A∗, we define the σ-invariant
measure supported by ∞w∞ by taking the mean of the Dirac measures δσi(∞w∞) along
its orbit:

δ̂w = 1
|w|

∑

i∈[0,|w|−1]
δσi(∞w∞).

We call {δ̂w : w ∈ A∗} the measures supported by a periodic orbit.
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Bernoulli measure Let v = (va)a∈A be a vector of real numbers such that 0 ≤ va ≤ 1 for all
a ∈ A and ∑a∈A va = 1. The associated Bernoulli measure Berv is defined by

Berv([u0 . . . un]) = vu0 · · · vun for all u0 . . . un ∈ A∗.

In other words, each letter is drawn in an i.i.d. manner and the letter a has a probability
va to appear.

Uniform measure In particular, if we take va = 1
|A| for all a ∈ A, we obtain the uniform

(Bernoulli) measure λ.

Two-step Markov measure Let (pi,j)i,j∈A2 be a matrix satisfying ∑j pij = 1 for all i,
and (µi)i∈A an eigenvector associated with the eigenvalue 1 (the choice being unique
if the matrix is irreducible). The associated two-step Markov measure is defined
as µ([u]) = µu0pu0u1 · · · pu|u|−2u|u|−1 . This construction can be generalised to an n-step
Markov measure.

Definition 0.1.19 (Weak∗ topology).
We endow Mσ(AZ) with the weak∗ topology: for a sequence (µn)n∈N ∈ Mσ(AZ)N and

a measure µ ∈Mσ(AZ), we have µn −→
n→∞ µ if, and only if:

∀u ∈ A∗, µn([u]) −→
n→∞ µ([u]).

IfMσ(AZ) andMσ(BZ) are endowed with this topology, any factor π : AZ → BZ induces
a continuous function π∗ :Mσ(AZ)→Mσ(BZ).

Definition 0.1.20 (Metric dM onMσ(AZ)).
In the weak∗ topology, the setMσ(AZ) is compact and metrisable. A metric is defined by

dM(µ, ν) =
∑

n∈N∗

1
2n max

u∈An
|µ([u])− ν([u])|.

Definition 0.1.21 (Distance to a closed set).
For a closed set K ⊂Mσ(AZ), denote dK(ν) = minµ∈K dM(µ, ν).

Proposition 0.1.3. The set of measures supported by a periodic orbit is dense inMσ(AZ).

For a proof, see for example [Pet83].

Ergodicity and mixing

Definition 0.1.22 (σ-ergodic measures).
A measure µ ∈Mσ(AZ) is σ-ergodic if, for every subset S ⊂ AZ such that σ(S) = S

µ-almost everywhere, we have µ(S) = 0 or 1.
The set of σ-ergodic measures is denotedMσ−erg(AZ).

In particular, the image of a σ-ergodic measure under the action of a factor is σ-ergodic.
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Theorem 0.1.4 (Birkhoff’s ergodic theorem).
Let µ ∈Mσ−erg(AZ) and let f : AZ → R be a measurable function.

∀µx ∈ AZ,
1
n

n∑

i=0
f(σi(x)) −→

n→∞

∫

AZ
fdµ.

See for example [Wal82]. In most cases, we will be using one of the two following corol-
laries:

Corollary 0.1.5.
Let µ ∈Mσ−erg(AZ) and u ∈ A∗. Then:

∀µx ∈ AZ, Freq(u, x) = µ([u]).

Proof. Apply Birkhoff’s theorem to f = 1[u].

In this case, the frequency is actually a simple limit (instead of a lim sup).

Corollary 0.1.6.
Let µ ∈Mσ−erg(AZ) and A,B ⊂ AZ two measurable sets. Then:

1
n

n∑

k=0
µ(A ∩ σk(B)) −→

n→∞ µ(A) · µ(B).

Proof. Apply Birkhoff’s ergodic theorem on 1A∩σk(B). For µ-almost all x ∈ AZ:

lim
n→∞

1
n

n∑

k=0
µ(A ∩ σk(B)) = lim

n→∞
1
n

n∑

k=0
lim
m→∞

1
m

m∑

l=0
1A(σl(x)) · 1B(σk+l(x))

=
(i)

lim
m→∞

1
m

m∑

l=0
1A(σl(x)) lim

n→∞
1
n

n∑

k=0
1B(σk+l(x))

=
(ii)

lim
m→∞

1
m

m∑

l=0
1A(σl(x)) · µ(B)

= µ(A) · µ(B).

(i) by dominated convergence, (ii) by using Birkhoff’s theorem on σ−l(B) and σ-invariance
of µ.

This last property can be seen as a kind of mixing property, guaranteeing some sort of in-
dependence between two positions far enough apart in a single configuration. This hypothesis
can be strengthened in various ways. We introduce three different mixing conditions needed
in this thesis, though there are numerous other; see [Bra05] for a survey of different possible
mixing conditions.

The first natural strengthening is to require simple convergence instead of Cesàro mean
convergence.
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Definition 0.1.23 (σ-mixing).
A measure µ ∈Mσ(AZ) is σ-mixing if for any measurable sets A,B ⊂ AZ,

µ(A ∩ σn(B)) −→
n→∞ µ(A) · µ(B).

Mσ−mix(AZ) is the set of σ-mixing measures on AZ.

We can strengthen this condition further by requiring the convergence to be uniform on all
events depending on the values of cells at least n coordinates apart. Let B[i,j] be the σ-algebra
generated by the cylinders {[u]i | u ∈ Aj−i}. This definition extends naturally to the case
where i = −∞ and/or j = +∞.

Definition 0.1.24 (α-mixing).
The α-mixing coefficients of a measure µ ∈Mσ(AZ) are

αµ(n) = sup{|µ(A ∩B)− µ(A)µ(B)| : A ∈ B]−∞,0], B ∈ B[n,+∞[}.
A measure µ ∈Mσ(AZ) is α-mixing if αµ(n) −→

n→∞ 0.

Definition 0.1.25 (ψ-mixing).
The ψ-mixing coefficients of a measure µ ∈Mσ(AZ) are defined as:

ψµ(n) = sup
{∣∣∣∣
µ(A ∩B)
µ(A)µ(B) − 1

∣∣∣∣ : A ∈ B]−∞,0], B ∈ B[n,∞[, µ(A) · µ(B) > 0
}
.

A measure µ ∈Mσ(AZ) is ψ-mixing if ψµ(n) −→
n→∞ 0.

For α and ψ-mixing, one can make more precise statements; for example, a measure µ ∈
Mσ(AZ) is exponentially α-mixing if there is a constant C > 1 such that αµ(n) = o(C−n),
and so on.

Proposition 0.1.7. Those properties form the following hierarchy:

ψ-mixing ⇒ α-mixing ⇒ σ-mixing ⇒ σ-ergodic.

More precisely, αµ(n) ≤ 1
4ψµ(n). See [Bra05] for a proof.

0.1.3 Asymptotic behaviour and self-organisation

In this section, we aim at finding an object that describes asymptotic behaviour of cellular
automata in a way that corresponds to our visual intuition of self-organisation. Let us consider
a very simple example.

We introduce the mod 2 product automaton, which corresponds to the elementary cellular
automaton #128. On alphabet A = Z/2Z, the local rule acting on the neighbourhood N =
{−1, 0, 1} is defined as f(x−1, x0, x1) = x−1 · x0 · x1 (product mod 2). As we can see in
Figure 0.6, when the initial configuration is drawn according to a nondegenerate Bernoulli
measure, the visual intuition is that this cellular automaton exhibits a “trivial” self-organising
behaviour where white cells invade the whole space; formally, for any configuration that does
not contain an infinite cluster of black cells, any finite window becomes eventually entirely
white.

First, we can describe asymptotic behaviour in a purely topological manner by considering
the set of configurations that appear arbitrarily late in the space-time diagram.
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Figure 0.6: The product automaton F128. The initial configuration is drawn according to
Ber( 1

10 ,
9

10 ).

Definition 0.1.26 (ω-limit set).
The ω-limit set of a cellular automaton F : AZ → AZ (sometimes simply called limit

set) is defined as:
ΩF =

⋃

T∈N

⋂

t≥T
F t(AZ).

In particular, ΩF is a subshift and thus it would be equivalent to define an ω-limit language.

Let us determine ΩF128 . Since F128(∞�∞) = ∞�∞, this configuration is included in the
ω-limit set; more generally, one can check that:

ΩF128 ={· · · · · ·
m n

: m ≤ n ∈ Z ∪ {−∞, +∞}},

Indeed, denoting xm,n the configuration that is white everywhere except for [m,n−1], we have
xm,n = F t128(xm−t,n+t). Furthermore, any configuration with a finite white region of length l
cannot appear after l steps or more.

From this example we can see that the ω-limit measure set does not accurately represent the
typical asymptotic behaviour that is observed on simulations, if only because the monochro-
matic configurations ∞�∞ and ∞�∞ are both members of the ω-limit set even though they
play very different roles in the asymptotic behaviour of the automata. Making a distinction
according to the number of preimages by F t128 for all t does not solve this problem, since all
xm,n with m 6= −∞, n 6= +∞ have uncountable sets of preimages.

Therefore, to describe the empirically observed behaviour, we have to take into account the
fact that the initial configuration is drawn according to some probability measure. This is the
reason why Hurley introduced the notion of µ-attractor in [Hur90]:

Definition 0.1.27 (µ-attractor).
Let F : AZ → AZ be a cellular automaton and µ ∈Mσ(AZ) an initial probability measure.

Σ ⊂ AZ is a µ-attractor if:

µ

({
x ∈ AZ : d(F t(x),Σ) −→

t→∞
0
})

> 0.
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Of course AZ is always a µ-attractor and does not describe well the asymptotic behaviour,
but we could consider some notion of minimal µ-attractor. In the previous example, ∞�∞ is
the unique minimal µ-attractor for any nonatomic measure, which seems satisfying. However,
let us consider another example.

Example (3-state cyclic automaton).
The 3-state cyclic automaton C3, sometimes informally referred to as the “rock-paper-

scissors” automaton, is defined on the alphabet Z/3Z by the local rule f acting on the neigh-
bourhood N = {−1, 0, 1} defined as:

f(xi−1, xi, xi+1) =
{
xi + 1 if xi−1 = xi + 1 or xi+1 = xi + 1,
xi otherwise. 0

1 2

Starting from any Bernoulli measure µ, the visual intuition is that monochromatic regions

Figure 0.7: The 3-state cyclic “rock-paper-scissors” automaton C3 iterated on a configuration
drawn uniformly at random.

grow larger and larger, eventually encompassing the whole space, while the probability of seeing
a border tends to 0. However, for µ-almost every configuration, borders appear in the central
column infinitely often, which means that {∞0∞,∞1∞,∞2∞} is not a µ-attractor.

This is the reason why Kůrka and Maass introduced instead the notion of µ-limit set
[KM00]. The intuition is that asymptotic behaviour corresponds to finite patterns whose prob-
ability to appear does not tend to 0 as time tends to infinity.

By the definition of an image measure, any continuous action Φ : AZ → BZ commuting
with σ can be extended to a continuous action Φ∗ : Mσ(AZ) → Mσ(BZ). We consider in
particular the sequence (F t∗µ)t∈N of iterated images of µ by F∗.

Definition 0.1.28 (µ-limit set).
Let F : AZ → AZ be a cellular automaton and µ ∈Mσ(AZ). The µ-limit set of F is the

subshift defined by:
u ∈ L(Λµ(F ))⇐⇒ F t∗µ([u]) 9

t→∞
0.

In other words, it is the subshift whose set of forbidden patterns is the set of words whose
probability to appear tends to 0 as time tends to infinity.

Since Λµ(F ) is a subshift, it is equivalent to define it by its language. Note that any µ-limit
set is included in the corresponding ω-limit set.



0.1. DEFINITIONS 19

The notion of µ-limit set is a natural conversion of the notion of ω-limit set in a measure-
theoretical framework. Another way to describe typical asymptotic behaviour would be to
consider directly the limit(s) of the sequence F t∗µ with regards to the topology defined earlier.

Definition 0.1.29 (µ-limit measures set).
Let F : AZ → AZ be a cellular automaton and µ ∈Mσ(AZ). The µ-limit measures

set of F , denoted V(F, µ), is the set of limit points of the sequence (F t∗µ)t∈N.

The µ-limit measures set contains more information than the µ-limit set, since it also de-
scribes the asymptotic probability of appearance for each pattern.

Proposition 0.1.8 (Link between the µ-limit sets).

Λµ(F ) =
⋃

ν∈V(F,µ)
supp(ν).

Proof. Let x ∈ Λµ(F ). For any n ∈ N, we have by definition F t∗µ([x[−n,n]]) 9
t→∞

0. There-
fore there is an accumulation point νn of the sequence (F t∗µ)t∈N satisfying νn([x[−n,n]]) > 0.
This means that [x[−n,n]] ∩ supp(νn) 6= ∅ for every n, with νn ∈ V(F, µ) by definition. By
closure, we have x ∈ ⋃ν∈V(F,µ) supp(ν). The converse is easy.

Let us return to the previous examples.

Product automaton Take an initial measure µ ∈ Mσ(AZ) such that µ(∞1∞) = 0. For µ-
almost every initial configuration, the white cells eventually invade the whole space, and
the probability to see a black cell tends to 0. Thus:

Λµ(F128) = {∞0∞} and V(F, µ) = δ̂0.

3-state cyclic automaton Following the intuition given above, we have

Λµ(C3) = {∞0∞,∞1∞,∞2∞}.

This is a consequence of Theorem 2.1.2, although it is not difficult to prove it by hand.

In the last case, this is not enough information to determine V(F, µ): since any limit
measure ν is supported by Λµ(F ), we can only conclude that it can be written as a convex
combination of δ̂0, δ̂1 and δ̂2. In the case where µ is the uniform Bernoulli measure λ, a
symmetry argument shows that V(F, λ) =

{
1
3 δ̂0 + 1

3 δ̂1 + 1
3 δ̂2
}

. Determining V(F, λ) for
any Bernoulli measure is actually much more difficult and is done in Section 2.3.

From those examples, we can see that the µ-limit measures set is the object that corre-
sponds to our visual intuition of self-organisation in cellular automata. This is why we use it
throughout the thesis, and we consider the µ-limit set instead when not enough information is
available to fully describe the limit measures.

When (F t∗µ)t∈N does not converge, it can be useful to consider convergence in Cesàro mean
instead:
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Definition 0.1.30 (Cesàro mean).
The Cesàro mean of the sequence (F t∗µ)t∈N at time t ∈ N is defined by:

ϕFt (µ) = 1
t+ 1

t∑

i=0
F i∗µ ∈Mσ(AZ).

Definition 0.1.31 (µ-limit measures set in Cesàro mean).
Let F : AZ → AZ be a cellular automaton and µ ∈ Mσ(AZ). The µ-limit measures set

in Cesàro mean of F , denoted V ′(F, µ), is the set of limit points of the sequence (ϕFt (µ))t∈N.

Of course one can also define a µ-limit set in Cesàro mean (set of configurations), but this
notion is not used in this thesis and has not been considered historically to our knowledge.

Proposition 0.1.9 (Topological remarks on µ-limit measures sets).
For any initial measure µ ∈Mσ(AZ) and cellular automaton F : AZ → AZ,

(i) V(F, µ) is a nonempty, compact set;
(ii) V ′(F, µ) is a nonempty, compact, connected set;
(iii) V ′(F, µ) is included in the convex hull of V(F, µ).

Proof. By compacity of Mσ(AZ), any sequence admits a nonempty set of accumulation
points, which is also closed hence compact. Furthermore, the set of limit points of a Cesàro
mean sequence is always connected, and we prove it in this particular case. For all u ∈ A∗,

|ϕFt+1(µ)([u])− ϕFt (µ)([u])| ≤
∣∣∣∣∣
t∑

i=0

( 1
t+ 1 −

1
t

)
F i∗µ([u]) + 1

t+ 1F
t+1
∗ µ([u])

∣∣∣∣∣

≤ 1
t

+ 1
t+ 1 −→t→∞ 0

and so dM(ϕFt+1(µ), ϕFt (µ)) → 0. Now let K ⊂ V(F, µ) be a clopen set (not ∅ or
V(F, µ)), so that V(F, µ)\K is also clopen. If both of them are nonempty, we have
minµ∈Kminν∈V(F,µ)\K dM(µ, ν) = r > 0, and by taking T large enough we have:

• ∀t ≥ T, dM(ϕFt+1(µ), ϕFt (µ)) < r
3 ;

• ∀t ≥ T, dV(F,µ)(ϕFt (µ)) = dM(ϕFt (µ),V(F, µ)) < r
3 .

Now, if we assume that dK(ϕFt (µ)) < r
3 , then it is impossible that dV(F,µ)\K(ϕFt+1(µ)) < r

3
by the first point; therefore dK(ϕFt+1(µ)) < r

3 , and by induction the sequence can never
return close to V(F, µ)\K. If K 6= V(F, µ), this is in contradiction with the definition of a
set of limit points. The other case is symmetrical.

Let us prove the third point. For any ν ∈Mσ(AZ), let pν an arbitrary point of V(F, µ)
realising the minimum distance dM(ν, pν) = dV(F,µ)(ν) . Take any ε > 0 and let T ∈ N be
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large enough that dV(F,µ)(F t∗µ) ≤ ε for all t ≥ T . When t ≥ T
ε , we have:

dM

(
1

t+ 1

t∑

i=0
F i∗µ,

1
t+ 1

t∑

i=0
pF i∗µ

)
= 1
t+ 1

∑

n∈N
max
u∈A∗

∣∣∣∣∣
t∑

i=0
(F i∗µ([u])− pF i∗µ([u]))

∣∣∣∣∣

≤ 1
t+ 1

t∑

i=0
dM(F i∗µ, pF i∗µ)

≤ 1
t+ 1

(
T−1∑

i=0
dM(F i∗µ, pF i∗µ) +

t∑

i=T
dM(F i∗µ, pF i∗µ)

)

≤ T

t
+ ε ≤ 2ε

and since by definition 1
t+1

∑t
i=0 pF

i
∗µ is included in the convex hull of V(F, µ), the distance

between ϕFt (µ) and the convex hull of V(F, µ) tends to 0 as t→∞.

We now add a last example where V(F, µ) and V ′(F, µ) are very different.

Figure 0.8: The elementary CA F102, starting from an initial configuration drawn randomly
according to a Bernoulli measure of parameters (1

3 ,
2
3).

Example (Addition mod 2 automaton).
The elementary CA F102 performs addition mod 2 on the neighbourhood {0, 1}, that is, it

is defined by the local rule f : (Z/2Z)2 → Z/2Z defined by f(x0, x1) = x0 + x1.

Take an initial measure µ = Ber( 1
3 ,

2
3 ). On the one hand, V ′(F102, µ) = {λ}, where λ is

the uniform measure [Lin84]. On the other hand, V(F102, µ) contains λ as well as countably
many other measures such as Ber( 5

9 ,
4
9 ), Ber( 41

81 ,
40
81 ), etc. See Section 3.1.1, and in particular

Proposition 3.1.2, for more information.
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Section 1.0

Introduction

In the previous chapter, we concluded that the intuitive notion of typical asymptotic behaviour
for a cellular automaton F is well described by taking an initial probability measure, for ex-
ample the uniform measure, and considering the set of limit points of the sequence (F t∗µ)t∈N
(its µ-limit measures set). Seen from another angle, this set is also a natural way to define
the output if one considers that the cellular automaton is simulating a source of randomness.
In this chapter, we aim to characterise which measures or sets of measures can be obtained as
limit points in this way.

This study is motivated by the two following questions:

• explaining the variety of typical asymptotic behaviours in cellular automata, and in par-
ticular the way complex behaviours emerge from disordered initial states;

• understanding the computational power of this model in the specific setting of simulating
probability measures.

Obviously, any measure can be reached by iterating the identity cellular automaton on it-
self. Therefore, a more interesting approach is to start from some simple measure, such as the
uniform Bernoulli measure. This corresponds to “physically” relevant distributions of configu-
rations for F in the sense that, if we iterate F on a uniformly distributed set of configurations
and we observe the result after a long time, the set will be distributed according to one of
these measures. This also makes sense from a computational point of view, since we obtain
the sources of randomness that can be simulated by a CA having access to a simple source.

Exploring the computational content of dynamical systems is not restricted to cellular au-
tomata, and is often linked with such questions as robustness to noise or undecidability of some
properties. See for example [Moo90] for piecewise linear maps of the unit interval and the
unit square, [KCG94] and [AMP95] for systems with piecewise constant derivatives, [AB01]
for larger classes of dynamical systems, or [DKB06] for various symbolic systems (such as
cellular automata).

Recently, this approach has led to a series of results where some objects or parameters of the
system are fully characterised by computability conditions. For subshifts of finite type, possible
entropies [HM10], possible growth-type invariants [Mey11] and possible sub-actions [Hoc09,
AS13] were characterised in this way.

Concerning cellular automata, previous works focused on the ω-limit sets [Hur87, Maa95]
and µ-limit sets [BPT06, BDS10]. In each case, the authors tried to construct examples or
classes of very (computationally) complex sets, and our construction is inspired from these
works. For ω-limit sets, a characterisation was recently obtained [BCV14].

Here, we want to characterise all sets that can be reached as V(F, µ) (the µ-limit measures
set of F starting from µ) or V ′(F, µ) (the Cesàro mean µ-limit measures set of F starting from
µ) by any cellular automata F and any “simple” initial measure µ ∈Mσ(AZ).
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If the initial measure is arbitrary, the only property we can deduce about the µ-limit mea-
sures set is that it is a nonempty compact set. There are different ways of restricting the class
of initial measures, and we consider the consequences after a finite number of steps and at the
limit. Starting from a Bernoulli measure or a Markov measure, we obtain after a finite num-
ber of steps a hidden Markov chain which is well understood [BP11]. More generally, we can
define the notion of computable probability measure, which means that there is a probabilis-
tic algorithm (having access to a perfect source of randomness) whose output is distributed
according to this measure. For example, a Bernoulli or Markov measure is computable if and
only if its parameters are computable real numbers.

If the initial measure µ is computable, it is easy to see that F t∗µ is also computable. How-
ever, even a single limit measure is not necessarily computable since the speed of convergence
is not known. This is why we extend these notions in Section 1.1 by defining higher order
computability on probability measures, and we also introduce computability on sets of proba-
bility measures so as to handle µ-limit measures set that are not reduced to a singleton. Thus,
we are able to exhibit the following necessary computational obstructions:

Theorem 1.0.1 (Computable obstructions - Theorems 1.1.3 and 1.1.5).
Let F : AZ → AZ be a cellular automaton.
If µ ∈ Mσ(AZ) is a computable measure, then the µ-limit measures set V(F, µ) is a
Π2-computable set. In particular, if F t∗µ −→t→∞ ν, then ν is a limit-computable measure.

Let us consider this last statement for clarity. It essentially means that a cellular automaton
is not more than Turing-powerful for simulating a probability measure. This is not a surprising
result since a cellular automaton is performing computation locally.

In Section 1.2, we tackle the main problem of proving a reciprocal. More precisely, given a
measure or set of measures satisfying the computational obstructions, we construct a cellular
automaton which, starting on any simple initial measure, reaches exactly this set asymptot-
ically. Since this construction is initialised on a random configuration, this requires to self-
organise the space, in the same spirit as the probabilistic cellular automaton of [Gác01] per-
forming reliable computation by correcting the random perturbations.

A first difficulty is to reach (sets of) probability measures without access to a source of
randomness. Lemma 1.1.6 states that sets satisfying the computability obstruction can be
described as the accumulation points of a computable polygonal path of measures supported
by periodic orbits. From there, it is sufficient to prove the following theorem:

Theorem 1.0.2 (Theorem 1.2.1).
Let (wn)n∈N be a uniformly computable sequence of words of B∗, where B is a finite
alphabet. There is a cellular automaton F : AZ → AZ, where A ⊃ B, such that for any
ψ-mixing measure µ with full support, the µ-limit measures set of F is exactly the set of
accumulation points of the polygonal path drawn by (δ̂wn)n∈N.

The hypothesis of shift-mixing on the initial measure may be relaxed to an ergodicity condition
when the set of accumulation points is reduced to a singleton, i.e. when (δ̂wn)n∈N converges
to a limit.
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First of all, the cellular automaton divides the initial configuration in segments, and formats
each segment using a method similar to the one developed in [DPST11]. Computation takes
place in a negligible part of each segment and the result is copied periodically on the rest
of the segment. However, the computation may require an arbitrarily large space; to ensure
that the computation space is eventually large enough, we merge segments progressively in a
controlled manner. The difficulty of the construction is to synchronise all operations to ensure
convergence.

Section 1.3 focuses in adapting this construction in the case where auxiliary states are not
allowed, i.e., the cellular automaton can only use the same alphabet as the limit measure(s)
(that is, A = B in the previous theorem). This is only possible, however, when a word u ∈ A∗
does not appear in any of the wn, which corresponds to the case where the limit measure does
not have full support.

In Section 1.4, we present various theorems resulting from the construction of Section 1.2.
For any measure µ fixed in a large class of measures, we obtain:

• characterisation of shift-invariant measures ν such that there exists a cellular automaton
F which verifies F t∗µ −→t→∞ ν (Corollary 1.4.2);

• characterisation of connected subsets of shift-invariant measures K such that there exists
a cellular automaton F which verifies V(F, µ) = K (Corollary 1.4.3);

• characterisation of subsets of shift-invariant measures K′ such that there exists a cellular
automaton F which verifies V ′(F, µ) = K′ (Corollary 1.4.6);

• characterisation of connected subsets of shift-invariant measures K′ ⊂ K such that there
exists a cellular automaton F which verifies V(F, µ) = K and V ′(F, µ) = K′ (Corol-
lary 1.4.7).

• Rice theorem for shift-invariant measures and connected subsets of shift-invariant mea-
sures reached by a cellular automaton (Corollaries 1.4.10, 1.4.11 and 1.4.12).

Furthermore, all these results have another version where auxiliary states are not allowed,
using the construction of Section 1.3. This entails additional hypotheses on the support of the
target limit measure(s).

In Section 1.5, we consider the case where the set of limit points depends on the initial mea-
sure. From a computational point of view, this corresponds to computing nonconstant func-
tions on probability measures. Computational constraints appear on functions µ 7−→ V(F, µ)
that can be realised in this way. Indeed, the computational complexity of the initial measure
(used as an oracle) limits the complexity of the set of limit points. By modifying the construc-
tion of Section 1.2, we manage to build a set of limit points that depends on the density of a
special state; however, we do not obtain a complete characterisation.

This chapter is a more detailed version of [HdMS13], which has been accepted in Ergodic
Theory and Dynamical Systems.
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Section 1.1

Computability and computable
analysis

In this section, we introduce some general notions of computability and computable analysis,
in order to exhibit the computable obstructions on the measures and sets of measures that
can be reached as the limit set of a cellular automaton. We begin by introducing classical
computability definitions on functions between countable sets in Section 1.1.1, then we extend
these definitions as needed to larger sets in Sections 1.1.2 and 1.1.3. The main results are the
computability obstructions shown in Theorems 1.1.3 and 1.1.5. We also prove along the way
some technical results that are needed for the next section.

Definition 1.1.1 (Turing machine).
A Turing machine TM = (Q,Γ,#, q0, δ, QF ) is defined by:

• Γ a finite alphabet, with a blank symbol # /∈ Γ. Initially, a one-sided infinite memory
tape is filled with #, except for a finite prefix (the input), and a computing head is
located on the first letter of the tape;
• Q the finite set of states of the head; q0 ∈ Q is the initial state;
• δ : Q× (Γ∪#)→ Q× (Γ∪#)× {←,→} the transition function. Given the state of the
head and the letter it reads on the tape — depending on its position — the head can
change state, replace the letter and move by one cell at most.
• QF ⊂ Q the set of final states — when a final state is reached, the computation stops
and the output is the value currently written on the tape.

Turing machines are an idealised model of computation with unbounded memory and no
side effects. Thus they are a robust tool, though not the only one (λ-calculus, combinatorial
circuits. . . ) to define computability of mathematical operations.

Definition 1.1.2 (Computable functions on Γ∗).
A function f : Γ∗ → Γ∗ is computable if there exists a Turing machine working on an

alphabet including Γ that, on any input w ∈ Γ∗, eventually stops and outputs f(w).

1.1.1 Computability of functions mapping countable sets

Encodings

Before extending this definition to other countable sets, we need to introduce the notion of
encoding. An encoding for a countable set X is the choice of a finite alphabet ΓX , a subset
VX ⊂ Γ∗X of valid encodings and a surjection eX : VX � X. Intuitively, a word in Γ∗
represents an element of X, but an element can have several valid encodings and not all
elements of Γ∗ need to be a valid encoding.



28 CHAPTER 1. CHARACTERISATION OF TYPICAL ASYMPTOTIC BEHAVIOURS

Strictly speaking, all these definitions depend on the chosen encoding, even though all rea-
sonable choices lead to the same notion of computability. Since all countable sets considered
in this thesis are Γ∗ (for some finite alphabet Γ), N, Z Q and their products, we fix canonical
encodings for the latter three cases that are valid throughout the thesis.

N or Z: Γ = {0, 1} and to each binary number we assign the corresponding integer (removing
initial zeroes), with the first bit encoding the sign for Z;

Q: Γ = {0, 1, |} and to p|q (p ∈ N∗ and q ∈ Z being written in binary) we assign the rational pq ;

X × Y : If ΓX , eX and ΓY , eY are the encodings fixed for X and Y , respectively, we put Γ =
ΓX ∪ ΓY t {|} (disjoint union, i.e. assume | is a fresh symbol), and to x|y we assign
(eX(x), eY (y)).

In all the following, X and Y are two countable sets and we suppose encodings ΓX , eX and
ΓY , eY have been fixed. We now introduce the standard definition of a computable function
between two countable sets.

Definition 1.1.3 (Computable functions between countable sets).
A function f : X → Y is computable if there exists a Turing machine working on an

alphabet containing ΓX ∪ΓY that, on any input x ∈ Γ∗X , eventually stops and outputs y ∈ Γ∗Y ,
where f(eX(x)) = eY (y).

Remark. The set of computable functions X → Y is countable.
Even among noncomputable functions, we can distinguish various levels of computational

complexity, taking the form of a hierarchy.

Higher order computability: the arithmetical hierarchy

We now present the arithmetical hierarchy of functions mapping countable sets. This hierarchy
was introduced in [ZW01] on real numbers by analogy with Kleene’s arithmetical hierarchy on
decision problems [Kle43], with ∃ and ∀ quantifiers being replaced by sup and inf operators.
This hierarchy applies to functions mapping countable sets when the codomain is ordered,
considering reals as a function mapping n to the nth digit of the real. From now on Y is
assumed ordered.

Definition 1.1.4 (Computable sequence of functions between countable sets).
A sequence of functions (fn : X → Y )n∈N is uniformly computable if the function

(n, x) 7→ fn(x) is computable. This notion generalises naturally to multi-indices sequences.

Notice that this is a stronger statement than to say that all functions fn are computable.

Definition 1.1.5 (Arithmetical hierarchy of functions between countable sets).
Let n ∈ N. A function f : X → Y is Σn-computable (resp. Πn-computable) if there

exists a uniformly computable sequence of functions (fi1,...,in : X → Y )i1,...,in∈N such that:

f = sup
i1∈N

inf
i2∈N

sup
i3∈N
· · · fi1,...,in

(
resp. f = inf

i1∈N
sup
i2∈N

inf
i3∈N
· · · fi1,...,in

)
.

f is ∆n-computable if it is both Σn-computable and Πn-computable.
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Remark.
∆1-computability is equivalent to computability.

A ∆2-computable function is also called limit-computable. f : X → Y is a limit-
computable function if, and only if, there exists a uniformly computable sequence of functions
(fn : X → Y )n∈N such that f = limn→∞ fn.

Inclusions between these sets are shown in Figure 1.1.

∆1

Σ1

Π1

∆2

Σ2

Π2

· · · ∆n

Σn

Πn

∆n+1 · · ·

Figure 1.1: Representation of the arithmetical hierarchy. Arrows indicate strict inclusion
relations.

Definition 1.1.6 (Computability of subsets of countable sets).
A subset U ⊂ X is said to be Πn(Σn)-computable if its characteristic function 1U : X →

{0, 1} is Πn(Σn)-computable.

1.1.2 Computability of probability measures

Different points of view can be used to define the computability of a probability measure. Sim-
ilarly to R,Mσ(AZ) is a metric space with a countable dense set {δ̂w : w ∈ A∗}. First, it would
be natural to define a computable measure in a similar fashion as a computable real ([ZW01]),
that is, as the limit of a uniformly computable sequence of elements in this countable dense
set (Q and {δ̂w : w ∈ A∗}, respectively) with a computable rate of convergence.

Probability measures

Definition 1.1.7 (Computability of probability measures).
A measure µ ∈Mσ(AZ) is computable if there exists a computable function f : N→ A∗

such that dM
(
µ, δ̂f(n)

)
≤ 2−n for all n ∈ N.

It is limit-computable if there exists a computable function f : N → A∗ such that
lim
n→∞δ̂f(n) = µ.

We denoteMcomp
σ (AZ) the set of σ-invariant computable measures andMs-comp

σ (AZ) the
set of σ-invariant limit-computable measures.

Examples.

• any measure supported by a periodic orbit is computable;
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• any Bernoulli measure or Markov measure with Σn-computable (resp. Πn-computable)
parameters is Σn-computable (Πn-computable)1;
• if an effective subshift (defined by a Σ1 - i.e recursively enumerable - set of forbidden
patterns) admits a unique ergodic measure, then this measure is limit-computable. This
is the case for any subshift obtained by a primitive substitution or the orbit of a Sturmian
word with computable slope.

We provide a proof of this last statement. Notice that since σ-ergodic measures are the
extremal points of the set of σ-invariant measures, there is a unique σ-invariant measure
supported by Σ.

Proof of the last example. Let Σ be a subshift defined by a recursively enumerable set of
forbidden patterns F , which means that there exists a computable function f : i, w 7→
{0, 1} such that w ∈ F ⇔ supi f(i, w) = 1.

We consider the following algorithm: on input j ∈ N, it computes the set Fj = {w ∈
A∗ : ∃i ≤ j, f(i, w) = 1}. It then builds the de Bruijn graph of order maxw∈Fj |w|
corresponding to the subshift of finite type defined by forbidding words of Fj . To any
configuration of Σ corresponds an infinite path in this graph, since this configuration
cannot contain a subword in Fj . This infinite path contains a cycle, and any such cycle
yields a word wj ∈ A∗ such that ∞w∞j does not contain any word of Fj .

The algorithm then outputs wj . Thus we obtain a computable function j 7→ wj .
Let ν be an accumulation point of (δ̂wj )j∈N. If u ∈ F , then it is contained in all

Fi for i large enough, and this means that δ̂wi([u]) = 0. Therefore ν([u]) = 0, and
supp(ν) ⊂ Σ. This shows that ν can only be the unique measure supported on Σ, and it
is limit-computable as the single limit of the sequence (δ̂wj )j∈N.

For more details about primitive substitutions and Sturmian words, see for example [FM10].

Functions with countable domain, metric codomain with countable dense set

Before stating the first computability obstruction, we spend the next few pages considering
other natural definitions for the computability of a probability measure inMσ(AZ), and show-
ing that these notions are equivalent.

We extend the definitions of the previous sections to uncountable codomains. To gain in
clarity, we write definitions for functions A∗ → R as needed in this thesis, even though they
can be extended to any countable domain and any metric codomain with a countable dense
set (such as R orMσ(AZ), in which the measures supported by periodic word are dense).

Definition 1.1.8 (Computable function - codomain with countable dense set).
A function f : A∗ → R is computable if there exists a uniformly computable sequence of

functions (fn : A∗ → Q)n∈N such that:

|f(u)− fn(u)| < 2−n for all u ∈ A∗ and n ∈ N.
1As mentioned in the previous section, the computability of a real is defined as the computability of the

function that maps n to the nth digit of the real, and similarly for k-tuples of reals.
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It is limit-computable if there exists a uniformly computable sequence of functions (fn :
A∗ → Q)n∈N such that:

lim
n→∞ fn(u) = f(u) for all u ∈ A∗.

Remark. f : A∗ → R is a limit-computable function if, and only if, there is a uniformly
computable sequence of functions (fn : A∗ → Q)n∈N such that f = limn→∞ fn.

Proposition 1.1.1 (Equivalence of the definitions).
A measure µ ∈Mσ(AZ) is computable, resp. limit-computable, if the function u 7→ µ([u])

is computable, resp. limit-computable.

Proof. Let µ ∈ Mσ(AZ) such that u 7→ µ([u]) is computable. Given some n ∈ N, we
can enumerate words in A∗ in a computable manner until we find a word f(n) such
that |µ([u]) − δ̂f(n)([u])| < 2−n−2 for all u ∈ A≤n+1. Such a word exists since the set{
δ̂w : w ∈ A∗

}
is dense in Mσ(AZ), and it can be found since µ and δ̂f(n)([u]) are com-

putable. Therefore

dM(µ, δ̂f(n)) =
∑

i∈N

1
2i max

u∈Ai
|µ([u])− δ̂f(n)([u])| ≤ 1

2n+1 +
∑

i≥n+2

1
2i ≤

1
2n ,

which means that µ ∈ Mcomp
σ (AZ). The reciprocal is obvious since (n, u) 7→ δ̂f(n)([u]) is

computable and we have

∀u ∈ A∗,
∣∣∣µ([u])− δ̂f(n)([u])

∣∣∣ ≤ 2|u|dM
(
µ, δ̂f(n)

)
.

Let µ ∈ Mσ(AZ) such that u 7→ µ([u]) is limit-computable. There exists a uniformly
computable sequence of functions (fn : A∗ → Q)n∈N such that limn→∞ fn(u) = µ([u]) for
all u ∈ A∗. For each n, consider the following function :

A≤n −→ Q

w 7−→
∑

i≤n

1
2i max

u∈Ai
|fn(u)− δ̂w([u])|.

Let wn be the word that realises the minimum of this function. Given an integer n, one can
compute wn by enumerating all elements of A≤n and computing the above function which
is a composition of computable functions. Therefore (wn)n∈N is a uniformly computable
sequence of words.

For every n:

dM(µ, δ̂wn) ≤
∑

i≤n

1
2i max

u∈Ai
|µ([u])− fn(u)|+

∑

i≤n

1
2i max

u∈Ai
|fn(u)− δ̂wn([u])|+ 1

2n .
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The first term tends to 0 by dominated convergence. Now consider the function v 7→
dM(µ, δ̂v) for v ∈ A≤n and let vn be a word minimising this function. Then:

∑

i≤n

1
2i max

u∈Ai
|fn(u)− δ̂vn([u])| ≤ d(µ, δ̂vn) +

∑

i∈n

1
2i max

u∈Ai
|µ([u])− fn(u)| −→

n→∞ 0.

Since wn realises the minimum of the left-hand term, we see that∑i≤n
1
2i maxu∈Ai |fn(u)−

δ̂wn([u])| −→
n→∞ 0 and we conclude.

The reciprocal is similar to the reciprocal of the first point.

An advantage of this definition is that it can be extended to define an arithmetical hierarchy
of probability measures, even though we do not use it in this thesis.

Definition 1.1.9 (Arithmetical hierarchy of functions - codomain with countable dense set).

Let n ∈ N. A function f : A∗ → R is Σn-computable (resp. Πn-computable) if, and
only if, there is a uniformly computable sequence of functions (fi1,...,in : A∗ → Q)i1,...,in∈N such
that:

f = sup
i1∈N

inf
i2∈N

sup
i3∈N
· · · fi1,...,in

(
resp. f = inf

i1∈N
sup
i2∈N

inf
i3∈N
· · · fi1,...,in

)
.

f is ∆n-computable if it is both Σn-computable and Πn-computable.

Now we consider the notion of simulability of a measure: that a probabilistic algorithm is
able to draw a configuration distributed according to this measure. Again this definition, that
we gave as an intuition in the introduction, is equivalent to the previous one.

Definition 1.1.10 (Simulability of probability measures).
A measure µ ∈Mσ(AZ) is simulable if, and only if, there is a probabilistic Turing machine

(in other words, a Turing machine having access to a source of independent, fair random bits),
working on an alphabet Γ ⊃ A such that, on an empty input:

1. The machine never stops;
2. A letter written on the output tape can never be overwritten;
3. The word on the output tape converges to a limit configuration distributed according to
µ.

A measure is limit-simulable if only conditions 1 and 3 are satisfied. In other words,
the machine can write over a letter, but to ensure convergence this can happen only a finite
number of times for each tape cell.

Proposition 1.1.2 (Equivalence between computability and simulability).
(i) A measure is computable if, and only if, it is simulable.
(ii) A measure is limit-computable if, and only if, it is limit-simulable.

See [KY76] for a proof of this result and an overview of simulating probability measures by
Turing machines.

We now state the first computability obstruction for single limits of the sequence (F t∗µ)t∈N.



1.1. COMPUTABILITY AND COMPUTABLE ANALYSIS 33

Proposition 1.1.3 (First computability obstruction).
Let F : AZ → AZ be a cellular automaton. If µ ∈Mcomp

σ (AZ), then (u 7→ F t∗µ([u]))t∈N
is a uniformly computable sequence of functions. In particular, if F t∗µ −→t→∞ ν then ν ∈
Ms-comp

σ (AZ).

Proof. By definition, there is a computable function f : A∗ × N → Q such that |µ([u]) −
f(u, n)| ≤ 2−n for all u ∈ A∗. Because F is defined locally, F t(x)[0,k] depends only on
x[lt,rt+k] where l = minUF and r = maxUF . In other words, for all u ∈ Ak, there is a set
Predt(u) ⊂ A[lt,rt+k] such that F−t([u]) = ∪v∈Predt(u)[v]. Now consider the function

f ′ : (u, n, t) 7→
∑

v∈Predt(u)
f(v, |u|+ n+ (r − l)t).

It is computable by enumerating elements of Ak+(r−l)t and checking if F t([v]−lt) ⊂ [u] by
iterating the local rule on v. Finally:

|F t∗µ([u])− f ′(u, n, t)| =
∣∣∣∣∣∣
µ


 ⋃

v∈Predt(u)
[v]


−

∑

v∈Predt(u)
f(v, |u|+ n+ (r − l)t)

∣∣∣∣∣∣

≤
∑

v∈Predt(u)
|µ([v])− f(v, |u|+ n+ (r − l)t)|

≤ 2|u|+(r−l)t · 2−|u|−n−(r−l)t = 2−n

which means that (u 7→ F t∗µ([u]))t∈N is a uniformly computable sequence of functions.

1.1.3 Computability of sets of probability measures

Computable analysis

In the previous section, we defined the notion of computability of probability measures and
exhibited a computability obstruction on single limit measures. However, in general, the set of
adherence values of the sequence (F t∗µ)t∈N is not restricted to single limit measures. Thus we
need to extend the notion of computability to compact subsets ofMσ(AZ).

For a closed set K ⊂ Mσ(AZ), computing the characteristic 1K : Mσ(AZ) → {0, 1} is
problematic because the possible inputs for a Turing machine form a countable set. Even if
this function restricted to a countable dense set of the codomain (here {δ̂u : u ∈ A∗}) is
computable, we would need some notion of continuity to get an approximation of the result
for any measure inMσ(AZ), which is not possible for a codomain {0, 1}.

A standard reference book of the theory of computable analysis on metric spaces is [Wei00],
but this theory is widely applied in the context of invariant measures (see for example [GHR11]).
Computability in a general metric space is defined according to a countable dense subset,
(δ̂w)w∈A∗ in the case ofMσ(AZ).
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Sets of probability measures

Definition 1.1.11 (Computability of closed subsets of metric spaces).
A closed set K ⊂Mσ(AZ) is computable (resp. Πn, Σn, ∆n-computable) if the set:

{
(w, r) ∈ A∗ ×Q : B(δ̂w, r) ∩ K 6= ∅

}

is computable (resp. Πn, Σn, ∆n-computable).

Examples.
• Mσ(AZ) is a computable set.
• the setMσ(Σ) of shift-invariant measures supported by any effective subshift Σ ⊂ AZ is
a Π2-computable compact set;
• let K ⊂ [0, 1] be a closed Σn(Πn)-computable set2 and denote λp = Ber(p, 1 − p) ∈
{0, 1}Z. The set {λp : p ∈ K} is a Σn(Πn)-computable compact set ofMσ({0, 1}Z) and
is connected if and only if K is. Furthermore {αλp+(1−α)λq : p, q ∈ K and α ∈ [0, 1]} is
a Σn(Πn)-computable compact connected set of {0, 1}Z. This example extends naturally
to larger alphabets and Markov measures;
• denote µα ∈ Mσ({0, 1}Z) the measure supported by the Sturmian subshift of slope α.
The set {µα : α ∈ K}, where K is a Σn-computable closed subset of [0, 1], is a Σn-
computable compact set ofMσ({0, 1}Z) and is connected if and only if K is.

We consider connectedness in these examples, since our characterisation of µ-limit mea-
sures sets is only valid for connected sets - see Corollary 1.4.3. Let us prove the second exam-
ple.

Proof of the second example. Let Σ be an effective subshift, which means that it is defined
by a set of forbidden patterns F and there exists a computable function f : i, u 7→ {0, 1}
such that u ∈ F ⇔ supi f(i, u) = 1. Denote Fi = {u ∈ A∗ : supj≤i f(j, u) = 1}.

Now define:

Wi,j =



w ∈ A

≤i :
∑

`∈N

1
2` max

u∈Fi∩A`
δ̂w([u]) ≤ 1

j



 ,

where the maximum is worth 0 when the set is empty, which means that the sum has `
terms where ` is the maximum length of a word in Fi.

Let A be the algorithm that, on input (u, r) ∈ A∗ and i, j ∈ N2,

1. computes all elements of Fi (evaluating a computable function over a finite set of
arguments);

2. computes all w ∈ Wi,j (a finite number of tests, and u 7→ δ̂w([u]) is a function
A∗ → Q which can be evaluated exactly);

3. computes di(δ̂w, δ̂u) = ∑i
n=0

1
2n maxv∈An |δ̂w([v])− δ̂u([v])| for all w ∈Wi,j ;

2The computability of a closed set of real numbers is defined similarly to the computability of a closed set
of probability measures.
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4. outputs 1 if maxw∈Wi,j di(δ̂w, δ̂u) ≤ r + 1
j , 0 otherwise.

We prove the correctness of this algorithm, that is, we show that

inf
j∈N

sup
i≥j

A(u, r, i, j) = 1⇔ B(δ̂u, r) ∩Mσ(Σ) 6= ∅.

Notice that for every sequence (wj)j∈N satisfying for all j wj ∈ Wi,j for some i ≥ j,
any accumulation point ν of the sequence (δ̂wj )j∈N satisfies ν([u]) = 0 for all u ∈ F , and
therefore ν ∈Mσ(Σ).

inf
j∈N

sup
i≥j

A(u, r, i, j) = 1⇔ ∀j,∃i ≥ j,∃wj ∈Wi,j , di(δ̂wj , δ̂u) ≤ r + 1
j

⇒ ∀j,∃i ≥ j,∃wj ∈Wi,j , dM(δ̂wj , δ̂u) ≤ r + 1
2i + 1

j

⇒ For any accumulation point ν of (δ̂wj )j∈N, dM(ν, δ̂u) ≤ r
⇒ B(δ̂u, r) ∩Mσ(Σ) 6= ∅.

Conversely, let ν ∈ B(δ̂w, r)∩Mσ(Σ). There exists a sequence (wn)n∈N such that δ̂wn → ν.
For any j ∈ N, take n large enough that dM(ν, δ̂wn) ≤ 1

j .
Since ν ∈Mσ(Σ),

1
j
≥ dM(ν, δ̂wn) ≥

∑

`∈N
max

u∈F∩A`
δ̂wn([u])

≥
∑

`∈N
max

u∈Fi∩A`
δ̂wn([u]) for all i ∈ N,

which means that wn ∈Wi,j for all i ≥ max(j, |wn|). Furthermore,

di(δ̂u, δ̂wn) ≤ dM(δ̂u, δ̂wn) ≤ r + 1
j

and A(u, r, i, j) = 1 for all i ≥ j. This is true for all j, so infj∈N supi≥j A(u, r, i, j) = 1.
We conclude thatMσ(Σ) is a Π2-computable set.

Functions mapping metric spaces with countable dense sets

Before stating the second computability obstruction, we give several other equivalent defini-
tions, which requires first to introduce computability of functions mapping metric spaces with
countable dense sets, for which the simplest example is functions R → R. Computability of
real functions was considered as early as 1957 [Grz57]. The equivalence of the various possi-
ble definitions, and the link between computability and continuity has been well studied (see
for example [Ko91] and [Zie05]), giving rise to the field that is known as computable anal-
ysis, encompassing other objects such as computable (uncountable) sets from a topological
viewpoint.

In this section, to gain in clarity, we write definitions for functionsMσ(AZ)→ R as needed
in this thesis, even though they can be extended to any pair of metric spaces with a countable
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dense set.

Definition 1.1.12 (Computable function between metric spaces).
A function f :Mσ(AZ) −→ R is computable if:
• there exists a : N × A∗ −→ Q computable such that

∣∣∣f(δ̂w)− a(n,w)
∣∣∣ ≤ 1

n for every
w ∈ A∗ and n,m ∈ N;
• there exists b : N −→ Q+ computable such that dM(µ, ν) < b(m) implies |f(µ)− f(ν)| ≤

1
m for all n,m ∈ N (computable uniform continuity).

The first condition is similar to Definition 1.1.8, applied on the countable dense set of the
codomain. However, to approximate the value of f(µ) when µ is not a measure supported by
a periodic orbit, we need a notion of continuity with a known computable rate of convergence
at each point. In this particular case, since Mσ(AZ) is compact, the second condition of
computable uniform continuity is equivalent to computable continuity; in the general case, the
function b may depend on the neighbourhood.

Definition 1.1.13 (Computable sequence of functions between metric spaces).
A sequence of functions (fn :Mσ(AZ) −→ R)n∈N is uniformly computable if:
• there exists a : N × N × A∗ −→ Q computable such that

∣∣∣fn(δ̂w)− a(n,m,w)
∣∣∣ ≤ 1

m for
every w ∈ A∗ and n,m ∈ N (sequential computability);
• there exists b : N −→ Q+ computable such that dM(µ, ν) < b(m) implies |fn(µ)− fn(ν)| ≤

1
m for all n,m ∈ N (computable uniform equicontinuity).

Definition 1.1.14 (Arithmetical hierarchy of functions between metric spaces).
A function f :Mσ(AZ) −→ R is Σn-computable (resp. Πn-computable) if there exists

a uniformly computable sequence of functions
(
fi1,...,in :Mσ(AZ) −→ R

)
i1,...,in∈N

such that:

f = sup
i1∈N

inf
i2∈N

sup
i3∈N
· · · fi1,...,in

(
resp. f = inf

i1∈N
sup
i2∈N

inf
i3∈N
· · · fi1,...,in

)
.

f is ∆n-computable if it is both Σn-computable and Πn-computable.

Proposition 1.1.4 (Equivalent definitions of computability of closed sets).
Let K ⊂Mσ(AZ) be a closed set. The following are equivalent:

1. K is Πn-computable;

2. {(w, r) ∈ A∗ ×Q : B(δ̂w, r) ∩ K = ∅} is a Σn-computable set;

3. dK : Mσ(AZ) → R+

µ 7→ minν∈K dM(µ, ν) is a Σn-computable function;

4. K =Mσ(AZ)\⋃(w,r)∈S B(δ̂w, r) where S ⊂ A∗ ×Q is a Σn-computable set;
5. K = f−1(0), where f :Mσ(AZ)→ R is a Πn−1-computable function.

Proof. For clarity, we prove this equivalence in the case n = 2. The general case can
be deduced by introducing additional indices in the proof as needed, or by assuming the
computable functions in the proof have access to a ∆n−2-complete oracle.

1⇔ 2 Obvious.
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2⇒ 3 Assume there is a computable function f : N2 ×A∗ ×Q −→ {0, 1} such that, for
every w ∈ A∗ and r ∈ Q, B(δ̂w, r) ∩ K = ∅ ⇔ supi infj f(i, j, w, r) = 1. Consider the se-
quence

(
di,j,w,r : µ 7→ f(i, j, w, r) max

(
0, r − dM(δ̂w, µ)

))
(i,j,w,r)∈N2×A∗×Q

. The function

(i, j, w, r, w′) 7→ di,j,w,r(δ̂w′) is computable as a product of computable functions and every
di,j,w,r is 1-Lipschitz, hence this sequence is computably equicontinuous. We now show
that dK = supw,r supi infj di,j,w,r.

For any (w, r) such that supi infj f(i, j, w, r) 6= 0, we have dK(δ̂w) > r, and thus:

sup
i

inf
j
di,j,w,r(µ) = max

(
0, r − dM(δ̂w, µ)

)
≤ max

(
0, dK(δ̂w)− dM(δ̂w, µ)

)
≤ dK(µ)

for all µ ∈Mσ(AZ). If µ ∈ K, we conclude that supi,w,r infj di,j,w,r(µ) = 0 = dK(µ).
Now let µ /∈ K. For all ε > 0, there exists w such that dM(δ̂w, µ) ≤ ε. Let

r ∈ Q be such that 0 < dK(δ̂w) − r < ε, which implies that B(δ̂w, r) ∩ K = ∅ and
so supi infj f(i, j, w, r) 6= 0. Furthermore dK(µ) ≤ dK(δ̂w) + dM(δ̂w, µ) ≤ r + 2ε, and
supi infj di,j,w,r(µ) = r − dM(δ̂w, µ) > dK(µ)− 3ε. The latter is true for every ε > 0, and
we deduce that supi,w,r infj di,j,w,r(µ) = dK(µ).

3⇒ 4 Let (di,j :Mσ(AZ)→ R)(i,j)∈N2 be a uniformly computable sequence of functions
such that dK = supi∈N infj∈N di,j . This means in particular that there is a computable
function a such that |di,j(δ̂w)− a(i, j, w, n)| ≤ 1

n . Now define:

gi,j,n : A
∗ ×Q → {0, 1}
w, r 7→ 1 if a(i, j, w, n) > r − 1

n , 0 otherwise.

Now, defining S by (w, r) ∈ S ⇔ supi∈N infj∈N infn∈N, gi,j,n(w, r) = 1, we have:

(w, r) ∈ S ⇒ ∃i ∈ N,∀j ∈ N, di,j(δ̂w) > r

⇒ dK(δ̂w) > r

Reciprocally, if dK(µ) > r, then ∃i ∈ N,∀j ∈ N, di,j(µ) > r. By density, take w ∈ A∗
such that dM(µ, δ̂w) ≤ min

(
r
2 , b

(⌈
2
r

⌉))
, where b is defined is the definition of a uniformly

computable sequence of functions Mσ(AZ) → R. By definition, this ensures that for all
i, j ∈ N we have |di,j(µ)− di,j(δ̂w)| ≤ r

2 , and consequently, for all n, a(i, j, w, n) > r
2 − 1

n .

Therefore, for all i, j, n, we have gi,j,n
(
w, r2

)
= 1, and so

(
w, r2

) ∈ S. Since µ ∈ B(δ̂w, r2),
we conclude.

4⇒ 5 Let fS : N2 × A∗ × Q −→ {0, 1} be the computable function satisfying (w, r) ∈
S ⇔ supi infj fS(i, j, w, r) = 1. Fix an enumeration of all words k 7→ wk and of all positive
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rationals l 7→ rl, and consider the function:

f :
A∗ × N2 ×A∗ ×Q → R+

w′, j 7→
∑

i,k,l∈N3

1
2i+k+l max

(
0, r − d(δ̂wk , δ̂w′)

)
fS(i, j, wk, r).

This function is computable. Indeed, to compute f(w′, j) up to precision 1
n , computing

a finite number of terms is sufficient, and each of these terms is simply a product of
functions that are computable from their parameters.

w′ /∈ K ⇔ ∃(w, r) ∈ S, δ̂w′ ∈ B(δ̂w, r)
⇔ ∃(w, r),∃i, inf

j
fS(i, j, w, r) = 1 and r − d(δ̂w, δ̂w′) > 0

⇔
∑

i,k,l∈N3

1
2i+k+l inf

j
max(0, rl − d(δ̂wk , δ̂w′))fS(i, j, wk, rl) > 0

⇔ inf
j

∑

i,k,l∈N3

1
2i+k+l max(0, rl − d(δ̂wk , δ̂w′))fS(i, j, wk, rl) > 0

⇔ inf
j
f(j, w′) > 0.

where the fourth equivalence is obtained by dominated convergence. Therefore fK : w′ 7→
infj f(w′, j) is a Π1-computable function and K = f−1

K ({0}).

5 ⇒ 2 Let (fn : Mσ(AZ) → R)n∈N be a uniformly computable sequence of functions
such that f = infn∈N fn. We assume w.l.o.g that the sequence is decreasing. For i ∈ N,
we note:

di(µ, ν) =
i∑

n=1

1
2n max

u∈An
|µ([u])− ν([u])|,

so that 0 ≤ dM(µ, ν)− di(µ, ν) ≤ 1
2i . For any q ∈ Q, w′ ∈ A∗ and i ∈ N, define

Kq,w′,i =
{

(w, r) ∈ A∗ ×Q : di(δ̂w, δ̂w′) ≤ r ⇒ |fi(δ̂w′)| > q
}
.

(notice that Kq,w′,i is either ∅ or B(δ̂w′ , r)). The function (q, w′, i, w, r) 7→ 1(w,r)∈Kq,w′,i
is computable and thus the characteristic functions 1Kq,w′,i are uniformly computable.
Define:

K =
⋃

q∈Q+

n∈N

⋂

w′∈A∗
i≥n

Kq,w′,i and thus 1K = sup
q∈Q+

n∈N

inf
w′∈A∗
i≥n

1Kq,w′,i .

We prove that K = {(w, r) ∈ A∗ ×Q : B(δ̂w, r) ∩ K = ∅}.

Indeed, let (w, r) be such that B(δ̂w, r)∩K = ∅. Let ε = min{|f(µ)| : µ ∈ B(δ̂w, r)} >
0. For any µ ∈ B(δ̂w, r), there is a rank nε(µ) such that for all n ≥ nε(µ), fn(µ) > 3ε

4 .
By taking rε ∈ N such that rε > 4

ε , we have fn(ν) > ε
2 for all ν ∈ B(µ, b(rε)) and all
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n ≥ nε(µ), where b is given in the definition of the computable uniform equicontinuity of
(fn)n∈N. Since B(δ̂w, r) is compact, it can be covered by a finite number of balls of radius
b(rε), and we take nε the maximal value of nε(µ) on all the ball centers.

The previous paragraph shows that for all w′ such that δ̂w′ ∈ B(δ̂w, r), |fi(δ̂w′)| > ε
2

for all i ≥ nε; and if δ̂w′ /∈ B(δ̂w, r), di(δ̂w′ , δ̂w) > r for i large enough. Thus (w, r) ∈ K
by taking any q ≤ ε

2 .
Conversely,

(w, r) ∈ K ⇒ ∃q ∈ Q+,∃n ∈ N, ∀w′ ∈ A∗,∀i ≥ n, dM(δ̂w, δ̂w′) ≤ r ⇒ |fi(δ̂w′)| > q

⇒ ∀ν ∈Mσ(AZ), dM(δ̂w, ν) ≤ r ⇒ |f(ν)| > q

⇒ B(δ̂w, r) ∩ K = ∅

where the second line is obtained by density of (δ̂w)w∈A∗ and because f = limi fi.

We now state the second computability obstruction for subsets of Mσ(AZ) reachable as
limit sets of the sequence (F t∗µ)t∈N (µ-limit measures sets).

Proposition 1.1.5 (Second computability obstruction).
Let F : AZ → AZ be a cellular automaton and µ ∈ Mcomp

σ (AZ). Then V(F, µ) and
V ′(F, µ) are nonempty Π2-computable compact sets. Furthermore, V ′(F, µ) is connected.

Remark. If a Π2-computable closed set of measures is a single measure, then the measure is
limit-computable. Thus Proposition 1.1.5 implies Proposition 1.1.3.

Proof. We use the third definition in Proposition 1.1.4. Let fn : ν 7→ dM(Fn∗ µ, ν).
Since µ is computable, (fn)n∈N is uniformly computable. Moreover |fn(ν) − fn(ν ′)| =
|dM(Fn∗ µ, ν)− dM(Fn∗ µ, ν ′)| ≤ dM(ν, ν ′) so (fn)n∈N is computably uniformly equicontin-
uous. The result follows from the fact that

dV(F,µ)(ν) = lim inf
n→∞ dM(Fn∗ µ, ν) = sup

m
inf
n>m

fn(ν).

The same reasoning holds for V ′(F, µ). The second point was proved in Proposi-
tion 0.1.9.

Π2-computable compact set of measures can be described as the limit points of a sequence
(δ̂wn)n∈N corresponding to some uniformly computable sequence of words (wn)n∈N. However,
for technical reasons, the µ-limit measures set of the construction presented in Section 1.2
corresponds to the limit set of an infinite polygonal path composed of segments of the form[
δ̂u, δ̂v

]
=
{
tδ̂u + (1− t)δ̂v : t ∈ [0, 1]

}
⊂ Mσ(AZ) where u, v ∈ A∗, and is in particular con-

nected. This is why we describe in the following proposition how compact, Π2-computable,
connected sets can be covered by a polygonal path corresponding to a uniformly computable
sequence of words.

Definition 1.1.15 (Limit points of a polygonal path).
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Let (wn)n∈N be a sequence of words of A∗. Denote V((wn)n∈N) the limit points of the
polygonal path defined by the sequence of measures (δ̂wn)n∈N:

V((wn)n∈N) =
⋂

N>0

⋃

n≥N

[
δ̂wn , δ̂wn+1

]
.

Proposition 1.1.6 (Technical characterisation of Π2-CCC sets).
Let K ⊂ Mσ(AZ) be a non-empty Π2-computable, compact, connected set (Π2-CCC for

short). Then there exists a uniformly computable sequence of words (wn)n∈N such that K =
V((wn)n∈N).

Proof. By Proposition 1.1.4 there is a uniformly computable sequence of functions (fn)n∈N
satisfying K = f−1({0}) where f = limn∈N fn. Let a : N × N ×A∗ → Q and b : N → Q+

be the computable functions given by Definition 1.1.14. Without loss of generality, we can
assume that b is a decreasing function and b(i) −→

i→∞
0. For k ∈ N, define:

αtk = min{` ≤ t : ∀u ∈ A≤t, ∃w ∈ A≤`, dM(δ̂u, δ̂w) ≤ b(k)}

αk = min



l ∈ N : Mσ(AZ) =

⋃

u∈A≤l
B(δ̂u, b(k))





Vt
k =

{
w ∈ A≤αtk : ∃n ∈ [k, t] such that a(n, 2k,w) < 2

k

}

Vk =
{
w ∈ A≤αk : ∃n ≥ k such that a(n, 2k,w) < 2

k

}

Claim 1: Vt
k is increasing w.r.t. t and ∃Tk,Vk = VTk

k . Furthermore, the function
(k, t, w)→ 1Vt

k
(w) is computable.

Proof. Because the periodic measures are dense inMσ(AZ), we have αtk = αk when
t is large enough.

For all k and t, Vt
k ⊂ Vt+1

k . Furthermore, if w ∈ Vk, then w ∈ Vt
k for t large

enough. Since Vk is finite, there is a Tk such that Vk = VTk
k .

The conditions for being included in Vt
k can be checked by computing computable

functions over a finite range of values, so (k, t, w) 7→ 1Vt
k
(w) is computable. ♦ Claim 1

Notice that Tk is not necessarily computable, which means that even though each Vk

is finite, there is not necessarily a way to know when the enumeration is finished. The
algorithm for computing the sequence (wn)n∈N is the following:

Algorithm.

n← 0.
For t ∈ N, by increasing order: (1)

For k ≤ t, by increasing order: (2)
For each element w ∈ Vt

k: (3)
If n = 0:
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w0 ← w and n← 1. Go to the next element of Vt
k.

Else if t > 0 and w ∈ Vt−1
k :

Go to the next element of Vt
k.

Else:
For each i ≤ k, by decreasing order: (4)

Enumerate all finite sequences without repetition u1, . . . , ul−1 ∈ Vt
i.

If a path wn−1 = u0, u1, . . . , ul = w with dM(uk, uk+1) ≤ 4b(i) is found:
wn ← u1, . . . , wn+l ← w and n← n+ l + 1.
Go to the next element of Vt

k.
If no such path was found for any i:

wn ← w. Go to the next element of Vt
k.

Notice that in the fourth loop, if a path is found, then it corresponds to the largest
i ≤ k for which such a path exists.
Now we prove the correctness of this algorithm.
Claim 2: If µ ∈ K, then µ ∈ V((wn)n∈N).

Proof. By definition of αn, there is a sequence of words (un)n∈N such that un ∈ A≤αn
and dM(δ̂un , µ) < b (n) for all n ∈ N; by equicontinuity of f , since f(K) = {0} by
definition, one has f(δ̂un) < 1

n . Thus, there is a t > |un| such that ft(δ̂un) < 3
2n .

One deduces that a(t, 2n, un) ≤ ft(δ̂un) + 1
2n < 2

n , which means that un ∈ Vn for
every n, and by construction it appears at some point in the sequence (wn)n∈N. We
conclude that limn→∞ δ̂un = µ ∈ V((wn)n∈N). ♦ Claim 2

Claim 3: ∀ε > 0, ∃kε, ∀k ≥ kε, w ∈ Vk ⇒ dM(δ̂w,K) ≤ ε.

Proof. By compacity, there exists δε > 0 such that f(δ̂w) ≤ δε ⇒ dM(δ̂w,K) ≤ ε.
Now let µ ∈ Mσ(AZ) be any measure such that f(µ) ≥ δε. There is a nε(µ) ∈ N

such that fn(µ) ≥ 2δε
3 for any n ≥ nε(µ). By taking rε ∈ N such that 1

rε
< δε

3 , we have
by computable uniform equicontinuity of (fn)n∈N fn(ν) > δε

3 for all ν ∈ B(µ, b(rε))
and all n ≥ nε(µ).

Since {µ ∈Mσ(AZ) : f(µ) ≥ δε} is compact, we can cover it with a finite number
of balls of radius b(rε), and we define nε the maximum value of nε(µ) on ball centers.
Thus, ∀n > nε, ∀µ ∈Mσ(AZ), f(µ) > δε ⇒ fn(µ) > δε

3 .

To conclude, taking kε ≥ max(nε, 9
δε

), we have for all k ≥ kε: w ∈ Vk ⇒ fk(δ̂w) ≤
2
k + 1

2k ≤ δε
3 ⇒ f(δ̂w) ≤ δε ⇒ dM(δ̂w,K) ≤ ε. ♦ Claim 3

Claim 4: For every ε > 0, there exists a tε such that in the previous algorithm, if
t′ ≥ t ≥ tε, wn ∈ Vt+1

k \Vt
k and w ∈ Vt′+1

k′ \Vt′
k′ , then the path wn = u0, . . . w = ul built in

the fourth loop satisfies ∀ν ∈ ⋃0≤i<l[δ̂ui , δ̂ui+1 ], dM(ν,K) ≤ ε.

Proof. Let K1 ≥ k ε2 (where ki is defined in the previous claim) be large enough such
that b(i) ≤ ε

4 for any i ≥ K1, and put K2 = kb(K1). Let tε = max0≤i≤K2(Ti) and
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assume wn ∈ Vt+1
k \Vt

k and w ∈ Vt′+1
k′ \Vt′

k′ with t′ ≥ t ≥ tε. By definition of the Ti,
we have Vtε

k = Vt
k for all k ≤ K2. Consequently k ≥ K2 and k′ ≥ K2.

For each element µ ∈ K there is an element uK1 ∈ A≤αK1 such that dM(µ, δ̂uK1
) ≤

b(K1), and therefore f(δ̂uK1
) ≤ 1

K1
so uK1 ∈ VK1 . In other words,

K ⊂
⋃

u∈VK1

B
(
δ̂u, b(K1)

)
.

Since wn ∈ Vk with k ≥ K2 = kb(K1), dM(δ̂wn ,K) ≤ b(K1) and the same is true
for w. Therefore ⋃u∈VK1

B
(
δ̂u, 2b(K1)

)
contains δ̂wn and δ̂w as well as K in a single

connected component, since K is connected. This means that in the fourth loop of
the algorithm, a path can be found with i ≥ K1. Since the path is entirely included
in ⋃u∈VK1

B
(
δ̂u, 2b(i)

)
with b(i) ≤ ε

4 , and since u ∈ VK1 ⇒ d(δ̂u,K) ≤ ε
2 , the result

follows. ♦ Claim 4

Claim 5: If µ 6∈ K, then µ 6∈ V((wn)n∈N).

Proof. Take any ε > 0, and wait that the first loop reaches the value t = tε where tε
is defined in Claim 4. At some point, a new element wn will be found in the third
loop and it will be added to the sequence already built (with a path of words before
it). By construction, wn ∈ Vt

k for some t ≥ tε, and the same is true for any element
found in the third loop from now on.
By Claim 4, this means that any pair of elements (wk, wk+1) with k ≥ n added

in the sequence from now on satisfies ∀ν ∈ [δ̂wk , δ̂wk+1 ], dM(ν,K) ≤ ε. This is true
for all ε > 0, so any accumulation point of the polygonal path ⋃n≥N [δ̂wn , δ̂wn+1 ] is
included in K. ♦ Claim 5
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Section 1.2

A cellular automaton realising a set of
limit measures

In this section, we prove a reciprocal to the computability obstructions of Proposition 1.1.3 and
a partial reciprocal to Proposition 1.1.5 using Proposition 1.1.6. Given a uniformly computable
sequence of words (wn)n∈N in B∗, we construct a cellular automaton realising V((wn)n∈N) as
its µ-limit measures set. We remind that V((wn)n∈N) is defined as the set of limit points of the
polygonal path defined by the sequence of measures (δ̂wn)n∈N:

V((wn)n∈N) =
⋂

N>0

⋃

n≥N

[
δ̂wn , δ̂wn+1

]
.

Theorem 1.2.1 (Realisation of a computable polygonal path of measures).
Let (wn)n∈N be a uniformly computable sequence of words of B∗, where B is a finite

alphabet. Then there is a finite alphabet A ⊃ B and a cellular automaton F : AZ → AZ

such that:

• for any measure µ ∈Mfull
ψ−mix(AZ), V(F, µ) = V((wn)n∈N);

• if V((wn)n∈N) = {ν}, then for any measure µ ∈Mfull
σ−erg(AZ), F t∗µ −→t→∞ ν.

Furthermore we get an explicit bound for the convergence rate in the first point of the theorem.
Assume that wn is computable in space O(

√
n) (by repeating elements of the sequence (wn)n∈N

if necessary), one has:

dM(F t∗µ,V((wn)n∈N)) = O

( 1
log(t)

)
+ sup



dM(ν,V((wn)n∈N)) : ν ∈

⋃

n≥C(log t)2

[δ̂wn , δ̂wn+1 ]





for some constant C > 0. The first term of the upper bound corresponds to the intrinsic
limitations of the construction, the second term depends on the speed of convergence of the
polygonal path defined by δ̂wn towards V((wn)n∈N), which is intuitively the quality of the
approximation of V(F, µ) by a computable path.

In the rest of the section, we detail the construction of this cellular automaton and prove
the correctness of the construction.

1.2.1 Overview of the construction

In this section, we present a sketch of the construction of the alphabet A and the cellular
automaton F . A contains a symbol W (for wall) persisting in time, except under special
circumstances, defining independent areas of computation (segments).

Independently in each segment, three tasks are performed in parallel:
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Formatting the initial contents of the segment are erased;

Computation and copy each word wi is successively computed and concatenated copies of
it are written on the whole segment;

Merging the length of the segment is checked at regular intervals, and it merges with the
segment to its right if it is too small.

The key task is the second, since the goal of the construction is that F t∗µ gets close to
each measure δ̂wi successively. This requires that the computation is performed synchronously
between all segments, so that each segment contains copies of wi at the same instant. To
do this, we define another symbol I (init), which appears only in the initial configuration,
creating a wall and initialising all these processes. This process is detailed in Section 1.2.2.

Definition 1.2.1. Let x ∈ AZ. [i, j] is a segment at time 0 if xi and xj are two consecutive
I symbols, and a segment at time t if F t(x)i and F t(x)j are two consecutive initialised
walls W . Define the length of this segment as j − i− 1.

This means that walls not issued from a symbol I (uninitialised walls) are not considered
as valid segment borders, but rather as unwanted symbols to be erased.

Apart from I and W , the new alphabet A is divided in different layers: the main layer
where the words wn are output and recopied, and auxiliary layers where computation and
other processes take place. This allows to perform all tasks in parallel.

Formatting Since we have no control over the initial contents of each segment, we first
want to format the segment, that is, to erase uninitialised walls and uninitialised contents of
the auxiliary layers (i.e. not issued from an I symbol).

Most processes defined below are designed to self-destroy when they are not initialised.
This is detailed as each new process is introduced. The difficult task is to distinguish unini-
tialised walls from initialised walls.

To do that, each initialised wall sends to its right a signal on a specific layer progressing
at speed one (formatting counter - see Section 1.2.2), that keeps track of its age using a
binary counter. Meanwhile, each initialised walls also keeps track of its age under the form of
a binary counter on another layer, to its left, incrementing at each step (time counter - see
Section 1.2.2).

Time and formatting counters already present in the initial configuration (uninitialised)
have a nonnegative value at time 0, whereas those created by an I symbol (initialised) have
value 0 at time 1, and they increment at the same rate. Thus, uninitialised walls have older
time counters, and by comparing time counters and formatting counters as they cross, we can
erase older counters and uninitialised walls. Figure 1.2 is an overview of those processes.

Computation and copy Meanwhile, on another layer, a Turing machine is simulated in
the space delimited by the time counter. This machine successively computes each wn and
writes concatenated copies on the main layer of the segment to its left (see Section 1.2.3). For
each wn, this copy happens synchronously on the whole configuration, so as to approach the
measure δ̂wn .
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Figure 1.2: Sketch of the bootstrapping and formatting processes. Vertical lines are walls.
Dashed parts contain time counters (section 1.2.2) and Turing machines (section 1.2.3). Slanted
lines are formatting counters (section 1.2.2), white and grey areas are respectively formatted
and non-formatted.

Merging Synchronously, segments of a given length are merged with their left neighbour in
order to enlarge computational space and decrease the density of cells with nonempty auxiliary
layers (see Section 1.2.4). To determine the length of its right segment, each wall sends a signal
to the right on a dedicated layer that bounces off the next wall and counts the return time.
Figure 1.3 is an overview of copy and merging processes.

Alphabet We obtain an enlarged alphabetA =
{

I , W
}
∪Amain×Acomp×Atime×Aformat×

Acopy × Amerge. All those alphabets contain a symbol # (blank) representing the absence of
information.

• I and W are the two above-mentioned symbols;

• Amain = B ∪ {#} is the layer on which wn is output and then recopied;

• Acomp is the layer where Turing machines are simulated to compute wn and other pro-
cesses;

• Atime is the layer on which time counters are incremented;

• Aformat is the layer on which formatting counters move and are incremented, and where
comparisons are performed;

• Acopy is a layer used in the process of writing copies of the output on the main layer;

• Amerge is a layer used in the process of merging two segments.

We have B ⊂ A up to the identification b 7→ (b,#,#,#,#,#). If u ∈ A, denote main(u),
resp. comp(u), time(u). . . the projections on each layer (the result being # on I and W ).
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erase older signals

Figure 1.3: Sketch of the copying and merging processes. Here all walls are initialised. Slanted
thick lines are copy processes (see Section 1.2.3), slanted dotted lines are merging signals (see
Section 1.2.4).

We detail the different alphabets in the following sections. As we will see, our construc-
tion needs interactions at a distance at most three, so we can take NF = {−3, . . . , 3} as the
neighbourhood of the local rule of F .

1.2.2 Formatting the segments

Bootstrapping

If two symbols I are separated by two cells or less, the rightmost one is destroyed. Otherwise,
all I symbols turn into W , erasing the contents of three cells to their right and left (including
walls), initialising on its left a computation process and a time counter, and on its right a
formatting counter. No more I or W symbols can be created. Walls, counters and computing
areas created in this way are initialised, by opposition to those already present at time 0.

Walls persist over time and are only destroyed under two circumstances:

• if it can be determined that it is uninitialised (e.g. it is without a time counter to its left);

• by the merging process detailed in Section 1.2.4.

As the only exception, if a segment is of length three at time 0, then the leftmost I
prevents the creation of a time counter for the rightmost wall at time 1 and the wall itself is
destroyed at time 2. Thus segments have minimum length four from time 2 onwards.
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Counters

All counters are binary in a redundant basis, so that they can be incremented by one at each
step (keeping track of current time) in a local manner. Notice that in the following two defini-
tions, the indexing of the letters is inverted.

Definition 1.2.2 (Redundant binary basis). Let u = u0 . . . un−1 ∈ {0, 1, 2}∗. The value of u
is

val(u) =
n−1∑

i=0
ui2i.

Since the basis is redundant, different counters can have the same value.

Definition 1.2.3 (Incrementation). The incrementation operation inc : {0, 1, 2}∗ 7→ {0, 1, 2}∗
is defined in the following way. If u|u|−1 = 2, then |inc(u)| = |u|+ 1, |u| otherwise, and:

inc(u)i =





1 if i = |u| and u|u|−1 = 2;
ui mod 2 + 1 if i = 0 or ui−1 = 2;
ui mod 2 otherwise.

Intuitively, the counter is increased by one at the rightmost bit and 2 behaves as a carry
propagating along the counter. If the most significant bit was a carry, the length of the counter
is increased by one. Thus:

Fact 1. val(inc(u)) = val(u) + 1.

This operation is defined locally and can be seen as the local rule of a cellular automaton.

Time

We use the alphabet Atime = {0, 1, 2,#}. In a configuration, a time counter is a word of
maximal length containing no # in the time layer. A time counter is attached if it is bounded
on its right by a wall W , detached otherwise.

At each step, attached counters are incremented by one while detached counters have their
rightmost bit deleted (see Figure 1.4). Indeed, detached counters are uninitialised and can be
safely deleted. Formally,

• if u1 = W , then time(F (u)0) = time(u0) mod 2 + 1;

• if time(u1) = #, then time(F (u)0) = #;

• otherwise, follow the incrementation definition (Definition 1.2.3).

When a counter increases in length, it may erase a wall by overwriting it. However, this is
not a problem, as we shall see in Facts 2 and 6.

Fact 2. An initialised wall cannot be erased by a detached time counter.
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Figure 1.4: A detached time counter, and a time counter attached to an initialised wall. Only
the time layer is represented. ? cells have arbitrary values.

Proof. A detached time counter is not incremented and can extend by one cell at most
because of the carries initially present in the word. But I symbols erase two cells to their
right at initialisation.

Fact 3. Let x ∈ AZ be the initial configuration. Each attached time counter u in F t(x)
satisfies val(u) ≥ t− 1, the equality being attained if this counter is attached to an initialised
wall.

Proof. No time counter is created except at t = 1 (by I ). Therefore such a counter was
present either in the initial configuration (with a nonnegative value), or was created at
t = 1 by a I symbol. It is incremented by one at each step in both cases.

Thus we can use time counters to tell apart initialised walls from uninitialised walls, which
is the object of the next section.

Formatting and comparisons

Formatting counters are defined and incremented at each step in a similar way as time coun-
ters, but they have a range of different behaviours. The formatting layer is decomposed into
two layers Astate and Avalue. A formatting counter is a word of maximal length of state differ-
ent than #. The possible states of each bit are:

“Go” state The counter progresses at speed one to the right.

“Stop” state Once a wall is encountered, the counter progressively (right to left) stops.

Comparison states Once the whole counter has stopped, we locally compare the formatting
counter and the time counter, left to right, with a method we describe later.
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The wall is destroyed if the formatting counter is strictly younger, and the formatting counter
is destroyed otherwise (see Figures 1.6 and 1.7). In the former case, the counter progressively
returns to the “Go” state.
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Figure 1.5: One initialised and one uninitialised formatting counter. X symbols mark the cells
where values are prevented to appear to avoid merging: the right counter is dominated. Only
the formatting layer is represented.

Changing state takes some time to propagate the information along the counter. Therefore,
counters passing from a “Go” state to a “Stop” state are temporarily in a situation where the
left part of the counter progresses whereas the right part has stopped. To avoid erasing infor-
mation, counters in a “Go” state have buffers, i.e. the value of the counter is only written on
half the cells, the other half containing (Go,#) (see Figure 1.5).

When its length increase, a counter never merges with another counter, erasing bits from
the right-hand counter instead in order to avoid merging: we say the right-hand counter is
dominated. Notice that it is impossible for a counter located to the right of another counter
to be initialised, and so it is safe to erase bits of it.

Fact 4. Let x ∈ AZ be the initial configuration. Any non-dominated formatting counter u of
F t(x) satisfies val(u) ≥ t− 1, the equality being attained if the counter is initialised.

Proof. Similar to Fact 3.

Thus we guarantee that an initialised (hence non-dominated) formatting counter is strictly
younger than any uninitialised wall, and symmetrically. Uninitialised formatting counters can
only progress to the right to be destroyed by the nearest initialised wall. We will see that
dominated counters, whose value is arbitrary, are not a problem since they are erased before
any comparison takes place.

Definition 1.2.4 (Comparison method). Let u = u0u1 . . . and v = v0v1 . . . be two counters
in redundant binary basis (adding zeroes so that |u| = |v|). Let us note sign(u− v) the result
of the comparison between u and v, that is, +, 0 or −.
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Case 1 if |u| = |v| = 1, sign(u− v) = sign(u0 − v0);
Case 2 if u0 + bu1/2c > v0 + bv1/2c+ 1, then sign(u− v) = +,

and symmetrically;
Case 3 if u0 + bu1/2c = v0 + bv1/2c + ε (for some ε ∈ {−1, 0, 1}), then sign(u − v) =

sign((u′1 + 2ε)u2 · · · − v′1v2 . . . ),
where u′1 = u1 mod 2 and v′1 = v1 mod 2.

In other words, we do a bit-by-bit comparison starting from the most significant bit, con-
sidering that # = 0, and taking into account the carry propagation “in advance”, so that the
incrementation and carry propagation can continue during the comparison. When the “local
difference” ε is too small, the result cannot be determined locally and a remainder is carried
(consider a comparison between 120 · · · 0 and 11 · · · 12).

Formally, for each pair of bits (un, vn), we add 1 to each bit if the following bit of the
corresponding counter is 2, and depending on the value of un − vn + 2ε:

result < −1 −1 0 +1 > +1
new state − =− = =+ +

If the result can be determined locally (cases 1 and 2), the state is changed to + or −,
and the result propagates to the right without further comparisons. Otherwise (case 3), the
state changes to =, which means future bit comparisons will decide the result in the same
way. If there is a remainder ε, it is remembered for the next comparison by having three states
=−,=+,=. See Figure 1.7 for an example.

#

##

###

####

####

####

####

####

####

# W

W

W

W

W

W

W

W

GoGoGo

GoGo

Go

Go

GoGo

Stop

StopStop

StopStopStop

StopStop

Stop

GoGo

GoGo

Go

Go

=

=

=

=

=

−

− −

−

Figure 1.6: A younger formatting counter encountering an older wall, which is destroyed. Only
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After the comparison, two cases are possible:
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• if the state of the rightmost bit is − or =−, the wall is strictly older than the counter.
The wall is destroyed and the state of the rightmost bit becomes “Go”. The counter then
progressively returns to the “Go” state.

• if the state of the rightmost bit is +, =+ or =, the wall is younger than the counter. The
rightmost bit is erased, and the rest of the counter is progressively erased in a similar
way as a detached time counter.

The second case covers the case where both the counter and the wall are initialised (result
=), which means that the formatting counter has finished formatting its segment and may be
safely erased. Also, if the counter is dominated, then its leftmost bit is erased at each step,
preventing the comparison to start, until the counter is entirely erased.

Finally, Aformat = {#} ∪ ({Go} × {0, 1, 2,#}) ∪ ({Stop,+,−,=,=+,=−} × {0, 1, 2}).

When a formatting counter reaches the right wall of the segment, the segment is said to be
formatted. This implies that the segment contains no more uninitialised walls. Uninitialised
merging counters are destroyed in exactly the same way as uninitialised time counters. To
prevent uninitialised merging signals from disturbing a merging process, any right merging
signal→ erase incoming left merging signals←. Merging signals arriving to a wall outside of
a merging process is simply ignored and destroyed.

Fact 5. At time k(1 + dlog ke), all segments of length k (for k > 3) are formatted.

Proof. As long as t ≤ k(1+dlog ke), any initialised formatting counter has length dlog te ≤
2dlog ke (excluding the buffers) since it is in base 2. The counter progresses at speed one
except when it meets another wall. Each comparison takes a time equal to twice the current
length of the counter (again excluding the buffers). Furthermore, two consecutive walls
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are separated by three cells at least (cf. Section 1.2.2). Thus, the segment is formatted in
less than k + k

4 · 2 · 2dlog ke steps, which is coherent with our first assumption.

Fact 6. An initialised wall cannot be erased by a time counter attached to a uninitialised wall.

Proof. Consider two walls, the left being initialised and the right uninitialised. As ex-
plained in Section 1.2.2, we can assume they are separated by k > 3 cells. Since the value
of the time counter attached to the right wall cannot exceed 2k−3 at t = 1 (since I erases
three cells to its right), it takes more than 2k − 2k−3 steps before the left wall is erased.
According to Fact 5, the right wall is destroyed in less than k(1 + dlog ke) steps, and the
time counter takes at most k more steps to be erased.

For k ≥ 5, k(1 + log k) + k ≤ 2k − 2k−3, so the counter is erased before it reaches the
left wall. For k = 4, any wall between them is destroyed at time 1, so the destruction time
is actually less than k + 2 log k + k ≤ 2k − 2k−3.

1.2.3 Computation and copy

Simulating a Turing machine in a cellular automaton

Let TM = (Q,Γ,#, q0, δ, QF ) be a Turing machine. We simulate this machine in a cellular
automaton F on the alphabet (Γ∪#)× (Q∪#). The left part contains the content of the tape;
the right part contains the state of the machine for the cell where the head is located, and #
everywhere else.

The local rule of F is governed by the rules of the machine. That is, for all u ∈ ((Γ ∪#)×
(Q ∪#))Z, and writing _ to denote an arbitrary value:

• if the head is on u0 and δ(u0) = (q, γ, _), then F (u)0 = (γ, q);
• if the head is on u1, δ(u1) = (q, _,←) and u0 = (γ′,#), then F (u)0 = (γ′, q);
• similarly if the head is on u−1 and δ(u−1) = (q, _,→);
• otherwise, F (u)0 = u0.

When starting from a configuration filled with (#,#) everywhere except for a finite window
with only one head, the time evolution of the cellular automaton matches the time evolution
the Turing machine. When the machine has stopped (the state being in QF ), the local rule is
the identity function.

Computation

Computation takes place to the left of each initialised wall. Acomp is divided into three layers, on
which three Turing machines are simulated, using the alphabetAcomp = ⊗3

i=1(Γi∪#)×(Qi∪#).
We adapt the simulation so that these Turing machines can read input from or write output to
another layer (when indicated).

We now describe the operations to be performed during the time interval [Tn−1, Tn]. As-
sume that, at time Tn−1, n is already written on the layer 1 and Tn−1 on layer 3. The machines:

1. replace n by n+ 1 on layer 1 and stops;
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2. compute wn on layer 2, outputting it on the main layer, and stops;

3. compute Tn on layer 3, and stops;

When t = Tn (t being read from the time layer), the copying process triggers and the next
computation starts, except when merging occurs; see next subsections.

All these operations must be performed in less than Tn − Tn−1 steps. We now fix the value
of Tn so that it is indeed possible.

A Turing machine with tape alphabet Γ and set of states Q and using only a computational
space Sn stops in time Sn · |Γ|Sn · |Q| (number of possible states); otherwise, the same state
would be reached twice, entering a loop.

Therefore there exists a constant q > 0 large enough that the operations on layers 1 and 2
can be performed in space b√nc log2 q and time O(qb

√
nc). Furthermore, the function (r, n) 7→

rb
√
nc is computable in space b√nc log2 r (length of the output) and time O(n3/2(log r)2)

(compute b√nc in time O(n), then perform b√nc multiplications between numbers of length
b√nc log2 r at most in time O((

√
n log2 r)2)).

In other words, if we fix
Tn − Tn−1 = qb

√
nc,

then the operation on layer 3 can be performed in space b√nc log2 q and time O(qb
√
nc). How-

ever, we need an upper bound on the time at each step and not only an asymptotic bound. This
is solved by the linear speedup theorem for Turing machines: we can divide the computational
time by any fixed constant C by replacing each machine Mi by a new machine M ′i , such that
M ′i performs C computational steps of Mi at each step, increasing the radius as necessary.

Remark. We fixed Tn so that the computation space is of size
√
n at time Tn and constitutes

an asymptotically negligible fraction of its segment. We could choose instead of
√
n any other

easily computable function which is o(n).
Uninitialised computation states self-destroy, similarly to time counters, whenever they find

an empty computational layer to their right (instead of a wall). This requires that the Turing
machines are adapted so that they never write (#,#) is the middle of a computation.

Copying

At time Tn (n ≥ 0), wn has been output on the main layer, followed by a #. If the segment is
not in the process of merging, repeated copies of wn have to be written over the main layer.
The Turing machine triggers the copying process by copying the rightmost letter of wn from
the main layer to the copy layer.

First phase As long as it has not met a #, the word on the copy layer progresses at speed -2,
and at each step a letter is copied from the main layer to the tail of the word;

Second phase The word keeps progressing at speed -2 but the head loses one letter at each
step and copies it on the main layer. The tail keeps copying letters from the main layer.

Intuitively, the cellular automaton performs a caterpillar-like movement between the copy
and main layers (see Figure 1.8 for an example). The process ends when it meets a wall. Thus,
Acopy = B ∪ {#}.
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Figure 1.8: Beginning of the copying process, with wn = 1101. Only the layers Acopy and
Amain are represented.

Uninitialised copying processes may write arbitrary words on the main layer, but they
progress to the left at speed one and are destroyed by the nearest wall in this direction.

1.2.4 Merging

At time Tn, all segments of length n are forced to merge with their left neighbour, so that
the density of walls tends to 0. This means that merging is performed at time Tn between a
segment larger than n to the left, and any number of consecutive segments of length n to the
right. To determine the length of each segment, a signal is sent to the right and bounces off
the right wall, and its return time is measured.

To do so, a merging counter of value 2n is initialised at time Tn−1 on the merge layer.
The value of n is copied from the first computing layer to the merge layer (with an additional
0 at the end), using an auxiliary state C (copy). This counter is decrementing at each step,
similarly to incrementing counters except it uses -1 as negative carry. See Figure 1.9 for an
example of this process.

If the signal returns at the end of the decrementation, a symbol I (merge) is created
on the merge layer, to indicate that the wall will be destroyed at the next Tn; otherwise, the
output is copied in the main layer as described above. Thus Amerge = {−1, 0, 1, I , C } × {→
,←} ∪ {#}.

Fact 7. Left walls of segments of length ` are erased at time T ′` = min(T`, 2` + `).
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Proof. Except for the situation described above, the only other way for an initialised
wall to be erased is a time counter attached to an initialised wall, see Facts 2 and 6. A
redundant binary counter whose initial value is 0 reaches length ` at time 2` + ` (carry
propagation).

Uninitialised merging counters are destroyed in exactly the same way as uninitialised time
counters. To prevent uninitialised merging signals from disturbing a merging process, any right
merging signal → erase incoming left merging signals ←. Merging signals arriving to a wall
outside of a merging process is simply ignored and destroyed.

1.2.5 Correctness of the construction

To sum up, we have two time sequences (Tn)n∈N and (T ′n)n∈N such that:

• at time Tn, the computation of wn is finished and the copy starts;

• at time T ′n, the segments of length n merge with their left neighbour.

Furthermore, those sequences are equal for n large enough.
The computation, copy and merging processes described in the previous section have to be

performed between time Tn and time Tn+1, which requires that the segments are not too large.
In this section, we control the length of segments at time Tn.

Proposition 1.2.2. Tn = Θ(b√ncqb
√
nc) where q is defined in Section 1.2.3.
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Proof. Tn = ∑n
k=1 Tk − Tk−1. Since Tk+1 − Tk = qb

√
kc, and:

(2b√nc−1)qb
√
nc−1 ≤

b√nc−1∑

k=1
(2k+1)qk ≤

n∑

k=1
qb
√
kc ≤

b√nc∑

k=1
(2k+1)qk ≤ (2b√nc+1)qb

√
nc+1,

the proposition follows.

Acceptable segments

Definition 1.2.5. Denote:

Γtl,k =
{
x ∈ AZ : [0, l] is included in a segment of F t(x) of length k

}
,

Γtl,≥k =
⋃

i≥k
Γtl,i and Γtl = Γtl,≥1.

Proposition 1.2.3 (Lower bound).
Let µ ∈Mfull

σ−erg(AZ). For all l ∈ N, one has µ(ΓTnl,≥n) −→
n→∞ 1.

Proof. Tn = T ′n for n large enough, so we do the proof for T ′n. At time T ′n, no configuration
can contain a segment smaller than n. Since µ has full support,

µ
(
x ∈ AZ : x0 = I and xi 6= I for all i ∈ [1, n]

)
6= 0.

By σ-ergodicity, this means segments of length larger than n exist at t = 0 for µ-almost
all configurations, and those segments survive up to time T ′n by construction.

Therefore, the cell 0 is µ-almost surely included in a segment at time T ′n. Since this
segment has length larger than n and by σ-invariance, the probability that [0, l] crosses a
border of the segment tends to 0 as n tends to infinity.

Definition 1.2.6.
Let x ∈ AZ, [i, j] a segment at time t ∈ [Tn, Tn+1]. It is acceptable if j − i − 1 ≤ Kn =

√
Tn+1 − Tn. For n large enough, Kn = q

b
√
nc

2 .

Proposition 1.2.4 (Upper bound).
Let µ ∈Mfull

ψ−mix(AZ). One has µ(ΓTnl,≥Kn) −→
n→∞ 0, that is to say:

µ({x ∈ AZ : [0, l] is in an acceptable segment of F t(x)}) −→
t→∞

1

and the rate of convergence is exponential.

Proof. Again, Tn = T ′n for n large enough, so we do the proof for T ′n. Any segment at time
T ′n corresponds to a segment larger than n merged with 0 or more consecutive segments
of length n at time T ′n−1 (only the left wall of segments of size n are destroyed at time
T ′n). See Figure 1.2.4 for an illustration of this decomposition. For l ≤ n, define:
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∆t
n,α = {x ∈ AZ : starting from 0 there is a strip of α consecutive segments of size n in F t(x)}

Suppose [0, l] is included in a segment longer than k at time T ′n. This segment is issued
from the merging of one segment with 0 or more segments of length n − 1 at time T ′n−1.
Take any L > 2n and distinguish the two following cases concerning the segments at time
T ′n − 1 it is issued from:

• There were less than
⌊
L
n

⌋
segments of length n: then the other segment is larger

than k−L. By shifting the configuration by L− l cells at most, we can ensure that
[0, l] is included in this segment at time T ′n−1.

• There were more than
⌊
L
n

⌋
segments of length n. Therefore there is a strip of

⌊
L
n

⌋

segments of length n starting at some j ∈ [−k, k].
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Figure 1.10: Illustration of the proof of Proposition 1.2.4 with α = 9 and m = 3.

In other words,

ΓT
′
n
l,≥k ⊂

0⋃

i=−L+l
σi
(

ΓT
′
n−1
l,≥k−L

)
∪

k−1⋃

j=−k+1
σj
(

∆T ′n−1
n,bLnc

)

µ
(
ΓT
′
n
l,≥k

)
≤ Lµ

(
ΓT
′
n−1
l,≥k−L

)
+ 2kµ

(
∆T ′n−1
n,bLnc

)
(1.1)

Thus we try to bound the value of µ(∆t
n,α). If x ∈ ∆t

n,α, then xk = I for all k ∈ [0, αn]
such that n|k. For any m > 0, by considering one symbol out of every m:

µ
(
∆t
n,α

)
≤ µ

(
α⋂

i=0
σin

([
I
]))

≤ µ


b α
m
c⋂

i=0
σin·m

([
I
])



≤ (1 + ψµ(mn))b
α
m
cµ
([

I
])b α

m
c+1

. (1.2)
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Now take any M ≥ n. Using (1.2) with m =
⌈
M
n

⌉
inside equation (1.1):

µ
(
ΓT
′
n
l,≥k

)
≤ Lµ

(
ΓT
′
n−1
l,≥k−L

)
+ 2k

[
1 + ψµ

(
n ·
⌈
M

n

⌉)] L
M

µ
([

I
]) L

M
+1

≤ Lµ
(

ΓT
′
n−1
l,≥k−L

)
+ 2k

[
(1 + ψµ(M))µ

([
I
])] L

M

Now, if k ≥ nL, we obtain by induction:

µ
(
ΓT
′
n
l,≥k

)
≤ Lnµ

(
Γ0
l,≥k−nL

)
+ 2kn

[
(1 + ψµ(M))µ

([
I
])] L

M (1.3)

For the left-hand term, we have:

µ
(
Γ0
l,≥k−nL(x)

)
≤ µ


AZ

∖ −1⋂

j=−k+nL

k−nL⋃

i=0

[
I
]
j+i




≤ µ




−1⋃

j=−k+nL

b k−nL
n
c⋂

i=0

[
A\ I

]
j+in




≤ (k − nL)(1 + ψµ(n))b
k−nL
n
cµ
([
A\ I

])b k−nL
n
c+1

the second line being obtained by considering one symbol out of every n. Applying
(1.3) with M = n, L = n2√n, and k = Kn =

√
Tn+1 − Tn, since ψµ(n) → 0, we have

µ(ΓT
′
n
l,≥Kn) −→

n→∞ 0 and the rate of convergence is exponential.

Density of auxiliary states

By auxiliary state, we mean any element of A\B, that is to say I , W and any element of A
which is not of the form (b,#,#,#,#,#).

Proposition 1.2.5. For t large enough, an acceptable segment is formatted and contains only
initialised processes.

Proof. In a segment of length k, Fact 5 ensures that the segment is formatted if t ≥
k(1 + log k). All remaining uninitialised processes may take up to k more steps to be
erased.

When Tn ≤ t < Tn+1, for an acceptable segment of length k, we have k(2 + log k) ≤
Kn(2 + log(Kn)) = o(Tn) by Proposition 1.2.2. Taking n large enough, we conclude.

Proposition 1.2.6. Let µ ∈ Mfull
σ−erg(AZ) and u ∈ B[0,`] for some fixed `. For a given length

k such that n+ 1 ≤ k ≤ Kn, we have:

• If t ∈ [Tn + k, Tn+1],
∣∣∣µ
(
F−t([u]) | ΓTn`,k

)
− δ̂wn([u])

∣∣∣ = O

( 1√
n

)
;
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• If t ∈ [Tn, Tn + k],
∣∣∣∣µ
(
F−t([u]) | ΓTn`,k

)
−
(
k − (t− Tn)

k
δ̂wn−1([u]) + t− Tn

k
δ̂wn([u])

)∣∣∣∣ = O

( 1√
n

)
.
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Figure 1.11: Illustration of Proposition 1.2.6. The output is not correctly written in dashed
areas because of the destruction of a wall.

Proof. We write ΓTn[i,i+k] =
{
x ∈ AZ | [i, i+ k] is a segment at time Tn

}
, so that

ΓTn`,k =
0⊔

i=−k+`+1
ΓTn[i,i+k+1] =

k−`−1⊔

i=0
σi
(
ΓTn[−1,k]

)
(disjoint union).

Suppose x ∈ ΓTn[−1,k]. Since such a segment is acceptable, it is formatted as long as n is large
enough, and any uninitialised counter or wall has been destroyed. Since |wn| = O(

√
n)

(smaller than the computing space), the copying process uses O(
√
n) auxiliary cells.

First point: The tail of the copying process progresses at speed one, so at time Tn + k
the copy of the word is finished (since Tn + k ≤ Tn+1), and the segment contains only by
copies of wn except for the time counter, computation and merging counter area (O(

√
n)

cells) and a merging signal (one cell).

Therefore for all x ∈ ΓTn[−1,k], one has
∣∣∣Freq(u, F t(x)[0,k−1])− δ̂wn([u])

∣∣∣ = O(
√
n)

k =
O
(

1√
n

)
, taking into account the last copy of wn in the segment which can be incomplete

(|wn| ≤
√
n), and since k ≥ n. Thus we have

∣∣∣∣∣
1
k

k−1∑

i=0
µ
(
F−t([u]i) | ΓTn[−1,k]

)
− δ̂wn([u])

∣∣∣∣∣ = O

( 1√
n

)
.
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Since µ is σ-invariant, µ
(
F−t([u]i) | ΓTn[−1,k]

)
= µ

(
F−t([u]0) | ΓTn[−1−i,k−i]

)
. So:

µ
(
F−t([u]0) | ΓTn`,k

)
=

−1∑

i=−k+`
µ
(
F−t([u]0) | ΓTn[−1−i,k−i]

)
· µ
(
ΓTn[−1−i,k−i] | ΓTn`,k

)

= 1
k − `

k−∑̀

i=1
µ
(
F−t([u]0) | ΓTn[i−1,i+k]

)

by σ-invariance and disjoint union of ΓTn`,k. The result follows.

Second point: When t ∈ [Tn, Tn + k], the copy is still taking place, with t − Tn cells
containing copies of wn and the rest containing copies of wn−1, except for O(

√
n) various

auxiliary states, and possibly defects when a wall has been destroyed at time Tn (there
are at most k

n of them). Therefore
∣∣∣∣Freq

(
u, F t(x)[0,k−1]

)
−
(
k − (t− Tn)

k
δ̂wn−1([u]) + t− Tn

k
δ̂wn([u])

)∣∣∣∣ = 1
k
O(
√
n)·k

n
= O

( 1√
n

)
,

since k ≥ n. Using the same reasoning as the first point, we conclude.

Proof of Theorem 1.2.1 - first point

Let µ ∈ Mfull
ψ−mix(AZ) and u ∈ B[0,`]. By Propositions 1.2.3 and 1.2.4, µ

(⋃Kn
k=n+1 ΓT

′
n
`,k

)
−→
n→∞ 1

exponentially fast, and Γt`,k = ΓT
′
n
`,k for t ∈ [T ′n, T ′n+1 − 1]. Therefore:

∃C > 0, max
Tn≤t<Tn+1

∣∣∣∣∣∣
F t∗µ([u])−

Kn∑

k=n+1
µ
(
F−t([u])|Γt`,k

)
µ
(
Γt`,k

)
∣∣∣∣∣∣

= O
(
e−Cn

)
.

Take n large enough that Tn = T ′n. By Proposition 1.2.6,

max
T ′n≤t<T ′n+1

∣∣∣∣∣∣
F t∗µ([u])−

Kn∑

k=n+1
µ(ΓTn`,k)

(
max

(
0, k − (t− Tn)

k

)
δ̂wn−1([u])

+ min
(

1, t− Tn
k

)
δ̂wn([u])

)∣∣∣∣ = O

( 1√
n

)
.

Let fn be the piecewise linear function defined by:

fn : [Tn, Tn+1] −→ [0, 1]

t 7−→
Kn∑

k=n+1
min

(
1, t− Tn

k

)
µ
(
ΓTn`,k

)
+ t− Tn
Tn+1 − Tn

µ
(
ΓTn`,>Kn

)
.

The second term is chosen so that fn(Tn) = 0 and fn(Tn+1) = 1, but it converges to 0 expo-
nentially fast and thus does not affect the equation by more than O

(
1√
n

)
. Therefore:

max
Tn≤t<Tn+1

∣∣∣F t∗µ([u])−
(
fn(t)δ̂wn([u]) + (1− fn(t))δ̂wn−1([u])

)∣∣∣ = O

( 1√
n

)
.
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max
Tn≤t<Tn+1

dM
(
F t∗µ,

[
δ̂wn−1 , δ̂wn

])
= O

( 1√
n

)
,

so V(F, µ) ⊂ V((wn)n∈N). Since fn is 1
n -Lipschitz on [Tn, Tn+1], any ν ∈

[
δ̂wn−1 , δ̂wn

]
is at

distance at most 1
n of an element of the form

(
fn(t)δ̂wn + (1− fn(t))δ̂wn−1

)
for Tn ≤ t < Tn+1.

We conclude that V(F, µ) = V((wn)n∈N).

Rate of convergence For clarity, assume that wn is computable in spaceO(
√
n) by repeating

elements if necessary.
By Proposition 1.2.2 we have Tn = Θ(b√ncqb

√
nc) so, writing n(t) the current value of n at

time t, we have n(t) = Θ(log(t)2) and O
(

1√
n(t)

)
= O

(
1

log t

)
.

We find that the rate of convergence is:

dM
(
F t∗µ,V ((wn)n∈N)

)
≤ dM

(
F t∗µ,

[
̂δwn(t)−1 , δ̂wn(t)

])
+ sup
ν∈
[

̂δwn(t)−1 ,δ̂wn(t)

] dM (ν,V ((wn)n∈N))

= O

( 1
log(t)

)
+ sup



dM (ν,V ((wn)n∈N)) : ν ∈

⋃

n≥n(t)

[
δ̂wn , δ̂wn+1

]


 ,

by the last proof.

Proof of Theorem 1.2.1 - second point

Assume that V((wi)i∈N) = {ν} and let F be the cellular automaton associated with this se-
quence as described above, and consider µ ∈ Mfull

σ−erg(AZ). Since µ is not assumed to be
ψ-mixing, Proposition 1.2.4 does not apply, and there is no guarantee most segments are ac-
ceptable. However large segments are still rare; more precisely, µ(Γt0,≥k) −→

k→∞
0 for all t since

all sets Γt0,k are disjoint.

CLAIM 1: F t∗µ([A\B]) −→
t→∞

0, i.e., the density of auxiliary states tends to 0.

Proof. Suppose we are in an initial segment of length k. Detached time counters, Turing
machines and merging counters initially present are destroyed in less than k steps. Simi-
larly, left merging signals and copy auxiliary states initially present progress at speed -1,
so they are destroyed before time k. Any uninitialised wall is destroyed after k(1 + log k)
steps at most, and any counter attached to it are destroyed after less than k more steps.
For all those states, the probability of apparition after time k(2 + log k) is less than
µ(Γ0

0,≥k) −→
k→∞

0.
At time T ′n, all segments are longer than n, so the density of initialised walls and

initialised auxiliary states inside each segment is O
(√

n
n

)
.

Only uninitialised formatting counters and right merging signals remain. Inside each
segment, call non-formatted area the interval between the initialised formatting counter
of the left wall and the rightmost cell containing one of those two states. At each step,
this area decreases by one cell to its left but may grow by one cell to its right as a counter
or signal progresses. Notice that merging with other segments cannot increase this area
since segments of length n at time Tn are formatted (see Figure 1.12).
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Tn

Tn+1

Figure 1.12: Illustration of the last part of the proof of Claim 1. Slanted lines are format-
ting counters and grey areas are potentially non-formatted.

Therefore, a segment at time Tn can contain a non-formatted area longer than
√
n

only if it is issued from a segment longer than
√
n initially. Other segments have a non-

formatted area smaller than
√
n for a length larger than n. By σ-invariance,

µ({x ∈ AZ | x0 is in a non-formatted area}) ≤
√
n

n
+ µ

(
Γ0

0,≥√n
)
−→
n→∞ 0.

Therefore, for a ∈ A\B, we have F t∗µ([a]) →
t→∞

0.

CLAIM 2: For any n ∈ N, dM
(
F t∗µ,Conv

(
(δ̂wi)i≥n

))
−→
t→∞

0, where Conv(X) is the convex

hull of the set X.

time

Tn

Tn+1

Tn+2

Tn + k

k

wn−3

wn−2

wn−1

wn

wn+1

wn+2

Figure 1.13: Illustration of Claim 2. When t > Tn + k, a segment of length k is a succession
of stripes containing wn, wn+1, . . . plus a negligible part of auxiliary states and defects.
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Proof. Consider a segment of length k at time Tn. At time Tn + k the copying process for
wn is finished, but since the segment is not necessarily acceptable, other copying processes
may have started in the meanwhile. Therefore, the segment contains:

• auxiliary states, with negligible frequency;
• strips containing repeated copies of wn, then wn+1, wn+2. . . separated by ongoing
copy processes (the frequency of auxiliary copy states being negligible).

See Figure 1.13. Since µ(ΓTn`,≥k) −→k→∞ 0, we have dM
(
F Tn+t
∗ µ,Conv((δ̂wi)i≥n)

)
−→
t→∞

0.

The second point of the Theorem 1.2.1 follows easily from Claim 2.

Remark. It does not follow from the last claim that the sequence (F t∗µ) is close to any of the δ̂wi
at any point, which is the reason why the result holds only for a single measure. Controlling
the length of the segments as needed in the proof of the first point requires ψ-mixing.
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Section 1.3

Removing the auxiliary states

Before stating consequences of Theorem 1.2.1, we consider in this section the case where using
auxiliary states are not allowed; that is, given a uniformly computable sequence of words on B,
we build a cellular automaton BZ → BZ that perform the same task as in the previous section.

A direct extension is impossible, for reasons that are detailed in the next section. However,
if the limit measure does not have full support, the previous results can be extended by using
a word not charged by the measure to encode the auxiliary states in a sense.

Theorem 1.3.1 (Realisation of a computable polygonal path of measures with no auxil-
iary states).

Let (wn)n∈N be a uniformly computable sequence of words of B∗, where B is a finite
alphabet, and assume there exists a word u that does not appear as subword in any of
the wn. Then there is a cellular automaton F : BZ → BZ such that for any measure
µ ∈Mfull

ψ−mix(BZ), V(F, µ) = V((wn)n∈N).

However, because of the destructive nature of the formatting counter in the modified con-
struction, the proof in Section 1.2.5 cannot be adapted and we cannot weaken the hypothesis
to µ ∈Mfull

σ−erg(BZ) when K is a singleton.
Let A ⊃ B be the alphabet and F the CA associated to the sequence (wn)n∈N by Theo-

rem 1.2.1. Our aim is to provide an encoding of any configuration of AZ in BZ and a cellular
automaton F ′ that behaves similarly to F after encoding.

Denote Ud ⊂ Bd the set of words of length d with prefix u, that do not contain u as subword
(except at the first letter), and that do not end with a prefix of u. |Ud| −→

d→∞
∞, so for d large

enough, we can find an injection ϕ : A\B → Ud (encoding the auxiliary states), and we extend
it by putting ϕ = Id on B. For a finite word, we define ϕ(u1 . . . un) = ϕ(u1) . . . ϕ(un), and this
can be naturally extended further to configurations Φ : AZ 7→ BZ by considering that ϕ(a0)
starts on the column zero. Notice that this encoding is not σ-invariant.

Let T ⊂ AZ be the set of configurations such that the word u does not appear on the main
layer (T is a subshift of finite type). Since u marks unambiguously the beginning of a word of
ϕ(A\B), the restriction Φ : T→ BZ is injective.

We can define locally a decoding Ψ : Φ(T)→ T such that Ψ ◦ Φ = Id, by looking d cells to
the right for occurrences of u. If u appears, we are an output cell, that is, the image by ϕ of a
single letter b ∈ B (corresponding to (b,#,#,#,#,#) for b ∈ B in the previous construction);
otherwise, we belong in an auxiliary cluster, the image by ϕ of a letter A\B that occupy d
cells while containing one letter of output. See Figure 1.14 for an example.

Intuitively, we want to build a cellular automaton that behaves similarly as the automaton
defined in Theorem 1.2.1, where elements (b,#,#,#,#,#) are represented by output cells
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0 0 1 1 0 1 1 1 0 0 0 1 1 1 0 1 0 0 1 0 0 1

Φ

0 0 1 a1 1 1 a2 1. . . . . .

Figure 1.14: Encoding of the auxiliary states with u = 101 and d = 3. In this case Ud ⊂
101 · A3 · 00.

and all other elements by auxiliary clusters. However, Φ and Ψ are not σ-invariant, so Φ◦F◦Ψ is
not a cellular automaton. Instead, we build manually a cellular automaton on BZ that behaves
in roughly the same way as Φ ◦ F ◦Ψ.

Provided the neighbourhood is larger than [−4d, 4d], each cell can “read" the cluster in
which it belongs, and the three clusters to its right and left. At time 0, if a word u is not the
prefix of a word of Ud, it is replaced by a word bd and can never be created again. To avoid
creating an auxiliary cluster by mistake, we fix to this purpose a letter b ∈ B such that bd /∈ Ud.
Similarly, auxiliary clusters that are destroyed for any reason leave behind them output b cells.

Remark. For clarity, in all diagrams of this section, we suppose that B = {0, 1}, d = 3 (it
would be much larger in a real implementation) and we represent auxiliary clusters as blocks
with layers, instead of words from Bd. Also we fix b = 0 in the definition above.

The different parts of the construction are modified in the following way.

• I and W clusters, time counters, and Turing machines have the same behaviour as in
the previous construction. However, since the counters take more space, it is necessary
to erase 3d cells to the left and right of each I cluster at time 0.
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1

1
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101?

1011

1011100

main

copy

Figure 1.15: End of the copying process described in Figure 1.8, copying the word 1101.
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• The tail of copying processes progresses to the left at speed one, and behaves normally
as long as it does not meet another auxiliary state (see Figure 1.15). When the process
has finished the copy, it is destroyed and leaves b cells behind.

• Formatting counters progress to the right at speed d. This is too fast to keep information
on the output layer, so the counter leaves behind output cells b defined above. Any other
signal it meets (e.g. copying process or length-measuring signal) is similarly erased.

timetimeformattingformatting

timetime

time

formattingformatting

time
formattingformatting

time
formatting

time
formatting

????

?

?

?

000

000000

000000000

Figure 1.16: A formatting counter gets offset when entering the time counter area. Notice the
auxiliary clusters being replaced by output cells containing b = 0.

• When close to a time counter, it may happen that the formatting counter cannot progress
by d cells exactly (see Figure 1.16). In this case, it is offset by less than d cells, and

W W

W W

W W

W W

W W
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Figure 1.17: Determination of length. Here d = 3, t0 = 8 and o = 1, for a measured length of
13.
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formatting clusters separated by small offsets in this way are still considered to be the
same counter for the rule of the automaton. The subsequent comparison process is
unchanged.

• Merging signals which determine length of segments also progress at speed d. To avoid
possible interactions with copying processes (similarly to the case of formatting coun-
ters), the determination of length starts only after the copy is finished. Thus a merging
signal is only offset when entering the time counter area. After bouncing off the right
wall, it returns to the left wall where its offset can be measured. If it takes t0 steps to
return with an offset of α, then the segment has length t0

2 · d+ α (see Figure 1.17). This
value is compared to n and the rest of the process is not modified.

In this way, Propositions 1.2.4 and 1.2.5 can be extended. We can check that at time t, with
Tn ≤ t < Tn+1, the copy process followed by the process of determination of length for
segments of size n + 1 still take less than Tn+1 − Tn steps. Furthermore, the frequency of
auxiliary states is multiplied by a fixed constant d. Hence the proof in Section 1.2.5 can be
adapted, and the theorem follows.
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Section 1.4

Problems solved with those
constructions

In this section, we use the construction developed in Sections 1.2 and 1.3 to solve various
problems, starting with the characterisation of reachable limit measures and µ-limit measure
sets. We consider the case when auxiliary states are not allowed, the case of Cesàro mean
convergence, consequences of these results for the decidability of asymptotic properties of
cellular automata, and various other extensions.

1.4.1 Characterisation of reachable µ-limit measures sets

Previous results

The first effort towards understanding the computational content of the asymptotic behaviour
of cellular automata is due to Hurd [Hur87], who provided examples of ω-limit sets whose
language is not recursively enumerable. This work was continued in articles such as [Maa95]
and more recently [BCV14], with no full characterisation being reached.

Concerning µ-limit sets, Boyer, Poupet and Theyssier were the first to use similar construc-
tions to build computationally complex µ-limit sets [BPT06]. More recently, Boyer, Delacourt
and Sablik proved the following:

Theorem 1.4.1 ([BDS10]).
Let B be an alphabet and (Σi) be a uniformly computable sequence of generable subshifts

of BZ, that is, assume that we have a Turing machine taking as input an integer i that writes
letters from B on a bi-infinite tape, never stopping or erasing a letter, and such that the limit
configuration x∞i satisfies

∀u ∈ A∗,Freq(u, x∞i )⇔ u ∈ L(Σi).

Then there exists an alphabet A ⊃ B and a cellular automaton F : AZ → AZ such that

Λλ(F ) =
⋃

i

Σi,

where λ is the uniform Bernoulli measure on AZ.

The notion of generable subshift is not unlike the notion of simulable measure, and in-
cludes such examples as transitive sofic subshifts and substitutive subshifts associated to a
primitive substitution (see [FM10] for definitions). However, this result does not give a full
characterisation.

Our construction is inspired by these articles, and an ongoing work by the same authors
aims at reaching a full computability characterisation of µ-limit sets, using some techniques
developed in the present thesis and new ideas [BDP+].
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The connected case

Reciprocals of the computable obstructions described in Section 1.1 follow directly from The-
orem 1.2.1.

Corollary 1.4.2 (Sufficient conditions for being a single limit measure).
Let ν ∈Ms-comp

σ (BZ) be a limit-computable measure. There is an alphabet A ⊃ B and
a cellular automaton F : AZ → AZ such that for any µ ∈Mfull

σ−erg(AZ), one has F t∗µ −→t→∞ ν.

Proof. Combine Proposition 1.1.1 with the second point of Theorem 1.2.1.

Corollary 1.4.3 (Sufficient conditions for being a µ-limit measures set). Let K ⊂
Mσ(BZ) be a compact, Π2-computable and connected (Π2-CCC) subset ofMσ(BZ). There
is an alphabet A ⊃ B and a cellular automaton F : AZ → AZ such that for any µ ∈
Mfull

ψ−mix(AZ), one has V(F, µ) = K.

These are in particular a full characterisation of limit measures and connected µ-limit mea-
sures sets that are reachable from some computable initial measure µ ∈Mσ(AZ).

Proof. Combine Proposition 1.1.6 with the first point of Theorem 1.2.1.

Open question. Can the rate of convergence be improved, or can we prove that this is the
best possible rate?

Since Theorem 1.3.1 is a counterpart to the second point of Theorem 1.2.1 without auxil-
iary states, it is natural to give a similar counterpart to Corollary 1.4.3. Corollary 1.4.2 does
not have a counterpart since its proof uses the second point of Theorem 1.2.1, which does not
extend to the construction with no auxiliary states.

Definition 1.4.1. A word u ∈ A∗ is said to be charged by a set K ∈Mσ(AZ) if there exists
ν ∈ K such that ν([u]) > 0.

Corollary 1.4.4 (Sufficient conditions for being a µ-limit measures set – no auxiliary
states).

Let K ⊂ Mσ(BZ) be a non-empty Π2-CCC subset ofMσ(BZ) that does not charge a
word u ∈ B∗. Then there is a cellular automaton F : BZ → BZ such that for any measure
µ ∈ Mfull

ψ−mix(BZ), V(F, µ) = K. In particular, any limit-computable measure which does
not have full support can be obtained this way.

Proof. Since K does not charge u, we can assume without loss of generality that no word in
the uniformly computable sequence (wn)n∈N associated to K by Proposition 1.1.1 contains
u as subword. Thus Theorem 1.3.1 applies.
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This leaves open in particular the case of limit measures with full support. A direct ex-
tension would be impossible, since if F t∗µ converges to a limit measure with full support, the
automaton F must be surjective. In particular, a surjective automaton leaves the uniform
measure invariant (see Proposition 3.1.1).

Open question. Which sets of measures can be reached by surjective cellular automata?

On an unrelated note, the dynamics on the µ-limit measures set in our construction is
always the identity. In the next section, we will enforce richer dynamics in order to reach
non-connected µ-limit measure sets. We still do not get a good understanding of the possi-
ble dynamics of cellular automata on their µ-limit measures sets, which could lead to results
similar to those of Di Lena and Margara on ω-limit sets [LM09].

Towards the non-connected case

In Corollary 1.4.3 the µ-limit measures set is assumed to be connected. Indeed, in the con-
struction of Theorem 1.2.1, each word wn is copied progressively on each segment, so that we
reach the closure of an infinite polygonal path which is connected. However, non-connected
µ-limit measures sets also have some topological obstructions. For example, if V(F, µ) is finite,
we have the following proposition.

Proposition 1.4.5. Let F : AZ → AZ be a cellular automaton and µ ∈ Mσ(AZ) such that
V(F, µ) is finite. Then F∗ induces a cycle on V(F, µ).

Proof. Let d = min{dM(ν, ν ′) : ν, ν ′ ∈ V(F, µ) with ν 6= ν ′} > 0 and consider ν ∈
V(F, µ). It is possible to extract a sequence (ni)i∈N such that dM(Fni∗ µ, ν) < d

3 and
dM(Fni+1

∗ µ, ν) > 2d
3 . Since dM(Fn∗ µ,V(F, µ)) −→

n→∞ 0, we have dM(Fni∗ µ, ν) −→
i→∞

0. By
continuity of F∗, dM(Fni+1

∗ µ, F∗ν) −→
i→∞

0.
One deduces that for all ν ∈ V(F, µ) there exists ν ′ ∈ V(F, µ) such that F∗ν = ν ′. So

there is k ∈ N such that V(F, µ) = {ν0, . . . , νk−1} and F∗νi = νi+1 where the addition is
modulo k.

We exhibit some examples of more sophisticated behaviours based on the construction in
Theorem 1.2.1. The first one is a family of cellular automata where V(F, µ) is a finite set of
connected components, which is a partial reciprocal of Proposition 1.4.5. The second one is
a family of cellular automata where V(F, µ) has an infinite number of connected components.
However these are not total characterisations of the possible µ-limit measures sets.

Example (Finite set of connected components). Suppose K = {ν0, . . . , νk−1} ⊂ Mσ(BZ) is
a finite set of σ-invariant limit-computable measures such that Gνi = νi+1 for some periodic
cellular automaton G : BZ → BZ (Gp = Id for some p ∈ N). Then there is an alphabet A ⊃ B
and a cellular automaton F : AZ → AZ such that V(F, µ) = K for µ ∈ Mfull

σ−erg(AZ). Indeed,
let F be the cellular automaton satisfying F t∗µ→ ν0 obtained by Theorem 1.2.1, and consider
the cellular automaton that applies G on the main layer and applies the local rule of F once
every k steps.

The same idea holds if K is a finite union of Π2-CCC sets which are mapped by a periodic
cellular automaton G : BZ → BZ.
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This is of course a very restricted case and any kind of general characterisation is still an
open problem.

Example (Infinite set of connected components). We give a sketch of a modification of the
construction of Theorem 1.2.1 to obtain examples of cellular automata where V(F, µ) has an
infinite number of connected components. This is the first such example to our knowledge.
The construction uses the firing squad cellular automaton introduced by Mazoyer [Maz96]
FFS : BFS → BFS, which has the following properties:

• the alphabet contains 4 states
{

F , , , O
}
⊂ BFS;

• if x[0,n] = O
n−1 then F 2n

FS (x)[0,n] = F
n+1;

• the state F does not appear in (F tFS(x)j)(t,j)∈[0,n]×[0,2n−1].

Consider a uniformly computable family (Ki)i∈N of disjoint Π2-CCC subsets ofMσ(BZ). There
is a uniformly computable sequence of words (wn)n∈N of B∗ such that V((wn)n∈N = ⋃

i∈NKi.
Define w′n = wn × |wn| ∈ (B × BFS)∗ and consider the cellular automaton F : AZ → AZ

given by Theorem 1.2.1 which produces V((w′n)n∈N), with A ⊃ B×BFS. We modify F to obtain
F̃ in the following way.

• at time Tn, when the copy of wn is initiated, we initialise a counter on another layer to
count the length k of the segment;
• at time t = Tn+1− 2k, the state O appears on the left border of each segment (this is
a computable number and the time counter keeps track of current time);
• All F symbols are immediately transformed into symbols.

This requires the segments to be shorter than Tn+1−Tn cells, but the probability that [0, l]
belongs to such a segment tends to 1 as time tends to infinity (Proposition 1.2.4). Furthermore,
the state F appears only at times (Tn)n∈N. Therefore, in those segments, F̃∗µ approximates
the measure δ̂wn × δ̂ F

at time Tn+1 and the measure δ̂wn × δ̂ at time Tn+1 + 1.
For an initial measure µ ∈ Mfull

ψ−mix(AZ), one has V(F̃ , µ) = (⋃iKi) × δ̂
F
∪ K′ with

K′ ⊂ Mσ

(
B ×

(
BFS \ { F }

)Z)
. In particular, V(F̃ , µ) has an infinite number of connected

components.

Open question. Is it possible to characterise all compact subsets of Mσ(AZ) that can be
reached as µ-limit measures set of some cellular automaton when µ is computable?

1.4.2 Convergence in Cesàro mean

In this section, by adapting the enumeration (wn)n∈N, we obtain similar results on V ′(F, µ),
the set of limit points for the Cesàro mean sequence.

Corollary 1.4.6 (Sufficient conditions for being a µ-limit measures set in Cesàro mean).
Let B be a finite alphabet and K′ ⊂ Mσ(BZ) a Π2-CCC set. There exist an alphabet



72 CHAPTER 1. CHARACTERISATION OF TYPICAL ASYMPTOTIC BEHAVIOURS

A ⊃ B, and a cellular automaton F : AZ → AZ such that for any µ ∈ Mfull
ψ−mix(AZ), one

has V ′(F, µ) = K′.

V ′(F, µ) is connected by Proposition 0.1.9, and if we suppose that the initial measure µ is
computable, we obtain a full characterisation of reachable subsets K′.

This corollary is a consequence of the following stronger result, where we have control
over both V(F, µ) and V ′(F, µ).

Corollary 1.4.7. Let B be a finite alphabet and K′ ⊂ K ⊂ Mσ(BZ) two Π2-CCC sets.
There exist an alphabet A ⊃ B and a cellular automaton F : AZ → AZ such that for any
µ ∈Mfull

ψ−mix(AZ), one has:

• V(F, µ) = K;
• V ′(F, µ) = K′.

By Proposition 0.1.9, V ′(F, µ) is included in the convex hull of V(F, µ). Here we need the
stronger hypothesis that it is included in V(F, µ). Therefore, if we suppose the initial measure
is computable, this is a characterisation of pairs of connected subsets (K,K′) such that K′ ⊂ K
that can be reached in this way.

Proof. We use notations from the proof of Proposition 1.1.6. Notably (wn)n∈N and
(w′n)n∈N are the uniformly computable sequences of words associated to K and K′, re-
spectively, and Vk and Vt

k are defined with regard to K.

We define a new sequence of words (w′′n)n∈N in the following manner, using a similar
method as Proposition 1.1.6. For n ∈ N, let in ≤ n be the maximal value such that one can
find a path wn = u0, u1, . . . , ul = w′n, ul+1, . . . , ul′ = wn+1 with u1, . . . ul−1, ul+1, . . . , ul′ ∈
V btin and dM(uk, uk+1) ≤ 4b(in) for all k.

Let Pn : {0, . . . , pn} → Vt
in be such a path. Since Vt

in ⊂ A≤in+1, this path is of length
pn ≤ 2|A|in+1 ≤ 2|A||wn|+1 < 2|A|n+1.

For i ∈ [|A|n2
, |A|(n+1)2 ], we define:

- if i < |A|n2 + pn, w
′′
i = Pn(i− |A|n2);

- otherwise, w′′i = w′n.

and let F be the CA associated to (w′′n)n∈N by Theorem 1.2.1. Since all elements of
(wn)n∈N appear, we can prove as in Proposition 1.1.6 that V(F, µ) = V((w′′n)n∈N) = K.

0 T|A|i2 T|A|i2 +pi
T|A|(i+1)2

A

w′n−1

B C

w′n

Figure 1.18: Intuitively, we prove A+B � C, then B � A.
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We have
|A|n2 + pn

|A|(n+1)2 − (|A|n2 + pn)
<

|A|n2+1

|A|(n+1)2 − |A|n2+1 −→n→∞ 0.

In other words, the subset [0, |A|n2 + pn] is (asymptotically) of negligible density in
[0, |A|(n+1)2 ]. Since Ti+1 − Ti = qb

√
ic (where q is defined in Section 1.2.3) is an in-

creasing sequence, the subset [0, T|A|n2+pn ] is of negligible density in [0, T|A|(n+1)2 ]. This
means that, putting tn+1 = T|A|(n+1)2 , d(ϕFtn+1(µ), δ̂w′n+1

) −→
n→∞ 0.

Furthermore, notice that for x, y ∈ R+, when y ≤
√
x, we have b√x+ yc ≤ b√xc+ 1

and b√x− yc ≥ b√xc − 1. Thus :

T|A|n2+pn − T|A|n2 < q|A|
n2
2 +1 · 2|A|n+1.

T|A|n2+pn > T|A|n2 − T
|A|n2−|A|n

2
2
> q|A|

n2
2 −1 · |A|n

2
2 ,

and therefore
T|A|n2+pn − T|A|n2

T|A|n2+pn
−→
n→∞ 0.

This means that, when t′n = T|A|n2+pn , d(ϕFt′n(µ), δ̂w′n) −→
n→∞ 0.

To sum up, we have two sequences of times t0 < t′0 < · · · < tn < t′n < . . . such that, for
all n ∈ N, the Cesàro mean sequence (ϕFt (µ))t∈N is (asymptotically) close to δ̂w′n between
times tn and t′n, and is close to δ̂w′n+1

at time tn+1. Furthermore, between times t′n and
tn+1, ϕFt (µ) is by definition a convex combination of ϕFt′n(µ) and δ̂w′n+1

, and thus it is close
to the segment [δ̂w′n , δ̂w′n+1

]. We conclude that asymptotically, the sequence is close to
V((w′n)n∈N), and thus its set of limit points is K′.

This result has a counterpart with no auxiliary states, using Theorem 1.3.1.

Corollary 1.4.8 (Sufficient conditions for being a µ-limit measures set in Cesàro mean –
no auxiliary states).

Let K′ ⊂ K ⊂ Mσ(BZ) be two non-empty Π2-CCC sets that both do not charge the
same word u ∈ B∗. Then there exists a cellular automaton F : BZ → BZ such that for any
µ ∈Mfull

ψ−mix(AZ),

• V(F, µ) = K;
• V ′(F, µ) = K′.

As we remarked in the previous subsection, the existence of a non-charged word u is a
necessary hypothesis.

Open question. Is it possible to extend Corollary 1.4.7 and 1.4.8 when K′ 6⊂ K?



74 CHAPTER 1. CHARACTERISATION OF TYPICAL ASYMPTOTIC BEHAVIOURS

Using Example 1.4.1 we can only provide some examples where V(F, µ) ∩ V ′(F, µ) = ∅,
typically where V(F, µ) is a finite set and V ′(F, µ) is the singleton containing its barycentre.

1.4.3 Decidability consequences

Using this construction, we show that for any nontrivial property, there is no algorithm that,
given as an input an alphabet and a cellular automaton on this alphabet, can decide whether
its µ-limit measures set satisfy this property. This is analogous to the classical result by Rice on
Turing machines.

In the context of cellular automata, a similar result on ω-limit sets was found by Kari
[Kar94], and Delacourt proved that this was also true for µ-limit sets:

Theorem 1.4.9 (Rice theorem on µ-limit sets, [Del11]).
Let P be a property on subshifts nontrivial on µ-limit sets (i.e. not always or never true).

Then it is undecidable, given an alphabet A and a CA F : AZ → AZ, whether Λλ(F ) satisfies
P , where λ is the uniform measure on AZ.

In both results, the alphabet is considered as an input of the problem, and this will also
be true for the following results; we consider the case where the alphabet is fixed only in
Corollary 1.4.13.

Corollary 1.4.10 (Rice theorem on µ-limit measures sets).
Let P be a nontrivial property on non-empty Π2-CCC sets ofMσ(BZ) (i.e. not always

or never true). Then it is undecidable, given an alphabet A and a CA F : AZ → AZ,
whether V(F, µ) satisfies P for µ ∈Mfull

ψ−mix(AZ).

To see that it is a generalisation of Theorem 1.4.9, consider that for every reachable µ-limit
set Λ, there is a Π2-computable compact set of measures K such that

⋃
ν∈K supp(ν) = Λ, and

this set can be supposed connected since taking the convex hull of a set of measures does not
add any configuration to the union of their support.

Proof. We proceed by reduction to the halting problem. Since P is nontrivial, let K1 and
K2 be two Π2-CCC sets that satisfies and does not satisfy P , respectively. By Proposi-
tion 1.1.6, there exists two computable sequences of words (wn)n∈N, (w′n)n∈N ∈ (A∗)N such
that K1 = V((wn)n∈N),K2 = V((w′n)n∈N).

Now let TM be a Turing machine. Define the sequence (w′′n)n∈N in the following way.

• If TM halts on the empty input in less than n steps, w′′n = wn.
• Otherwise, w′′n = w′n.

This sequence is uniformly computable by simulating n steps of the Turing machine and
computing the corresponding sequence. Therefore, we can use the previous construction
to build a CA F such that V(F, µ) = V((w′′n)n∈N). If TM halts on the empty input,
then w′′n = wn for n large enough; otherwise, w′′n = w′n for n large enough. Thus, V(F, µ)
satisfies P if and only if TM halts.

The same reasoning holds for a single limit and the Cesàro mean sequence.
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Corollary 1.4.11 (Rice theorem on single limit measures).
Let P be a nontrivial property onMs-comp

σ (BZ). Then it is undecidable, given an alphabet
A and a CA F : AZ → AZ, whether F t∗µ→ ν where ν satisfies P for µ ∈Mfull

σ−erg(BZ).

Corollary 1.4.12 (Rice theorem on Cesàro mean µ-limit measures sets).
Let P be a nontrivial property on non-empty Π2-CCC sets of Mσ(BZ). Then it is un-

decidable, given an alphabet A and a CA F : AZ → AZ, whether V ′(F, µ) satisfies P for
µ ∈Mfull

ψ−mix(BZ).

Corollary 1.4.13 (Rice theorem on µ-limit measures sets – no auxiliary states).
Let B be an alphabet, µ ∈ Mfull

ψ−mix(BZ), u ∈ B∗, and P be a nontrivial property
on non-empty Π2-CCC sets that do not charge u. Then it is undecidable, given a CA
F : BZ → BZ, whether V(F, µ) satisfies P .

This result extends to single measures and Cesàro mean µ-limit measures set, in a similar
way as Corollaries 1.4.11 and 1.4.12.

Actually, if λ is the uniform Bernoulli measure, the problem of whether V(F, λ) = {λ} is
equivalent to the surjectivity of F , which is decidable [AP72]. More generally, if we fix an
alphabet, the question of which nontrivial properties on limit measures and µ-limit measures
sets are decidable remains open.
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Section 1.5

Computation on the space of measures

The construction developed in Section 1.2 has several limitations. In particular, it “ignores”
any information contained in the initial measure, erasing it with the formatting process, and
has the same typical asymptotic behaviour regardless of the initial measure. In this section, we
modify the construction to perform computation on the space of probability measures, that is,
we want the µ-limit measures set to be a function of the initial measure; this requires to keep
some information in the construction. When the initial measure is not computable, we can use
this information as a “source” of noncomputability to reach µ-limit measures sets that would
be unreachable otherwise.

Computation with access to an oracle

The obstructions shown in Section 1.1 can be generalised to obstructions on µ 7→ V(F, µ),
including cases where the initial measure is not necessarily computable, by considering com-
putability with access to an oracle µ ∈Mσ(AZ).

Definition 1.5.1 (Turing machine with oracle).
A Turing machine with oracle inM⊂Mσ(AZ) has the same behaviour as a classical

Turing machine, except that an oracle µ ∈M is fixed prior to computation. The machine can
query the oracle at any time during the computation by writing u ∈ A∗ and n ∈ N on an special
additional oracle tape and entering a special oracle state. At this step, the content of the
oracle tape is considered as the oracle input and, after one step, the contents of the oracle tape
are replaced by an approximation of µ([u]) up to an error 2−n and the computation resumes.

We extend the definitions of Section 1.1 to define notions of computability when the Turing
machines have access to an oracle.

Definition 1.5.2 (Function computable with oracles on countable sets).
LetM⊂Mσ(AZ) andX,Y two countable sets. A function f :M×X → Y is computable

with oracles in M if there exists a Turing machine with oracle in M which takes as input
x ∈ X and returns y = f(µ, x) ∈ Y , up to reasonable encoding.

Definition 1.5.3 (Function computable with oracles on uncountable sets).
LetM⊂Mσ(AZ).
A function ϕ : M −→ Mσ(BZ) is computable with oracles in M if there exists a

computable function with oracles in M f : M× N −→ B∗ such that |ϕ(µ) − δ̂f(µ,n)| ≤ 2−n.
This is an extension of the previous definition where the image is not countable, hence the
abuse of notation.

A sequence of functions (fn :M×Mσ(AZ) −→ R)n∈N is uniformly computable with
oracles in M if:

• there exists a : M × N × N × A∗ −→ Q computable with oracles in M such that∣∣∣fn(µ, δ̂w)− a(µ, n,m,w)
∣∣∣ ≤ 1

m for all µ ∈M, w ∈ A∗ and n,m ∈ N;
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• there exists b :M×N −→ Q computable with oracles inM such that dM(ν, ν ′) < b(µ,m)
implies |fn(µ, ν)− fn(µ, ν ′)| ≤ 1

m for all µ ∈M and n,m ∈ N.

A function f : M×Mσ(AZ) −→ R is Σn-computable with oracles in M (resp. Πn)
if there exists a uniformly computable sequence of functions with oracles in M (fi1,...,in :
M×Mσ(AZ)→ R)i1,...,in∈N such that:

f = sup
i1∈N

inf
i2∈N

sup
i3∈N
· · · fi1,...,in

(
resp. f = inf

i1∈N
sup
i2∈N

inf
i3∈N
· · · fi1,...,in

)
.

f is ∆n-computable with oracles in M if it is both Σn-computable and Πn-computable
with oracles inM.

Let K be the set of compact subsets ofMσ(BZ). Defining the computability of a function
Ψ : M −→ K can be done in various ways, similarly as in Proposition 1.1.4. For example, Ψ
is Πn-computable if the distance function µ, ν 7→ dΨ(µ)(ν) is Σn-computable with oracles in
M.

The proofs of Sections 1.1.2 and 1.1.3 can be easily adapted in this framework.

Proposition 1.5.1 (Computability obstruction for a general initial measure).
For any cellular automaton F : AZ → AZ,

• µ 7−→ F∗µ is computable with oracles inMσ(AZ) (equivalent to Proposition 1.1.3);
• µ 7−→ V(F, µ) and µ 7−→ V ′(F, µ) are Π2-computable with oracles inMσ(AZ) (equiv-

alent to Proposition 1.1.5).

Furthermore, if Ψ : M −→ K is a Π2-computable function with oracles inM and if every
element of Ψ(M) is connected, then there exists a computable function f : M× N −→ A∗
with oracles in M such that Ψ(µ) = V((f(µ, n))n∈N), where V((f(µ, n))n∈N) is the closure of
the limit points of the polygonal path (equivalent to Proposition 1.1.6).

Towards a reciprocal

In this section, we give a partial reciprocal to Proposition 1.5.1. To use the initial measure
µ ∈ Mσ(AZ)) as an oracle, we need to keep some information from the initial configuration.
We adapt the original construction in the following way:

Each segment keeps a sample of the initial configuration, using the frequency of patterns
inside this sample as an oracle in the computation. We need to ensure that the frequency of
a pattern u ∈ Ak in this sample is close to µ([u]) with a high probability. For this, we use
Theorem III.1.7 of [Shi96] applied on a measure µ ∈ Mfull

ψ−mix(AZ) that ensures we have an
exponential rate of convergence for every length. Formally, for any k,m, n ∈ N, c > 0:

µ

({
x ∈ AZ : max

u∈Ak
{|µ([u])− Freq(u, x[0,n])|} ≥ ε

})
≤ (k +m)ψ(m)

n
k

(
n

k
+ 1

)Card(A)k

2−
ncε2

4k .

However, in our construction, we are unable to keep all information from the initial configu-
ration since the formatting process destroys information in the segment. In all the following,
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we will only keep information about the density of I symbols, and the reached µ-limit set
of measures depends on this parameter only. The same method could be adapted to keep
information about longer words, only considering the positions of I symbols.

Theorem 1.5.2. Let Ψ :Mfull
ψ−mix({0, 1}Z)→ K be a Π2-computable function where K is

a set of compact connected subsets of Mσ(BZ). Assume that if µ, µ′ ∈ Mfull
ψ−mix({0, 1}Z)

are such that µ([1]) = µ′([1]), we have Ψ(µ) = Ψ(µ′).
Then there exists an alphabet A ⊃ B and a cellular automaton F : AZ → AZ such that

for all µ ∈Mfull
ψ−mix(AZ), we have V(F, µ) = Ψ(πµ) where π is the 1-block map defined by

π(x)i = 1 when xi = I , and π(x)i = 0 otherwise.

Notice that since only one density is considered, it would be equivalent in this case to
consider a Π2-computable function with oracles in R R → K. We kept this statement more
technical to be consistent with the general case.

Proof. Let f :Mfull
ψ−mix({0, 1}Z)×N −→ A∗ be a computable function with oracles inMfull

ψ−mix({0, 1}Z)
such that Ψ(µ) = V((f(µ, n))n∈N) and consider the associated Turing machine with oracle.

Let F be the cellular automaton defined in Theorem 1.2.1 that simulated the Turing ma-
chine corresponding to ((f(µ, n))n∈N). Of course we need to specify the behaviour of the
automata when the machine performs an oracle query.

We add a new layer Aoracle in which each segment at time t stores the frequency of the
state I in this segment at time 0. To do that, we modify the construction in the following
way:

• We subdivide the layer Aoracle in two parts, on which each wall W keeps on its left:

– the first counter for the number of I symbols that have been destroyed in its left
segment;

– the second counter for the length of this segment, 0 if the segment is not formatted.

• Another counter accompanies each formatting counter, measuring the length of the seg-
ment as it progresses.
• The second counter is initialised as 0. When the time counter attached to this wall makes
a comparison with an initialised formatting counter (the comparison returns the result
“=”), the second counter stores the length of the segment. It may take the value 0 again
if it merges with a non-formatted segment (see Figure 1.19).
• When a wall is destroyed by a merging process, it sends to its right an oracle signal
at speed 1 containing the information stored in its oracle counters. Such a signal should
not cross a formatting counter, so it is slowed down if necessary.
• When a wall’s counters are (c1, c2) and a signal (c′1, c′2) comes from its left, there are
three cases:

– If c2 = 0, the left segment cannot be formatted; the signal cannot come from an
initialised wall and can be safely ignored. The counters does not change.

– If c2 6= 0, the left segment has been formatted and all false signals erased. Thus
the information comes from an initialised wall. The new number of I symbols is
c′′1 = c1 + c′1 + 1 to take the merging into account.
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∗ If c′2 = 0, the segment just merged with a non-formatted segment and c′′2 = 0;
∗ otherwise c′′2 = c2 + c′2.

The counters take the values (c′′1, c′′2).

See Figure 1.19. We remark that if the length of the segment is k, the information can
be coded in space log(k), and it is possible to actualise the values before another signal
can come from the left.

time

Tn

0, 0 0, 0 0, 00, 0 0, 0 0, 0

0, k

0, n 0, n 0, n

1, 2n

2, 2n + k

1, 0

k n

Figure 1.19: Each wall has its counter displayed when its value changes. Slanted thick lines
are formatting counters, dotted lines are signals transmitting information.

• If two symbols I are too close in the initial configuration, they are destroyed by the
bootstrapping process (see Section 1.2.2). If a I is in a group of I separated by two
cells or less, the rightmost I sends a formatting counter and the leftmost one starts
a time counter. Thus a group of I separated by two cells or less behave as a single
symbol for initialisation purposes. Each I symbol except the leftmost one is transformed
immediately into an oracle signal (1, d), where d is the distance to the nearest I to its
left. The other cells present initially are erased.
• The Turing machine simulation described in Section 1.2.3 can be adapted to simulate a
Turing machine with oracle. When there is an oracle query for the value of µ([ I ]) with
precision 2−i at time t ∈ [Tn, Tn+1], there are two possibilities:

– if n− 1
6 ≤ 2−i, the Turing machine uses the information stored in the oracle layer to

return the frequency of I on the segment at time 0, and this corresponds to an
approximation of µ([ I ]) with sufficient precision;

– if n− 1
6 > 2−i, the computation stops, and the last word successfully computed is

output. The same thing happens until a time when enough information is available.

Let us check that V(F, µ) = Ψ(π∗µ) for µ ∈ Mfull
ψ−mix(AZ). It is clear that the density

of auxiliary states tends to 0, so if the sample approximates correctly µ([ I ]), the sequence
of words (wn)n∈N produced by the cellular automaton correspond to (f(µ, n))n∈N up to some
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repetition. Thus we only need to prove that the probability that a cell belongs to a segment
whose sample corresponds to a “bad” approximation tends to 0 when t tends to ∞. Recall
that ΓTn[i,j] = {x ∈ AZ | [i, j] is a segment at time Tn}.

Bn = µ
({
x ∈ AZ : x0 belongs in a segment with a “bad” sample at time Tn

})

=
∑

i<0,j>0
µ
({
x ∈ ΓTn[i,j] : |µ([ I ])− Freq( I , x[i,j])| > n−

1
6
})

=
∑

k>0
k · µ

({
x ∈ ΓTn[0,k] : |µ([ I ])− Freq( I , x[0,k])| > n−

1
6
})

,

by σ-invariance. By restricting ourselves to n ≤ k ≤ Kn, and for any m ∈ N large enough that
ψµ(m) < 1:

Bn ≤ µ
(
ΓTn0,≥Kn

)
+

Kn∑

k=n
k · µ

({
x ∈ AZ : |µ([ I ])− Freq( I , x[0,k])| > n−

1
6
})

≤ µ
(
ΓTn0,≥Kn

)
+K2

n(1 +m)ψµ(m)n (n+ 1)Card(A) 2−
c
4n

2
3

−→
n→∞ 0.

The result follows.

This result may seem surprising since the same cellular automaton has very different
asymptotic behaviours depending on the initial measure.

Open question. Is it possible to improve Theorem 1.5.2 and characterise functions Ψ :
Mfull

ψ−mix({0, 1}Z) → K, where K is the set of compact subsets of Mσ(BZ), that are realis-
able as the action of a cellular automaton F in the sense that for all µ, V(F, µ) = Ψ(µ)?
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Section 2.0

Introduction

In this chapter, we take an approach that is closer to Wolfram’s original approach. Instead of
constructing “artificial” cellular automata that exhibit a desired typical asymptotic behaviour,
we prove that some simple cellular automata found “in the wild” have a typical asymptotic
behaviour that corresponds to the visual intuition we get by iterating them on a random con-
figuration.

For many simple cellular automata, self-organisation takes a particular form: from a ran-
dom configuration, after a short transitional regime, regions consisting in a simple repeated
pattern emerge and grow in size, while the boundaries between them persist under the ac-
tion of the cellular automaton and can be followed from an instant to the next. Therefore
their movement (time evolution) can be defined inductively, and in this case we call these
boundaries particles. In the simplest cases, these particles evolve at constant speed and are
annihilated on collision; however, they can sometimes present a periodic behaviour or even
perform a random walk, and the collisions may give birth to new particles following some
more or less complicated rules.

This type of behaviour was first observed empirically in elementary cellular automata #18,
#122, #126, #146, and #182 [Gra83, Gra84], then #54, #62, #184 [BNR91], etc. These
automata attracted attention mainly because their dynamics seemed neither too simple nor too
chaotic, giving hope to understand their underlying structure better. In Figure 2.1, we show
many such automata iterated on the uniform configuration.

Roughly speaking, studying particles in cellular automata requires two steps:

• Identifying and describing the particles for a CA, usually as finite words;

• Describing the particle dynamics and understand its effect on the properties of the CA.

Historically, this study was often performed on individual or small groups of similar-looking
CA, and the first step was done in a case-by-case manner. See for example [Fis90b, Fis90a] for
the 3-state cyclic automaton, [BF95, BF05] for Rule #184 and other automata with the same
dynamics, [Gra84, EN92] for Rule #18. . . Other works such as [Elo94] skip the first step and
study particle dynamics in an abstract manner, deducing dynamical properties of automata by
making assumptions on the dynamics of their particles and providing some example of such
particles.

The first general formalism of particles in cellular automata was introduced by Pivato:
regions are characterised by a subshift Σ and particles are defects in a configuration of Σ. In
particular, he developed some invariants to characterise the persistence of a defect [Piv07a,
Piv07c] and he described the different dynamics of propagation of a defect [Piv07b].

Our focus is on the second step, and more precisely we are interested in how the dynamics
of the particles affect the typical asymptotic behaviour. In other words, we assume the exis-
tence of a set of particles with good properties (found by Pivato’s methods or otherwise), and
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we try to explain the self-organisation that is observed experimentally. In particular, most of
these behaviours cannot be observed through the ω-limit set alone (Section 0.1.3 or [KM00]),
which means our notion of typical asymptotic behaviour is relevant.

Considering only restricted cases for the dynamics of the particles seems reasonable since
almost any nontrivial property of the µ-limit set is undecidable [Del11], and the same is true
about limit measures (Section 1.4 or [HdMS13]). To determine the µ-limit set in some cases,
Kůrka suggests an approach based on particle weight function which assigns weights to certain
words [Kůr03]. However, this method does not cover any case when a defect can remain in
the µ-limit set. Hence we aim at a more general approach, in terms of particle dynamics as
well as initial measures.

One of our main motivations for this study is the class of captive automata introduced by
Guillaume Theyssier in [The04]. A captive cellular automaton is defined by a local rule f on
some neighbourhood N satisfying f((xi)i∈N ) ∈ {xi : i ∈ N}; in other words, a colour can-
not appear unless it is already present in the neighbourhood. In op.cit., the author proved
that these automata share interesting algebraic properties, and also noticed an interesting
phenomenon by drawing a captive cellular automaton at random (fixed alphabet and neigh-
bourhood): most captive automata exhibited the type of behaviour we described above. We
give a sample of this phenomenon in Figure 2.1 with two captive CA an one ordinary CA drawn
randomly. Any kind of general result concerning self-organisation of captive cellular automata
remains a challenging open problem.

Another motivation for the study of particle-like objects in cellular automata stems not from
empirical observations, but from computational considerations. Indeed, when performing al-
gorithmic tasks with cellular automata, the most natural approach is to use particles (often
called signals in this context) as a means of communication. The construction in Chapter 2
of the present thesis is a good example, and other examples include the density classification
problem [GKL87, dSM92, Fat13], the firing range squad problem [Maz96], the problem of de-
signing an intrinsically universal cellular automaton [OR09]. . . We argue that this is not only a
human bias. When studying Rule #110, Cook found that particles were the key to understand
the universality of the automaton [Coo04]; similarly, in [HC97, HCM98], the authors found
an underlying particle system in the Rule #54 automaton to understand its physical behaviour
and computational content. Following a different approach, Das, Mitchell and Crutchfield
[DMC94] used genetic algorithms to “breed” a cellular automaton capable of simple algorith-
mic tasks, and the resulting automaton was found to use signals in a similar manner.

Therefore there seems to be a deep link between particles and computation in cellular
automata, and our results may help prove that some automata computing with particles behave
in the expected way. For example, in Section 2.1.5, we use our results to prove some asymptotic
properties of Fatès’ candidate to perform the algorithmic task of density classification [Fat13].

In Section 2.1, we show that when particles have good collision properties (coalescence),
only particles moving in one particular direction can remain in the µ-limit set (µ being an initial
σ-ergodic measure). We introduce our own formalism of particle system in Section 2.1.1 to
describe the dynamics of the particles, and Section 2.1.2 is dedicated to the proof itself. We
introduce a simplified version of Pivato’s formalism in Section 2.1.3, since this is by far the
simplest way to find such a particle system in most examples.
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Rule 184 (traffic rule) 3-state cyclic CA

One-sided captive CA 4-state cyclic CA

Fatès’ density classifying CA 5-state cyclic CA

Random captive CA Random captive CA

Random CA Rule 18

Figure 2.1: Space-time diagrams of some cellular automata with particles, starting from a
configuration drawn uniformly at random.

We spend Section 2.1.4 on various examples of automata that fall under these hypotheses,
thus explaining the behaviours observed in the first 3 lines in Figure 2.1: remaining particles
(if any) all have the same speed. However, our formalism is not general enough to include
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defects in a sofic subshift that can have a particle-like behaviour, such as in Rule #18 (see the
bottom right picture in Figure 2.1 and [EN92]).

In Section 2.2, we improve the previous qualitative results with a quantitative approach,
considering the time evolution of some parameters when the automata have simple dynamics.
This research direction was inspired by [KFD11], where the authors consider the waiting time
before a particle crosses the central column. Using the same approach as in [BF95, KM00],
we show that the behaviour of these automata can be described by a random walk process
(Section 2.2.1), and we approximate this process by a Brownian motion using scale invariance
(Section 2.2.3).

This approach can be used for various natural parameters such as the density of particles
at time t (Section 2.2.4) or the rate of convergence to the limit measure (Section 2.2.5). This
generalises some of the results from [KFD11] and [BF05], particularly in terms of conditions
on the initial measures, since they were only known for initial Bernoulli measures. We apply
these results to some automata exhibiting these dynamics in Section 2.2.6.

Section 2.3 is devoted to the study of the limit measures of the 3-state cyclic automaton C3,
that we were unable to describe using the results of the previous section. Experimental simula-
tions suggested a rather surprising behaviour when the automaton is iterated on a nonuniform
Bernoulli measure µ = Ber(λ1,λ2,λ3):

Ct3∗µ −→t→∞ λ2δ̂0 + λ0δ̂1 + λ1δ̂2.

Intuitively, when looking at a finite window for t large enough, we observe almost surely a
monochromatic region, and the probability to see each colour i ∈ {0, 1, 2} is equal to the initial
frequency of i− 1 mod 3.

Using the same approach as in the previous section, but adding more information to the
random walk and managing to keep this information in the scaling and approximation process,
we prove this typical asymptotic behaviour.

Section 2.1 is an improved version of [HdMS11], with Section 2.1.5 being a new result.
Sections 2.2.1 to 2.2.3 were published in [HdMS12], with some examples from Section 2.2.6.
Section 2.3 is a yet unpublished collaboration between Antony Quas and ourselves.
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Section 2.1

Particle-based organisation:
qualitative results

In this section, we take a qualitative approach to self-organisation: that is, we assume some
properties on the dynamics of the particles of some cellular automata and try to deduce prop-
erties of the µ-limit measures set of the cellular automaton, with no regard to how fast this
organisation takes place. In Section 2.1.1, we introduce the formalism of a particle system to
describe the particle dynamics. In Section 2.1.2, we state our main result, which can be sim-
plified as follows: if the particles evolve at constant speed and have good collision properties,
then only one of them can survive in the µ-limit set. In Section 2.1.3, we introduce the most
relevant parts of Pivato’s formalism in the restricted case that is consistent with our own for-
malism; this is useful to find actual particle systems in our examples in a way that correspond
to the intuition, as we see in Section 2.1.4. Finally, we explore in Section 2.1.5 the extension
of our result to probabilistic cellular automata.

2.1.1 Particles

Definition 2.1.1 (Particle system).
Let F : AZ → AZ be a cellular automaton. A particle system for F is a tuple (P, π, φ),

where:

• P is a finite set whose elements are called particles;

• π : AZ 7→ (P ∪ {0})Z is a factor;

• φ : AZ × Z 7→ 2Z (subsets of Z) is a function called update function,

such that the update function satisfies the following properties for all x ∈ AZ and k ∈ Z,
denoting PartP,π(x) = {k ∈ Z : π(x)k ∈ P}, and omitting P and π when the particle
system is fixed by the context:

Locality There is a constant r > 0 (its radius) such that φ(x, k) ⊂ [k − r, k + r].
The particles cannot “jump” arbitrarily far. By constant we mean it does not
depend on x and k.

Surjectivity Part(F (x)) = φ(x,Z).
A particle at time t+ 1 cannot appear from nowhere; it must be the image of some
particle at time t.

Particle control ∀k ∈ Z, k ∈ Part(x)⇒ ∀k′ ∈ φ(x, k), k′ ∈ Part(F (x));
k /∈ Part(x)⇒ φ(x, k) = ∅.

If a particle is sent somewhere, it remains a particle; conversely, a particle cannot
come from a non-particle.
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Disjunction k < k′ ⇒ φ(x, k) = φ(x, k′) or max φ(x, k) < minφ(x, k′).
Two different particles crossing is considered an interaction, in which case their
common image is the resulting set of particles. This assumption excludes half-
progression half-interaction cases where two particles share a part of their image.

Intuitively, the update function associate to each particle at time t (given as a coordinate in a
configuration) its set of images at time t+ 1 under the action of the cellular automaton. This
image can be one particle if the particle simply persists, but also ∅ if it disappears or many
particles. Particles that interact share the same image.

The four hypotheses ensure that the update function accurately describe the time evolution
of the particles.

Notice that since the factor and update function are locally defined, all these conditions can
be checked in an automatic manner by simple enumeration of patterns up to a certain length.

In the context of a fixed particle system for F , we use shorthands for the composition of
the update function, defined inductively:

φt(x, k) =
⋃

k′∈φ(x,k)
φt−1(F (x), k′) and φ−1 ◦ φ(x, k) = {k′ ∈ Z | φ(x, k′) = φ(x, k)}.

If φ(x, k) is a singleton, we use “φ(x, k)” instead of “the only member of φ(x, k)” as an abuse
of notation.

We postpone the discussion on how to actually find a particle system in a given cellular
automata to Section 2.1.3. We now look for assumptions on the dynamics of the particles that
let us deduce that some particles disappear asymptotically. Simulations suggest that this is the
case when the particles are forced to collide, and that these collisions are destructive in the
sense that the total number of particles decreases; thus we introduce the notion of coalescence.

Definition 2.1.2 (Coalescence).
Let F : AZ → AZ be a cellular automaton, and (P, π, φ) a particle system for F . This

particle system is coalescent if, for every x ∈ AZ and k ∈ Part(x), the particle has one of two
possible behaviours:

Progression |φ(x, k)| = |φ−1(φ(x, k))| = 1, and π(x)k = π(F (x))φ(x,k)

(the particle persists and its type does not change), or
Destructive interaction |φ(x, k)| < |φ−1(φ(x, k))|

(particles collide and strictly fewer particles are created).

Progressing and interacting particles of a configuration x ∈ AZ are denoted ProgP,π,φ(x)
and InterP,π,φ(x), respectively, and P, π and φ are omitted when the particle system is clear
from the context. k ∈ ProgP,π,φ(x) is the case when we use “φ(x, k)” to mean “the only member
of the singleton φ(x, k)”.

Notice that, regardless of coalescence, we have because of locality |φ(x, k)|+|φ−1(φ(x, k))| ≤
2r + 2, where r is the radius of the update function. The +2 is due to the fact that, if two co-
ordinates are at distance r, the shortest segment containing those points has length r + 1. See
Figure 2.2 for a visual proof.
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x

F (x)

φ−1(φ(x, k))

φ(x, k)

≤ r ≤ r

Figure 2.2: Visual proof that |φ(x, k)|+ |φ−1(φ(x, k))| ≤ 2r + 2.

Even though the main result makes no reference to the speed of a particle, introducing this
notion lets us state a corollary that is easier to use as well as corresponding more clearly to the
intuition.

Definition 2.1.3 (Speed).
Let F be a cellular automata and (P, π, φ) be a particle system for F .
A particle p ∈ P has speed v ∈ Z if for any configuration x ∈ AZ and k ∈ Z such that

π(x)k = p, we have one of the following:

Eventual interaction ∃t, φt(x, k) ∈ Inter(F t(x));
Progression at speed v ∀t, φt(x, k) ∈ Prog(F t(x)) and φt(x, k)− k ∼

t→∞
vt.

2.1.2 A particle-based self-organisation result

We recall Definition 0.1.4: Freq(u, x) stands for the frequency with which the pattern u appears
in the configuration x, and similarly for Freq(S, x) where S is a set of patterns.

We introduce the following notations for all the subsequent proofs. For n ∈ N, let Bn be
the set [−n, n] ⊂ Z. Suppose that F is a cellular automaton AZ → AZ. In the context of a fixed
particle system (P, π, φ), we introduce the densities of particles in a configuration x ∈ AZ:

For p ∈ P, Dp(x) = Freq(p, π(x)) and D(x) = Freq(P, π(x));

DProg(x) = lim sup
t→∞

1
2t+ 1 |Prog(x) ∩Bt| and similarly for DInter(x),

the last two definitions applying only if the particle system is coalescent.
For µ ∈ Mσ−erg(AZ), the lim sup can be replaced by a simple limit in the definition of

frequency for µ-almost all configurations. This implies for example that D(x) = ∑
p∈P Dp(x)

for µ-almost all x.
First of all, the following proposition clarifies how controlling the frequency of interactions

gives us information about the evolution of the density of the different kinds of particles.

Proposition 2.1.1 (Evolution of densities).
Let F : AZ → AZ be a cellular automaton, µ ∈ Mσ−erg(AZ), and (P, π, φ) a coalescent

particle system for F . Then, for µ-almost all x ∈ AZ:

(i) D(F (x)) ≤ D(x)− 1
r+1DInter(x);

(ii) ∀p ∈ P,Dp(F (x)) ≤ Dp(x) +DInter(x).

where r is the radius of the update function φ.
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Proof. (i) By surjectivity of the update function, we have Part(F (x)) = ⋃
k∈Part(x) φ(x, k).

Furthermore, by locality,

∀x ∈ AZ, ∀n ∈ N, Part(F (x)) ∩Bn ⊆
⋃

k∈Part(x)∩Bn+r

φ(x, k)

⊆
⋃

k∈Prog(x)∩Bn+r

φ(x, k) t
⋃

k∈Inter(x)∩Bn+r

φ(x, k).

The second line being obtained by coalescence: since Part(x) = Prog(x) t Inter(x),
particles in F (x) are either images of progressing particles or of interacting particles. By
disjunction:

∀x ∈ AZ,

∣∣∣∣∣∣
⋃

k∈Prog(x)∩Bn+r

φ(x, k)

∣∣∣∣∣∣
= |Prog(x) ∩Bn+r|

and ∀x ∈ AZ,

∣∣∣∣∣∣
⋃

k∈Inter(x)∩Bn+r

φ(x, k)

∣∣∣∣∣∣
≤ r

r + 1

∣∣∣∣∣∣
φ−1


 ⋃

k∈Inter(x)∩Bn+r

φ(x, k)



∣∣∣∣∣∣

≤ r

r + 1 |Inter(x) ∩Bn+2r| .

This first equality is because progressing particles are “one-to-one”. The ratio r
r+1 is

due to the condition of coalescence plus the remark that |φ(x, k)|+ |φ−1(φ(x, k))| ≤ 2r+2.
The last inequality is by locality.

∀x ∈ AZ, |Part(F (x)) ∩Bn| ≤ |Prog(x) ∩Bn+r|+
r

r + 1 |Inter(x) ∩Bn+2r|

Then, passing to the limit:

∀µx ∈ AZ, D(F (x)) ≤ DProg(x) + r

r + 1DInter(x) = D(x)− 1
r + 1DInter(x).

(ii) Similarly, for any particle p ∈ P, one has for all x ∈ AZ and n ∈ N:

{k ∈ Bn | π(F (x))k = p} ⊆
⋃

k∈Part(x)∩Bn+r

φ(x, k) (locality).

For k ∈ Prog(x), if π(F (x))φ(x,k) = p, then by definition of coalescence π(x)k = p. For
µ-almost all x, using Part(x) = Prog(x)t Inter(x), we conclude that Dp(F (x)) ≤ Dp(x) +
Dinter(x) by passing to the limit.

We state our main result. A simple version (Corollary 2.1.3) states that in a coalescent
particle system with a σ-ergodic initial measure, if all particles can be assigned a speed, then
only particles with one fixed speed can remain asymptotically. The more general result is
designed to handle more difficult cases such as particles performing random walks, as we can
see on the last example of Section 2.1.4.

Definition 2.1.4 (Clashing).
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Let F : AZ → AZ be a cellular automaton, (P, π, φ) a coalescent particle system for F , and
P1 and P2 two subsets of P. We say that P1 clashes with P2 µ-almost surely if, for every
n ∈ N∗ and µ-almost all x ∈ AZ,

π(x)0 ∈ P1 and π(x)n ∈ P2 =⇒ ∃t ∈ N, φt(x, 0) ∈ Inter(F t(x)) or φt(x, n) ∈ Inter(F t(x))

The intuition behind clashing particles in the following: if two clashing particles are present,
then they end up interacting (almost surely) and thus decreasing the global frequency of par-
ticles. This is why they cannot both persist asymptotically. Note that clashing is oriented left
to right: particles with speed +1 clash with particles of speed -1, but the converse is not true.

Theorem 2.1.2 (Main result).
Let F : AZ → AZ be a cellular automaton, µ an initial σ-ergodic measure and (P, π, φ)

a coalescent particle system for F where P can be partitioned into sets P1 . . .Pn such that,
for every i < j, Pi clashes with Pj µ-almost surely.

Then all particles appearing in the µ-limit set belong to the same subset, i.e. there
exists a i such that

∀p ∈ P, p ∈ L(π(Λµ(F )))⇒ p ∈ Pi.
If furthermore there exists a j such that Pj clashes with itself µ-almost surely, then

this set of particles does not appear in the µ-limit set, i.e.

∀p ∈ P, p ∈ L(π(Λµ(F )))⇒ p /∈ Pj .

Corollary 2.1.3 (Main result - version with speedy particles).
Let F : AZ → AZ be a cellular automaton, µ an initial σ-ergodic measure and (P, π, φ)

a coalescent particle system for F .
If each particle p ∈ P has speed vp ∈ R, then there is a speed v ∈ R such that:

∀p ∈ P, p ∈ L(π(Λµ(F )))⇒ vp = v.

Proof of Theorem 2.1.2. Let i = 1, j = 2 for clarity and assume there are two par-
ticles p1 ∈ P1, p2 ∈ P2 appearing in L(π(Λµ(F ))). By definition, this means that
π∗F t∗µ([pi]) 9

t→∞
0 for i ∈ {1, 2}.

For all x ∈ AZ, (D(F t(x)))t∈N is a decreasing sequence of positive reals. For all t ∈ N,
by Birkhoff’s ergodic theorem (Corollary 0.1.5) applied to π∗F t∗µ, we have for µ-almost all x
D(F t(x)) = π∗F t∗µ([P]). Therefore, for µ-almost all x, (D(F t(x)))t∈N = (π∗F t∗µ([P]))t∈N
and therefore π∗F t∗µ([P]) −→

t→∞
d∞ ≥ 0.

For x ∈ AZ, denote DPi(x) = Freq(Pi, π(x)). By the first point of Proposition 2.1.1,
we can see that for µ-almost all x ∈ AZ,

∑

t∈N
DInter(F t(x)) ≤ (r + 1)


∑

t∈N
D(F t+1(x))−D(F t(x))


 ≤ (r + 1)(D(x)− d∞) < +∞.
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Again by Birkhoff’s theorem, (DPi(F t(x)))t∈N = (π∗F t∗µ([Pi]))t∈N for µ-almost all x. By
the second point of Proposition 2.1.1,

For i ∈ {1, 2}, sup
n∈N
|DPi(F t+n(x))−DPi(F t(x))| ≤

∞∑

n=0
DInter(F t+n(x))→ 0.

Thus π∗F t∗µ([Pi]) is a Cauchy sequence and admits a limit di 6= 0.

Since clashing particles are present with positive frequency, they generate interactions
that decrease the global density of particles. We will reach a contradiction with the fact
that the global density tends to a limit.

Fix ε < d1·d2
2r+5 and T large enough such that for t ≥ T, π∗F t∗µ([P]) − d∞ < ε and

|π∗F t∗µ([Pi]) − di| < ε for i ∈ {1, 2}. By Birkhoff’s ergodic theorem (Corollary 0.1.6)
applied on π∗F T∗ µ, we have:

1
K

K∑

k=0
π∗F T∗ µ ([p1]0 ∩ [p2]k) −→

K→∞
π∗F T∗ µ([p1]) · π∗F T∗ µ([p2]),

and π∗F T∗ µ([p1]) ·π∗F T∗ µ([p2]) ≥ d1 ·d2−(d1 +d2−ε)ε ≥ d1 ·d2−2ε. In particular, one can
find a k such that π∗F T∗ µ([p1]0 ∩ [p2]k) > d1 · d2 − 3ε. By Birkhoff’s theorem, this means
that words of Vk = p1(P ∪ {0})k−1p2 ⊂ (P ∪ {0})∗ have frequency at least d1 · d2 − 3ε in
F T (x), for µ-almost all x ∈ AZ.

Since P1 and P2 clash µ-almost surely, any occurrence of Vk yields an interaction:

∀µx ∈ AZ, D(F T (x))− d∞ ≥
1

r + 1

∞∑

t=T
DInter(F t(x)) Proposition 2.1.1(i)

≥ 1
2r + 2Freq(Vk, F T (x)) P1 and P2 clash µ-almost surely

≥ 1
2r + 2(d1 · d2 − 3ε) > ε,

which is a contradiction with the definition of ε.

Proof of Corollary 2.1.3. Consider the set of speeds {vp : p ∈ P} and order it as v1 >
v2 > · · · > vn. Now partition the set of particles into (Pvi)0≤i≤n where Pvi is the set of
particles with speed vi, and apply the theorem.

We only need to show that for any i < j, Pvi clashes with Pvj µ-almost surely. Let
pi ∈ Pvi and pj ∈ Pvj , and x ∈ AZ such that π(x)0 = pi and π(x)n = pj for some n ∈ N∗.
If both particles satisfy the second property in the definition of speed (Progression at
speed v), then for some t large enough we have φt(x, 0) > φt(x, n), which is forbidden by
coalescence since two particles in progression cannot cross. Thus at some time t we have
either φt(x, 0) ∈ Inter(F t(x)) or φt(x, n) ∈ Inter(F t(x)).
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2.1.3 Defects

Before giving a series of examples where this result can be used to describe the typical asymp-
totic behaviour of a cellular automaton, we present the formalism introduced by Pivato in [Piv07a,
Piv07c] that defines particles as defects with respect to a F -invariant subshift Σ. Indeed, this
formalism gives us an easier way to find the particle systems in our examples.

Intuitively, the F -invariant subshift describes the homogeneous regions that persist under
the action of F in the space-time diagram, and defects are the borders between these regions.
This allows us to define P and π in a way that corresponds to the intuition, even though it
gives no information on the dynamics (update function φ).

General definitions

For a cellular automaton F , consider Σ a F -invariant subshift. The defect field of x ∈ AZ with
respect to Σ is defined as:

FΣ
x :

Z → N ∪ {∞}
k 7→ max

{
n ∈ N : xk+[−bn2 c,d

n
2 e] ∈ Ln(Σ)

} ,

where the result is possibly 0 or∞ if the set is empty or infinite. Intuitively, this function returns
the size of the largest word admissible for Σ centred on a cell. A defect in a configuration x
relative to Σ is a local minimum of FΣ

x . Then the interval [k, l] between two defects forms a
homogeneous region in the sense that x[k+1,l] ∈ L(Σ).

However, it is not true that we can always make a correspondence between defects and a
finite set of words (forbidden patterns), so as to obtain a finite set of particles and a factor.
This is the case only when the set of forbidden patterns is finite, that is, when Σ is a SFT. In
this case, a defect corresponds to the centre of the occurrence of a forbidden word. This is a
limitation of our result.

The examples given in Figure 2.1 suggest that defects can usually be classified using one of
these approaches:

• Regions correspond to different subshifts and defects behave according to their surround-
ing regions (interfaces - e.g. cyclic automaton);

• Regions correspond to the same periodic subshift and defects correspond to a “phase
change” (dislocations - e.g. rule 184 automaton).

Interfaces

Let Σ be a SFT and assume Σ can be decomposed as a disjoint union Σ1 t · · · t Σn of F -
invariant σ-transitive SFTs (the domains). The intuition is that between two defects, each
region belongs to the language of only one of the domains, and we can classify defects ac-
cording to which domain the regions surrounding them on the left and the right correspond
to. Since each domain is F -invariant, this classification is conserved under the action of F for
non-interacting defects.

Formally, since the different domains (Σk)k∈[1,n] are disjoint SFTs, there is a length α > 0
such that (Lα(Σk))k∈[1,n] are disjoint (if two subshifts share arbitrarily long words, they share
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a configuration by closure). In particular, if u ∈ Lα(Σ), then there is a unique k such that
u ∈ L(Σk): we say that u belongs to the domain k. Thus, for a given configuration, we can
assign a choice of a domain to each homogeneous region between two consecutive defects,
and this choice is unique if this region is larger than α.
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Figure 2.3: Interfaces between monochromatic domains, marked by slanted patterns. Red lines
show the visual intuition of a domain change.

We call these defects interface defects and we can classify them according to the domain
of the surrounding regions. Let P = {pij : (i, j) ∈ [1, n]2} be the set of particles. Define the
factor π : AZ → (P ∪ {0})Z of order max(r, 2α), where r is the radius of Σ, in the following
way. For x ∈ AZ and k ∈ Z:

• if xk+[−b r2 c,d
r
2 e] ∈ L(Σ), π(x)k = 0;

• else, let
u1 = x[k−m,k] where m = max{n ≤ α : x[k−n,k] ∈ L(Σ)}
u2 = x[k+1,k+m] where m = max{n ≤ α : x[k+1,k+m] ∈ L(Σ)}
di a domain to which ui belongs (i ∈ {1, 2})

and put π(x)k = pd1d2 .

Notice that the domain choice is unique when domains are larger than α cells; otherwise,
there may be a choice (arbitrary, or fixed beforehand).

Dislocations

Contrary to interface defects that mark a change between languages of different SFT, disloca-
tion defects mark a “change of phase” inside a single SFT. We call these defects dislocation
defects.

Let Σ be a σ-transitive SFT of order r > 1. We say that Σ is P -periodic if there exists a
partition V1, . . . , VP of Lr−1(Σ) such that

a1 · · · ar ∈ Lr(Σ) ⇔ ∃i ∈ Z/PZ, a1 · · · ar−1 ∈ Vi and a2 · · · ar ∈ Vi+1.

The period of Σ is the maximal P ∈ N such that Σ is P -periodic. For example, the orbit of a
finite word u ∈ A∗, defined as {σk(∞u∞) : k ∈ Z} is a periodic SFT of period less than |u|.

We thus associate to each x ∈ Σ its phase ϕ(x) ∈ Z/PZ such that x[0,r−2] ∈ Vϕ(x). Obvi-
ously, ϕ(σk(x)) = ϕ(x) + k mod p. For x ∈ AZ, we say that an homogeneous region [a, b] (i.e.
a region such that x[a,b] ∈ Σ) is in phase k if ∃y ∈ Σ, ϕ(y) = k, x[a,b] = y[a,b]. If b − a > r − 2,
the phase of a region is unique and means x[a,a+r−2] ∈ Vk+a mod p.

As we can see in Figure 2.4, the finite word corresponding to a defect (here 00 or 11) does
not depend only on the phase of the surrounding region but also on the position of the defect.
More precisely, since ϕ(σ(x)) = ϕ(x) + 1, a defect in position j with a region in phase f to
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Figure 2.4: Dislocations in the checkerboard subshift (P = 2), marked by slanted patterns.
Red lines show the visual intuition of a change of phase, with the surrounding local phases.

its left and a defect in position 0 with a region in phase f + j mod P to its left “observe” the
same finite word to their left.

Therefore, we define for each defect its local phases ϕ([i, j])+j mod P (left) and ϕ([j, k])+
j mod P (right), where j is the position of the defect and [i, j] and [j, k] are the surrounding
homogeneous regions.

Now we classify the defects according to the local phase of the surrounding regions. Let
P = {pij : (i, j) ∈ Z/PZ2} be the set of particles. Since defects correspond to the centre
of occurrences of forbidden words and the phase of a region can be locally distinguished, the
factor π : AZ → (P ∪{0}) of order 2r− 2 is defined exactly as in the interface case. The choice
of local phase is unique if the region is larger than r − 1 cells.

In the general case, those two formalisms can be mixed by fixing a decomposition Σ =⊔
i∈AΣi where some of the Σi have nonzero periods. We can classify defects according to

the domains and local phase of the surrounding regions in a similar manner. Except for ar-
bitrary choices for small regions, obtaining the set of particles and the factor from the SFT
decomposition can be done in an entirely automatic way.

2.1.4 Examples

Rule 184

We consider the “traffic” automaton (rule #184). This automaton has been very well studied,
especially in the case of initial Bernoulli measures [BF95, BF05]. Even for more general prob-
ability measures, the results we present here are not new [KM00]; we present it as a simple
case to better understand the formalism.

Proposition 2.1.4. Let F184 be the traffic automaton and µ ∈Mσ−erg. Then:

µ([00]) > µ([11])⇒ 11 /∈ Λµ(F184);
µ([00]) < µ([11])⇒ 00 /∈ Λµ(F184);
µ([00]) = µ([11])⇒ Λµ(F184) = {∞01∞,∞10∞}.

Proof. We consider the checkerboard SFT Σ = {∞(01)∞,∞(10)∞}, which is 2-periodic
and F184-invariant. Using the dislocation formalism, we define the phases ϕ(∞(01)∞) = 0
and ϕ(∞(10)∞) = 1, obtaining a set of particles defined by their local phases {p01, p10}.
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→

Figure 2.5: Particle system for the traffic automaton.

The corresponding factor of order r = 2 is defined by the local rule:

00 → p01
11 → p10

otherwise → 0
.

Indeed, consider x ∈ AZ with a defect x01 = 00. The phase of the 0 in position 0 is 0
and the phase of the 0 in position 1 is 1, so this corresponds to a particle p01. Changing
the position of the defect would not change the particle since the local phase would be
modified accordingly.

The update function is defined in the intuitive manner: with p01 evolving at speed −1
and p10 at speed +1 and both particles being sent to ∅ in case of collision.

∀x ∈ AZ,∀k ∈ Z, φ(x, k) =





{k + 1} if π(x)k = p10 and π(x)k+1 6= p01 and π(x)k+2 6= p01
{k − 1} if π(x)k = p01 and π(x)k−1 6= p10 and π(x)k−2 6= p10
∅ otherwise (and in particular if π(x)k = 0)

We now check that the particle system satisfies all necessary conditions. To do that, one
should verify that the update function is defined properly, that is, show that for all x ∈ AZ

and k ∈ Z we have:

π(F (x))k+1 = p10 ⇔ π(x)k = p10 and π(x)k+1 6= p01 and π(x)k+2 6= p01,

and similarly for p01. This is tedious due to the high number of cases but can be easily
automated by enumerating all patterns of length 4. The different conditions follow from
this claim:

Locality Obvious by definition of φ.
Surjectivity The (⇒) direction of the claim implies that π(F (x))k+1 = p10 ⇒ π(x)k =

p10 and {k + 1} = φ(x, k). The other cases are similar.
Particle control The first condition is simply the (⇐) direction of the claim. The second

condition is by definition of φ.
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Disjunction For k < k′, to have φ(x, k) > φ(x, k′), the only way would be to have
π(x)k′ = p01, π(x)k = p10 and k′ = k + 1. In that case, by definition, φ(x, k) =
φ(x, k′) = ∅.

Coalescence and speeds Obvious by definition of φ.

Therefore we can apply Corollary 2.1.3 and only one type of particle remains in
Λµ(F184).

Furthermore, since the collisions are of the form p01 + p10 → ∅, it is clear that for all
x ∈ AZ, Dp01(F184(x)) − Dp01(x) = Dp10(F184(x)) − Dp10(x). Therefore, which particle
remains is decided according to whether µ([00]) > µ([11]) or the opposite, both particles
disappearing in case of equality.

n-state cyclic automaton

The n-state cyclic automaton Cn is a particular captive cellular automaton defined on the
alphabet A = Z/nZ by the local rule

cn(xi−1, xi, xi+1) =
{
xi + 1 if xi−1 = xi + 1 or xi+1 = xi + 1;
xi otherwise.

See Figure 2.1 for an example of space-time diagram.

This automaton was introduced by [Fis90b]. In this paper, the author shows that for all
Bernoulli measure µ, the set [i]0 (for i ∈ A) is a µ-attractor iff n ≥ 5. Simulations starting from
a random configuration suggest the following: for n = 3 or 4, monochromatic regions keep
increasing in size; for n ≥ 5, we observe the convergence to a fixed point where small regions
are delimited by vertical lines. We use the main result to explain this observation.

Proposition 2.1.5. Define:

u+ = {ab ∈ A2 : (b− a) mod n = +1};
u− = {ab ∈ A2 : (b− a) mod n = −1};
u0 = {ab ∈ A2 : (b− a) mod n 6= ±1}.

Then, for any measure µ ∈ Mσ−erg((Z/nZ)Z), only one of those three sets may intersect the
language of Λµ(Cn).

If furthermore µ is a Bernoulli measure, then the persisting set can only be u0.

Proof. We consider the interface defects relatively to the decomposition Σ = ⊔
i∈AΣi,

where Σi = {∞i∞}. Σ is a Cn-invariant SFT of order r = 2, and defects are exactly
transitions between colours. Thus we define P = {pab : ab ∈ A2}. One cell is enough to
distinguish between domains (α = 1) and we obtain a factor π of order 2 defined by the
local rule:

A2 → P ∪ {0}
a · a 7→ 0
a · b 7→ pab

for all a, b ∈ A.
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Simulations suggest that pab evolves at constant speed +1 if ab ∈ u+, −1 if ab ∈ u− and
0 if ab ∈ u0. Particles progress at their assigned speed unless they meet another particle,
in which case they collide and disappear. We group together the particles of same speed,
writing p+ = {pab : ab ∈ u+} and p− and p0 similarly. Formally, for x ∈ AZ and k ∈ Z
the update function is defined as:

φ(x, k) =





{k + 1} if π(x)k ∈ p+ and π(x)k+1 /∈ p0 ∪ p− and π(x)k+2 /∈ p−;
{k − 1} if π(x)k ∈ p− and π(x)k−1 /∈ p0 ∪ p+ and π(x)k−2 /∈ p+;
{k} if π(x)k ∈ p0 and π(x)k+1 /∈ p− and π(x)k−1 /∈ p+;
∅ otherwise (and in particular if π(x)k = 0).

As previously, checking that this particle system satisfies all conditions necessary to apply
Corollary 2.1.3 is tedious but can be automated, since it consists mostly in checking that
the update function actually describes the dynamics of the particles on all words of length
6. Since [p+] = π([u+]) and so on, we obtain the result.

If µ is a Bernoulli measure: Consider the “mirror” application γ((ak)k∈Z) = (a−k)k∈Z.
γ is continuous, and thus measurable. We have µ(γ([u])) = µ([u−1]) = µ([u]), where
(u1 · · ·un)−1 = un · · ·u1. But π(x)k ∈ p+ ⇔ π(γ(x))−k ∈ p−, and conversely; since
F ◦ γ = γ ◦ F , all measures F t∗µ are γ-invariant, and thus no particle in p+ or p− can
persist in L(π(Λµ(F ))) (since otherwise, the symmetrical particle would persist too).

For small values of n or particular initial measures, this proposition can be refined in the
following manner:

n = 3 p0 is empty. Given the combinatorics of collisions, where a particle in p+ can only
disappear by colliding with a particle in p−, we see that particles in p+ persist if and only
if π∗µ([p+]) > π∗µ([p−]), and symmetrically. In the equality case (in particular, for any
Bernoulli measure), no defect can persist in the µ-limit set, which means that Λµ(F ) is a
set of monochromatic configurations.

n = 4 If µ is a Bernoulli measure, the result of [Fis90b] shows that [i]0 cannot be a µ-attractor
for any i. In other words, for µ-almost all x, F t(x) does not converge, which means
that particles in p+ or p− cross the central column infinitely often (even though their
probability to appear tends to 0). This could not happen if particles in p0 were persisting
in π(Λµ(F )), and thus Λµ(F ) is a set of monochromatic configurations.

n ≥ 5 If µ is a nondegenerate Bernoulli measure, the result of [Fis90b] shows that [i]0 is a
µ-attractor for all i. This means that some particles in p0 persist in π(Λµ(F )), and any
configuration of Λµ(F ) contains only homogeneous regions separated by vertical lines.

One-sided captive cellular automata

We consider the family of captive cellular automata F : AZ → AZ of neighbourhood {0, 1},
which means that the local rule f : A{0,1} → A satisfies f(a0a1) ∈ {a0, a1}. See Figure 2.1 for
an example of space-time diagram.
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Proposition 2.1.6. Let F be a one-sided captive automaton and µ ∈Mσ−erg(AZ). Define:

u+ = {ab ∈ A2 : a 6= b, f(a, b) = a}
u− = {ab ∈ A2 : a 6= b, f(a, b) = b}

Then either u+ /∈ L(Λµ(F )) or u− /∈ L(Λµ(F )).

If moreover, for all a, b ∈ A, the local rule satisfies f(ab) = f(ba) and µ is a Bernoulli
measure, then Λµ(F ) ⊆ {∞a∞ : a ∈ A} (no particle remains).

Proof. We consider the interface defects relative to the decomposition Σ = ⊔
i∈AΣi where

Σi = {∞i∞} and obtain the same particles P and factor π as the n-state cyclic automata.
pab evolve at speed −1 if f(a, b) = b and 0 if f(a, b) = a, and we define p−1 and p0
accordingly. The update function is defined as follows:

∀x ∈ AZ, ∀k ∈ Z, φ(x, k) =





{k} if π(x)k ∈ p0 and π(x)k+1 /∈ p−1
{k − 1} if π(x)k ∈ p−1 and π(x)k−1 /∈ p0
∅ otherwise

As in the two previous examples, we can check that the update function describes the
particles dynamics on all words of length 3, and deduce the properties of locality, growth,
surjectivity, coalescence and speed from there. We then apply the main result.

If µ is a Bernoulli measure: Then µ is invariant under the mirror application γ and
F ◦ γ = γ ◦ F by hypothesis. As in the previous example, we conclude that no particle
can persist in Λµ(F ).

An automaton performing random walks

Let F be defined on the alphabet A = (Z/2Z)2 on the neighbourhood {−2, . . . , 2} by the local
rule f defined as follows:

f : (a−2, b−2), . . . , (a2, b2) 7→ (a−2+a2, c) where c = 1 if (a−1, b−1) = (0, 1) or (a0, b0) = (1, 1);
0 otherwise.

Intuitively, the first layer performs addition mod 2 at distance 2, while the ones on the second
layer behave as particles, moving right if the first layer contains a 1 and not moving if it
contains a 0. Two colliding particles simply merge.

Proposition 2.1.7. Let ν ∈Mσ−erg((Z/2Z)Z) and µ = λ×ν, where λ is the uniform measure
on (Z/2Z)Z.

Then F t∗µ −→t→∞ λ× δ̂0.

Proof. Pivato’s formalism is not necessary here. Consider the set of particles P = {1} and
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Figure 2.6: Automaton performing random walks iterated on the uniform measure. � is a
particle, while the second layer is represented by � (0) or � (1).

the factor π that is the projection on the second layer. The update function is defined as:

∀x ∈ AZ, ∀k ∈ Z, φ(x, k) =





{k + 1} if xk = (1, 1);
{k} if xk = (0, 1);
∅ otherwise.

Intuitively, each particle performs a random walk with independent steps and no bias.
Thus Corollary 2.1.3 is not sufficient to conclude, and we need to use the general result of
Theorem 2.1.2 by proving that {1} clashes with itself.

Let k ∈ N. We prove that, when x is chosen according to µk the conditional measure
of µ relative to the event π(x)0 = π(x)k = 1, φt(x, k)− φt(x, 0) performs an unbiased and
independent random walk with a “death condition” on 0 (particle collision).

Writing (atn, btn) = F t(x)n, we have at0 = ∑t
n=0

(n
t

)
a0
−2t+4n mod 2 by straightforward

induction. Consider the evolution of φt(x, k)− φt(x, 0) at each step:

δt(x) = (φt+1(x, k)− φt(x, k))− (φt+1(x, 0)− φt(x, 0))
= atφt(x,k) − atφt(x,0)

=
(

t∑

n=0

(
n

t

)
a0
φt(x,k)−2t+4n mod 2

)
−
(

t∑

n=0

(
n

t

)
a0
φt(x,0)−2t+4n mod 2

)
.

Notice that:

• a0
φt(x,k)+2t has coefficient 1 in the left-hand term and 0 in the right-hand term;

• a0
φt(x,0)−2t has coefficient 0 in the left-hand term and 1 in the right-hand term.

Because the particle cannot move by more than one cell per step, these variables did not
appear in the expression of any previous δt′(x), t′ < t. Because the initial measure is
uniform, all variables a0

n are chosen independently and fairly between 0 and 1. Since both
terms are sums of variables taking values in Z/2Z, this is enough to show that the terms
are independent of each other, independent from all previous δt′(x), t′ < t, and are fairly
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distributed between 0 and 1. Therefore δt(x) takes value 0 with probability 1
2 , -1 with

probability 1
4 and +1 with probability 1

4 , independently from all previous δt′ .

Therefore φt(x, k)−φt(x, 0) performs an unbiased and independent random walk, which
implies that µk({x : ∀t, φt(x, k) > φt(x, 0)}) = 0 (standard result in one-dimensional
random walks). This shows that the particles almost surely end up being in interaction (by
definition of coalescence), and therefore {1} clashes with itself µ-almost surely. Applying
the theorem, we find that no particle can remain in Λµ(F ).

Therefore, if we write πi the factor projecting on the i-th coordinate, π2∗F t∗µ → δ̂0.
Since the addition mod 2 automaton is surjective, it leaves the uniform measure invariant:
see Theorem 3.1.1. Therefore π1∗F t∗µ = λ, and we conclude that F t∗µ→ λ× δ̂0.

2.1.5 Probabilistic cellular automata

This approach can be adapted to non-deterministic cellular automata, and in particular proba-
bilistic cellular automata. We use here a generalised version of the standard definition.

Definition 2.1.5.
Let A be a finite alphabet and N ⊂ Z. We define the application that applies a bi-infinite

sequence of local rules to a configuration componentwise:

ΦN : (AAN )Z ×AZ → AZ

((fi)i∈Z, (xi)i∈Z) 7→ (fi((xi+r)r∈N )i∈Z.

Definition 2.1.6 (Generalised probabilistic cellular automaton).
A generalised probabilistic cellular automaton F̃ on the alphabet A with neighbour-

hood N is defined by a measure on bi-infinite sequence of local rules ν ∈Mσ((AAN )Z).
For a configuration x ∈ AZ, F̃ : AZ →Mσ(AZ) is then defined as:

For any borelian U, F̃ (x)(U) =
∫

(AAN )Z
1U (ΦN (f, x))dν(f).

A deterministic cellular automaton F defined by a local rule f corresponds in this formalism
to a Dirac ν = δ̂f (in which case the image measure is a Dirac on the image configuration), and
usual probabilistic cellular automata correspond to the case where ν is a Bernoulli measure;
in other words, the local rule that applies at each coordinate is drawn independently among a
finite set of local rules AN → A.

Definition 2.1.7 (Action on the space of measures).
A generalised probabilistic cellular automaton defined by a measure ν ∈ Mσ((AAN )Z)

extends naturally to an action F̃∗ :Mσ(AZ)→Mσ(AZ) by defining

F̃∗µ(U) =
∫

AZ

∫

(AAN )Z
1U (ΦN (f, x))dν(f)dµ(x).

The µ-limit measures set of F̃ , V(F̃ , µ), is the set of adherence values of the sequence (F̃∗
t
µ)t∈N,

and the µ-limit set can be defined as

Λµ(F̃ ) =
⋃

η∈V(F̃ ,µ)
supp η
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The definitions of a particle system extend directly, except that the update function also
depends on the choice of the local rules as well as on the configuration. Therefore we write
φ(x, n, (fi)) instead of φ(x, n), where x ∈ AZ, n ∈ Z and (fi) ∈ (AAN )Z, and the composition
notation is simplified as follows (inductively):

φt
(
x, n, (fk)0≤k<t

)
=

⋃

m∈φ(x,n,f1)
φt−1

(
ΦN (f t−1, x),m, f t−1

)
,

where each f t ∈ (AAN )Z is a bi-infinite sequence of local rules.
A particle system is said to be coalescent ν-almost surely if the coalescence conditions

hold for all x ∈ AZ and ν-almost every f ∈ (AAN )Z, and a particle p ∈ P has speed v ν∞-
almost surely if the speed conditions hold for ν∞-almost every sequence (f t)t∈N, where ν∞

is the product measure (i.e. each f t is drawn independently according to ν). The clashing
conditions are extended similarly.

Theorem 2.1.8 (Main result - probabilistic automata).
Let F̃ : AZ →Mσ(AZ) be a probabilistic cellular automaton defined by ν ∈Mσ((AAN )Z),

µ an initial σ-ergodic measure and (P, π, φ) a ν∞-almost surely coalescent particle system
for F̃ where P can be partitioned into sets P1 . . .Pn such that, for any i < j, Pi clashes
with Pj µ, ν∞-almost surely.

Then all particles appearing in the µ-limit set belong to the same subset, i.e. there
exists a i such that

∀p ∈ P, p ∈ L(π(Λµ(F )))⇒ p ∈ Pi.
If furthermore there exists a j such that Pj clashes with itself µ, ν∞-almost surely, then
this set of particles does not appear in the µ-limit set, i.e.

∀p ∈ P, p ∈ L(π(Λµ(F )))⇒ p /∈ Pj .

Corollary 2.1.9 (Main result with speedy particles - probabilistic automata).
Let F̃ : AZ → AZ be a probabilistic cellular automaton defined by ν ∈ Mσ((AAN )Z),

µ an initial σ-ergodic measure and (P, π, φ) a ν∞-almost surely coalescent particle system
for F̃ . Assume that each particle p ∈ P has speed vp ∈ R ν∞-almost surely, then there is
a speed v ∈ R such that:

∀p ∈ P, p ∈ L(π(Λµ(F )))⇒ vp = v.

The proof of these statements are exactly the same as the proofs of Theorem 2.1.2 and
Corollary 2.1.3, except that every statement in the proof holds ν∞-almost surely.

Example: Fatès’ density classifying candidate

For any real p ∈ [0, 1], consider the probabilistic automaton F̃ defined on the neighbourhood
N = {−1, 0, 1} by local rules drawn independently between the traffic rule (rule #184, prob-
ability p) and the majority rule (rule #232, probability 1 − p). This corresponds to the case
where ν is a Bernoulli measure.
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This automaton was introduced by Fatès in [Fat13] as a candidate to solve the density
classification problem. Even though the following result does not answer this question, it is
new to our knowledge.

Proposition 2.1.10.
Let µ ∈Mσ−erg(AZ) and p be a real in [0, 1].
Then Λµ(F̃ ) ⊂ {∞0∞,∞1∞,∞(01)∞,∞(10)∞}. As a consequence, any limit measure of

(F̃ t∗µ)t∈N is a convex combination of δ̂0, δ̂1 and δ̂01.

p = 1
4 p = 1

2 p = 3
4

Figure 2.7: Dynamics of the traffic-majority automaton iterated on the initial measure
Ber(3

5 ,
2
5). Density classification is more efficient with p close to 1.

Proof. The cases p = 0, 1 correspond to deterministic automata and can be treated easily.

The visual intuition suggests to consider interface defects according to the decompo-
sition Σ0 t Σ1 t Σ2, where Σ0 = {∞0∞}, Σ1 = {∞1∞} (monochromatic subshifts) and
Σ2 = {∞(01)∞,∞(10)∞} (checkerboard subshift), since those SFTs are invariant under
the action of both rules. The set of particles would be P = {pi,j : i 6= j ∈ {0, 1, 2}}.

However, as Figure 2.8 shows, the particle p10 can “explode” and give birth to two
particles p12 and p20, contradicting the condition of coalescence. To solve this problem,
we tweak the particle system by replacing each particle p10 by one particle p12 and one
particle p20.
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“explosion”

p12 p20

p02 + p20 = ∅

p02 + p21 = p01

p01

Figure 2.8: Fatès’ traffic-majority probabilistic automaton, with p = 3
4 .

The corresponding factor π is defined on the neighbourhood {0, . . . , 3} by the local
rule:

0011 7→ p01 _110 7→ p12
0010 7→ p02 _100 7→ p20
1011 7→ p21 otherwise 7→ 0

where the wildcards _ can take both values.
In the absence of interactions, the update function φ(x, k, f) can be defined in the

following manner.
Regardless of the rule that is applied, p01, p02 and p21 move at a constant speed 0, +1

and −1 respectively. A particle p12 move at speed −1 if rule #184 is applied at its position
and at speed +1 otherwise (independent random walk with bias 1−2p), except if a particle
p20 prevents its movement to the right, in which case it does not move. The particle p20
behaves symmetrically. Furthermore all interactions are of the form pij + pji → ∅ or
pij + pjk → pik (when (i, j, k) 6= (1, 2, 0), by the last remark). A formal definition of
the update function would be tedious, but it is entirely described by these remarks. The
various conditions of locality, disjunction, particle control, surjectivity and coalescence are
proved similarly to the previous examples.

Assume p ≥ 1
2 . We show that no particle can remain asymptotically by applying

the main result on the sets (Pi)0≤i≤4: {p02}, {p20}, {p01}, {p12} and {p21}. We need
only to show the clashes relative to the second and fourth sets since all other clashes are
consequences of the speed of these particles.

Let k ∈ N and x be such that π(x)0 = p02 and π(x)k ∈ {p12, p20}. Since p02 progresses
at speed 1, the distance φt(x, k)−φt(x, 0) cannot increase, and it decreases by at least one
with probability p (respectively 1− p). It is clear that the particles end up in interaction
ν∞-almost surely. Showing that p12 and p20 clash with p21 is symmetric.

Let x be such that π(x)0 = p20 and π(x)k = p01. As long as there are no interactions,
the distance φt(x, k)− φt(x, 0) = −φt(x, 0) performs an independent random walk of bias
2p− 1, where a increasing step is sometimes replaced by a constant step. Such a random
walk reaches 0 ν∞-almost surely, which shows that the particles end up in interaction.
The clashes between p01 and p12, and between {p20} and {p12}, are proved in a similar
manner. The same proof holds for p ≤ 1

2 by exchanging the roles of p20 and p12.

Applying Theorem 2.1.8, we conclude that only one particle pij can remain in the
µ-limit set. However, if we consider Vk = {x ∈ Λµ(F ) : π(x)k = pij}, we notice that
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configurations in Vk are of the form y · z, where y ∈ A]−∞,k] is admissible for Σi and
z ∈ A[k+1,+∞[ is admissible for Σj ; in particular, they contain only one particle, and the
(Vk)k∈Z are disjoint. By σ-invariance, for any measure η ∈ V(F̃ , µ), η(Vk) is independent
from k and η (⋃k Vk) = ∑

k η(Vk) ≤ 1. Consequently, η(Vk) = 0, which means Vk /∈
supp(η), and we conclude that no particle remain in the µ-limit set. In other words,
Λµ(F ) ⊂ Σ0 ∪ Σ1 ∪ Σ2.
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Section 2.2

Particle-based organisation:
quantitative results

For some cellular automata with simple defect dynamics, the previous results can be refined
with a quantitative approach: that is, to determine the asymptotic distribution of random
variables related to the particles. In [KFD11], Kůrka, Formenti and Dennunzio considered
Tn(x), the entry time after time n on the initial configuration x, which is the waiting time
before a particle appears in a given position after time n. They restricted their study to a gliders
automaton, which is a cellular automaton on 3 states: a background state and two particles
evolving at speeds 0 and -1 that annihilate on contact. Thus, we have one entry time for each
type of particle (T+

n (x) and T−n (x)). When the initial configuration is drawn according to the
Bernoulli measure of parameters (1

2 , 0,
1
2), which means that each cell contains, independently,

a particle of each type with probability 1
2 , they proved that:

∀α ∈ R+, µ

(
T−n (x)
n

≤ α
)
−→
n→∞

2
π

arctan
√
α.

They also called to develop formal tools in order to be able to handle more complex automata,
starting with the (−1, 1) symmetric case.

In Section 2.2.2, we extend this result to allow arbitrary values for the particle speeds v−
and v+, and relax the conditions on the initial measure to some α-mixing conditions. Then,
when v− < 0 and v+ ≥ 0, we have:

∀x ∈ R+, µ

(
T−n (x)
n

≤ α
)
−→
n→∞

2
π

arctan
(√

−v−α
v+ − v− + v+α

)
,

and symmetrically if we exchange + and −. The proof relies on the fact that the behaviour of
gliders automata can be characterised by some random walk process; this idea was introduced
by Belitsky and Ferrari in [BF95] and was already used in [KM00] and [KFD11]. In our case,
a particle appearing in a position corresponds to a minimum between two concurrent random
walks. Under α-mixing conditions, we rescale this process and approximate it with a Brownian
motion. Thus we obtain the explicit asymptotic distribution of entry times.

This method, consisting in associating a random walk to each gliders automata and study-
ing this random walk using scale invariance, is not limited to this particular conjecture con-
cerning entry times. Indeed, we see in the next two sections that it can be used to study the
asymptotic behaviour of two other, arguably more natural, parameters: the particle density at
time t and the rate of convergence to the limit measure. However, we obtain only an upper
bound instead of an explicit asymptotic distribution. There is no doubt this method can be
adapted to other parameters in a similar way.



106 CHAPTER 2. PARTICLES IN CELLULAR AUTOMATA

Furthermore, these results can be extended to other automata with similar behaviour, such
as those in Figure 2.1, by factorising them onto a gliders automaton. This point is discussed in
Section 2.2.6.

2.2.1 Gliders automata and random walks

Remember that, as an abuse of notation, we write [a, b] instead of {a, . . . , b} ⊂ Z when the
context is clear.

Definition 2.2.1 (Gliders automata).
Let v− < v+ ∈ Z. The (v−, v+)-gliders automaton (or GA) G is the cellular automaton

of neighbourhood [−v+,−v−] defined on the alphabet A = {−1, 0,+1} by the local rule:

f(x−v+ . . . x−v−) =





+1 if x−v+ = +1 and ∀N ≤ −v−,
∑N
n=−v++1 xn ≥ 0

−1 if x−v− = −1 and ∀N ≥ −v+,
∑−v−−1
n=N xn ≤ 0

0 otherwise.

In all the following, A = {−1, 0,+1} and the diagrams are represented with the convention
� = 0,� = +1,� = −1.

Figure 2.9: Space-time diagram of the (−1, 0)-gliders automaton on a random initial configu-
ration.

Our results apply on automata with simple defects dynamics, namely, automata admitting a
particle system with P = {±1} and whose update function corresponds to a gliders automaton.
We first prove our results for gliders automata before generalising them in Section 2.2.6. Let
us introduce some tools that turn the study of the dynamics of a gliders automaton into the
study of some random walk.

Definition 2.2.2 (Random walk associated with a configuration).
Let x ∈ {−1, 0, 1}Z. Define the partial sums Sx by:

Sx(0) = 0 and ∀k ∈ Z, Sx(k + 1)− Sx(k) = xk.

We extend Sx to R by putting Sx(t) = (dte− t)Sx(btc) + (t−btc)Sx(dte) for t ∈ R. We also
introduce the rescaled process Skx : t 7→ Sx(kt)√

k
.
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This random walk is simpler to study than the space-time diagram of the gliders automaton,
and actually contains the same amount of information, as shown by the following technical
lemmas.

Definition 2.2.3.
Let f : R→ R and U ⊂ R. We define argmin

U
f by:

∀t ∈ U, t = argmin
[t0,t1]

f ⇐⇒ ∀t′ ∈ U\{t}, f(t) < f(t′).

In other words, t realises the strict minimum of f on U ; this point is not always defined.

Lemma 1. Let G be the (v−, v+)-gliders automaton. For all j ∈ Z and n ≥ 1,

j = argmin
[j, j+n]

SG(x) ⇐⇒ j − v+ = argmin
[j−v+, j+n−v−]

Sx,

j = argmin
[j−n, j]

SG(x) ⇐⇒ j − v− = argmin
[j−n−v+, j−v−]

Sx.

Proof. We prove those equivalences by induction on n. At each step, we prove only the
first equivalence, the other one being symmetric.

Base case.

SG(x)(j) < SG(x)(j + 1)⇔ G(x)j = +1

⇔ xj−v+ = +1 and ∀N ≤ −v−,
N∑

t=−v++1
xj+t ≥ 0

⇔ Sx(j − v+) < min
[j+1−v+, j+1−v−]

Sx.

Induction. Assume both equivalences hold for some n ≥ 1.
Suppose j = argmin

[j, j+n+1]
SG(x). In particular j = argmin

[j, j+n]
SG(x), and by induction

hypothesis j − v+ = argmin
[j−v+, j+n−v−]

Sx. We distinguish two cases:

• if Sx(j + n − v− + 1) > Sx(j − v+), then j − v+ = argmin
[j−v+, j+n−v−+1]

Sx and we

conclude;
• otherwise, this means that Sx(j + n − v− + 1) = Sx(j − v+) (the walk can

decrease by at most one at each step), and thus

j + n− v− + 1 = argmin
[j−v++1, j+n−v−+1]

Sx.

By induction hypothesis,

j + n+ 1 = argmin
[j+1, j+n+1]

SG(x),
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and in particular SG(x)(j+n+ 1) < SG(x)(j+ 1). Therefore SG(x)(j+n+ 1) ≤
SG(x)(j), a contradiction with the first assumption.

The converse is proved in a similar manner.

Lemma 2. Let G be the (v−, v+)-gliders automaton. For all j ∈ Z and k ≥ 0,

Gt(x)j = −1⇐⇒ j − v−t+ 1 = argmin
[j−v+t, j−v−t+1]

Sx

Gt(x)j = +1⇐⇒ j − v+t = argmin
[j−v+t, j−v−t+1]

Sx

This is illustrated in Figure 2.10.

Sx

j − k + 1 j + k

a

k

j

Gk(x)j

Figure 2.10: Illustration of Lemma 2. A strict minimum is reached on j − k + 1.

Proof. By induction on t, proving only the first equivalence at each step:

Base case (t = 0). By definition of Sx, Sx(j + 1) < Sx(j)⇔ xj = −1.

Induction. Assume that both equivalences hold for a given itme t. By applying the
induction hypothesis on G(x), Gt+1(x)j = −1⇔ j − v−t+ 1 = argmin

[j−v+t, j−v−t+1]
SG(x)

and we conclude by applying Lemma 1.

2.2.2 Entry times

The main result of Section 2.1 implies that, for any σ-ergodic initial measure µ, ΛG(µ) con-
tains at most one kind of particle, which one depending on whether µ([+1]) > µ([−1]) or the
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T −
n (x)

n
x

Figure 2.11: An entry time for the (-3,1)-gliders automaton.

opposite. When µ([+1]) = µ([−1]), ΛG(µ) only contains the particleless configuration ∞0∞.
In other words, Gt∗µ → δ̂0, which means that the probability of seeing a particle in any fixed
finite window tends to 0 as t→∞.

Definition 2.2.4 (Entry times).
Let v− < 0 ≤ v+ ∈ Z, G the (v−, v+)-GA and x ∈ {−1, 0, 1}Z. We define:

T−n (x) = min{k ∈ N : ∃i ∈ [0, |v−| − 1], Gk+n(x)i = −1},

with T−n (x) =∞ if this set is empty. This is the entry time of x into the set {b ∈ {−1, 0, 1}Z :
∃i ∈ [0, |v−|−1], bi = −1} after time n at position 0. We define T+

n (x) in a symmetrical manner.

The size of the considered window is such that any particle “passing through” the column
0 appears in this window exactly once (See Figure 2.11). Of course entry times for particles of
speed 0 make no sense. From now on, we only consider T− for simplicity, all the results being
valid for T+.

As a consequence of Birkhoff’s ergodic theorem, when µ([−1]) > µ([+1]), −1 particles
persist µ-almost surely and their density converges to a positive number. Therefore:

• µ(T+
n (x) =∞) −→

n→∞ 1;

• ∀α > 0, µ
(
T−n (x)
n ≤ α

)
−→
n→∞ 1,

and symmetrically. This is why we only consider the case µ([−1]) = µ([+1]). Kůrka et al.
proved the following result:

Theorem 2.2.1 ([KFD11]).
For the (−1, 0)-GA (“Asymmetric gliders”) with an initial measure µ = Ber

(
1
2 , 0,

1
2

)
:

∀α > 0, µ
(
T−n (x)
n

≤ α
)
−→
n→∞

2
π

arctan
√
α.

In the same article, they conjectured that this result could be extended to any initial
Bernoulli measure of parameters (p, 1 − 2p, p) for 0 ≤ p ≤ 1

2 by replacing the right-hand
term by 2

π arctan
√

2pα. We will prove that this conjecture is actually incorrect.
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To state our result, we introduce two particular subclasses of Mσ(AZ). We recall the
definition of the α-mixing coefficients of a measure µ ∈Mσ(AZ):

αµ(n) = sup{|µ(A ∩B)− µ(A)µ(B)| : A ∈ B]−∞,0], B ∈ B[n,+∞[}.

Define:

• Ber= the set of Bernoulli measures on {−1, 0,+1}Z and parameters (p, 1−2p, p) for some
0 < p ≤ 1

2 ;

• Mix the set of measures µ ∈Mσ({−1, 0,+1}Z) satisfying:

–
∫
AZ x0 dµ(x) = 0;

– ∑∞
k=0

∫
AZ x0 · xk dµ(x) converges absolutely to a real σ2

µ > 0 (asymptotic variance);

– ∃ε > 0,∑n≥0 αµ(n) 1
4−ε <∞.

In particular, Ber= ⊂Mix.

Theorem 2.2.2 (Main result).
For any (v−, v+)-GA with v− < 0 and v+ ≥ 0 and any initial measure µ ∈Mix,

∀α > 0, µ
(
T−n (x)
n

≤ α
)
−→
n→∞

2
π

arctan
(√

−v−α
v+ − v− + v+α

)
.

Notice that this limit is independent from µ (as long as µ ∈ Mix), disproving the conjecture
when µ ∈ Ber=.

2.2.3 Brownian motion and proof of the main result

The third hypothesis for Mix is chosen so that the large-scale behaviour of the partial sums
Sx(t) can be approximated by a Brownian motion. This invariance principle is the core of our
proofs. The first and second conditions ensures that the Brownian motion obtained this way
have no bias and nonzero variance, respectively.

Definition 2.2.5 (Brownian motion).
A Brownian motion (or Wiener process) B of mean 0 and variance σ2 is a continuous

time stochastic process taking values in R such that:

– B(0) = 0,
– t 7→ B(t) is almost surely continuous,
– B(t2)−B(t1) follow the normal law of mean 0 and variance (t2 − t1)σ2;
– For t1 < t2 ≤ t′1 < t′2, increments B(t2)−B(t1) and B(t′2)−B(t′1) are independent.

See [MP10] for a general introduction to Brownian motion.

Proposition 2.2.3 (Rescaling property).
Let B be a Brownian motion. Then, for any k > 0, t 7→ 1√

k
B(kt) is a Brownian motion

with same mean and variance.
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We now state some invariance principles, which consists in appoximating rescaled ran-
dom walks by Brownian motion. We use a strong version, which guarantees an almost sure
convergence by considering a copy of the process in a richer probability space.

Theorem 2.2.4 ([ZC96], Corollary 9.3.1).
Let X = (Xi)i∈N a family of random variables taking values in {−1, 0, 1}. We denote αX(n)

its α-mixing coefficients defined as:

αX(n) = sup{|P (A ∩B)− P (A)P (B)| : t ∈ N, A ∈ X[0,t], B ∈ X[t+n,+∞[},
where X[a,b] is the sigma-algebra generated by (Xa, . . . , Xb).

Assume that:

(1) ∀i,E(Xi) = 0;
(2) 1

tE
(∑btc

i,j=1Xi ·Xj

)
converges absolutely to some positive real σ2;

(3) ∃ε > 0,∑∞n=1 αX(n) 1
4 +ε.

Then we can define two processes X ′ = (X ′i)i∈N and B on a richer probability space (Ω,P)
such that:

1. X and X ′ have the same distribution;
2. B is a Brownian motion of mean 0, variance σ2;
3. for any ε > 0, ∣∣∣∣∣∣

btc∑

i=1
Xi −B(t)

∣∣∣∣∣∣
= O

(
t

1
4 +ε

)
P-almost surely.

Corollary 2.2.5. Let µ ∈Mix. For any fixed constants q < r ∈ R, we can define a process
X ′ = (X ′i)i∈Z and a family of processes (t 7→ Bn(t))n∈N on a richer probability space (Ω,P)
such that:

1. X ′ has distribution µ;
2. every Bn is a Brownian motion of mean 0 and variance σ2

µ > 0;
3. for any ε > 0, denoting SX′ the piecewise linear function defined by SX′(0) = 0 and
SX′(k + 1)− SX′(k) = X ′k for all k ∈ Z,

∀n ∈ N, sup
t∈[q,r]

∣∣∣∣
SX′(nt)√

n
−Bn(t)

∣∣∣∣ = O
(
n−

1
4 +ε

)
P-almost surely.

Proof. We apply Theorem 2.2.4 on (xi)i∈N, where x has distribution µ. Because µ is
σ-invariant, this is a stationary process. The first and third conditions are satisfied by
definition ofMix. For the second condition,

1
n
E(SX(n)2) = 1

n

∑

0≤i,j≤n
E(xi · xj) −→

n→∞ σ2
µ

by stationarity. We obtain two processes X1 = (X1
i )i∈N and B1 on a richer probability
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space (Ω,P) such that X1 has the same distribution as x, B1 is a Brownian motion of
mean 0, variance σ2

µ, and:

∀ε > 0,

∣∣∣∣∣∣

btc∑

i=1
X1
i −B1(t)

∣∣∣∣∣∣
= O

t→+∞

(
t

1
4 +ε

)
P-almost surely.

Since the variables X1
i take value in {−1, 0, 1}, we have for any t

∣∣∣
∑btc
i=1X

1
i − SX1(t)

∣∣∣ < 1
(a staircase and piecewise linear function having the same values on N). Therefore:

∀ε > 0,
∣∣∣SX1(t)−B1(t)

∣∣∣ = O
t→+∞

(
t

1
4 +ε

)
P-almost surely.

∀ε > 0, ∀n ∈ N,
1√
n

∣∣∣SX1(tn)−B1(tn)
∣∣∣ = O

n→∞

(
n−

1
4 +ε
)
· O
t→∞

(
|t| 14 +ε

)
P-almost surely.

For any r ∈ R2
+, taking the sup for t ∈ [0, r], we obtain:

∀ε > 0,∀n ∈ N, sup
t∈[0,r]

∣∣∣∣∣
SX1(tn)√

n
− B1(tn)√

n

∣∣∣∣∣ = O
n→∞

(
n−

1
4 +ε
)

P-almost surely.

By rescaling property B1
n : t 7→ B1(tn)√

n
is a Brownian motion of same mean and variance

as B1.

To extend the result to negative values, we apply the theorem again to (x−i−1)i∈N,
obtaining a process X2 and a Brownian motion B2 satisfying the same asymptotic bound
on t→ −∞. Joining both parts, we can see that the processX ′ = . . . X2

−2, X
2
−1, X

1
0 , X

1
1 . . .

have distribution µ and Bn : t 7→ B1
n(t) if t ≥ 0, B2

n(t) if t < 0 is a Brownian motion.

For a survey of invariance principles under different assumptions, see [MR12].

Using this last result, we prove the main theorem.

Proof of Theorem 2.2.2.
For any x ∈ {−1, 0, 1}Z, Lemma 2 applied on the column 0 gives:

T−n (x) = min
{
k ∈ N | ∃j ∈ [0,−v−[ , Sx(−v−(n+ k) + j + 1) < min

[−v+(n+k)+j, −v−(n+k)+j]
Sx

}

= min
{
k ∈ N | ∃j ∈ [0,−v−[ , Sx(−v−(n+ k) + j + 1) < min

[−v+(n+k)+j, −v−n]
Sx

}

Note that if this condition is reached on k ∈ N, since Sx is piecewise linear, it is
attained for t as soon as t > k − 1 and reciprocally. Thus:

T−n (x) = inf
{
t ≥ 0 | ∃j ∈ [0,−v−[ , Sx(−v−(n+ t) + j + 2) < min

[−v+(n+t)+j+1,−v−n]
Sx

}



2.2. PARTICLE-BASED ORGANISATION: QUANTITATIVE RESULTS 113

Replacing j by 0 in this expression adds to the infimum a value comprised between 0
and −v−−1

−v− (remember v− < 0). Since the infimum is necessarily an integer, we compensate
by taking the integer part:

T−n (x) =
⌊

inf
{
t ≥ 0 | Sx(−v−(n+ t) + 2) < min

[−v+(n+t)+1,−v−n]
Sx

}⌋

=
⌊

inf
{
t ≥ 0 | Snx

(
−v−

(
1 + t

n

)
+ 2
n

)
< min

[−v+(1+ t
n

)+ 1
n
,−v−]

Snx

}⌋

=
⌊
n · inf

{
t ≥ 0 | Snx

(
−v−(1 + t) + 2

n

)
< min

[−v+(1+t)+ 1
n
,−v−]

Snx

}⌋

Dividing by n, since Snx is
√
n-Lipschitz and t− 1

n ≤
bntc
n ≤ t for all t, n ∈ R× N:

µ

(
min

[−v−,−v−(1+α)]
Snx + 4√

n
< min

[−v+(1+α),−v−]
Snx

)
≤ µ

(
T−n (x)
n

≤ α
)

µ

(
T−n (x)
n

≤ α
)
≤ µ

(
min

[−v−,−v−(1+α)]
Snx −

3√
n
< min

[−v+(1+α),−v−]
Snx

)
(1)

Using Corollary 2.2.5, we build a process X ′ and a family of processes (Bn)n∈N on a
richer probability space (Ω,P) such that X ′ is distributed according to µ and the Bn are
Brownian motions.

∀n ∈ N, sup
[−v+(1+α),−v−(1+α)]

∣∣∣∣
SX′(nt)√

n
−Bn(t)

∣∣∣∣ = O
(
n−

1
4 +ε

)
P-almost surely.

By symmetry, Bl
n(t) = Bn(−v−− t)−Bn(−v−) and Br

n(t) = Bn(−v−+ t)−Bn(−v−) are
two independent Brownian motions on [0, v− − v+(1 + α)] and [0, −v−α], respectively.
Consequently, for any ε > 0 and n large enough:

µ

(
min

[−v−,−v−(1+α)]
Snx − ε < min

[−v+(1+α),−v−]
Snx

)
= P

(
min

[−v−,−v−(1+α)]
SnX′ − ε < min

[−v+(1+α),−v−]
SnX′

)

≤ P
(

min
[−v−,−v−(1+α)]

Bn − 2ε < min
[−v+(1+α),−v−]

Bn

)

≤ P
(

min
[0,−v−α]

Bl
n − 2ε < min

[0,−v−+v+(1+α)]
Br
n

)

(2)

and a symmetrical lower bound for the first term of (1). We evaluate this last term.

For any Brownian motion B and b > 0, we have by rescaling P
(

min
[0,b]

B ≥ m
)

=

P
(

min
[0,1]

B ≥ m√
b

)
. Furthermore, since Bl

n and Br
n are independent, so are min

[0,1]
Bl
x and
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min
[0,1]

Br
x. Denote µm the law of the minimum of a Brownian motion on [0, 1], which is

defined by the density function:

R → R
t 7→ e−t

2

2 if t ≤ 0,
0 otherwise.

(see [MP10]).

This means that for any y, z > 0:

P
(

min
[0,y]

Bl
n < min

[0,z]
Br
n

)
=
∫ 0

−∞

∫ 0

−∞
1{√y·m1≤

√
z·m2}dµm(m2)dµm(m1)

=
(i)

4
2π

∫ 0

−∞

∫ √
z·m2√
y

−∞
e
−m2

1
2 e

−m2
2

2 dm1dm2

=
(ii)

2
π

∫ π+arctan(
√

y
z )

π

∫ +∞

0
re
−r2

2 drdθ

= 2
π

arctan
(√

y

z

)
(3)

(i) by using the law of the minimum of a Brownian motion, (ii) by passing in polar
variables. For ε > 0, a similar calculation gives:

∣∣∣∣∣P
(

min
[0,y]

Bl
n − 2ε < min

[0,z]
Br
n

)
− P

(
min
[0,y]

Bl
n < min

[0,z]
Br
n

)∣∣∣∣∣ ≤
4

2π

∫ 0

−∞

∫ √
z·m2+2ε√

y

√
z·m2√
y

e
−m2

1
2 e

−m2
2

2 dm1dm2

≤ 8ε
2π√y

∫ 0

−∞
e
−ym2

2
2z e

−m2
2

2 dm2

−→
ε→0

0 (4)

To sum up, the right-hand term in (2) converges to 2
π arctan

(√ −v−α
v+−v−+v+α

)
as ε→ 0.

The first term in (1) can be bounded from below by the same method. Since ε can be
taken as small as possible by taking n large enough, the theorem follows.

2.2.4 Particle density

Definition 2.2.6 (Particle density in a configuration).
The −1 particle density in x ∈ {−1, 0, 1}Z is defined as d−(x) = Freq(−1, x). d+(x) is

defined in a symmetrical manner.

In all the following, any result on d− also holds for d+ by symmetry.

Theorem 2.2.6 (Decrease rate of the particle density).
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Let G be a (v−, v+)-GA with initial measure µ ∈Mix. Then:

∀µx ∈ {−1, 0, 1}Z, ∀ε > 0, d−(Gt(x)) = O
(
t−

1
4 +ε

)

If furthermore µ ∈ Ber=:

∀µx ∈ {−1, 0, 1}Z, d−(Gt(x)) ∼ t− 1
2

Proof. When µ ∈ Mix, it is in particular σ-ergodic, and so are its images Gt∗µ. By
Birkhoff’s ergodic theorem, one has d−(Gt(x)) = Gt∗µ([−1]) = µ(Gt(x)0 = −1) for µ-
almost all x ∈ {−1, 0, 1}Z.

We first prove the theorem when G is the (−1, 0)-gliders automaton. By Lemma 2,

µ(Gt(x)0 = −1) = µ

(
Sx(t+ 1) < min

[0,t]
Sx

)
.

Equivalent (µ ∈ Ber=): By symmetry,

µ

(
Sx(t+ 1) < min

[0,t]
Sx

)
= µ

(
Sx(0) < min

[1,t+1]
Sx

)
,

which is the probability that the random walk starting from 0 remains strictly positive
during t steps, also known as its probability of survival. According to [Red01], when
the random walk is symmetric and the steps are independent, we have the equivalent
µ(Gt(x)0 = −1) ∼ 1√

t
.

Upper bound:

µ

(
Sx(t+ 1) < min

[0,t]
Sx

)
≤ µ

(
St+1
x (1) = min

[0,1]
St+1
x

)
.

Using Corollary 2.2.5, we have:

µ

(
St+1
x (1) = min

[0,1]
St+1
x

)
= P

(
St+1
X′ (1) = min

[0,1]
St+1
X′

)

≤ P
(
Bt+1(1) ≤ min

[0,1]
Bt+1 + Ct+1

)

≤ P
(
Bt+1(0) ≤ min

[0,1]
Bt+1 + Ct+1

)
,

where Ct+1 = sup
[0,1]

∣∣∣St+1
X′ −Bt+1

∣∣∣ = O
(
t−

1
4 +ε

)
P-almost surely, and where the third line is

obtained by symmetry of the Brownian motion.
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Furthermore P
(

min
[0,1]

Bt+1 > −Ct+1

)
=
∫ 0

−Ct+1
e−x

2/2dx ≤ Ct+1 = O
(
t−

1
4 +ε

)
.

General case (any v− < v+): Let G′ be the (v−, v+)-GA. Then

G′ = σv+ ◦Gv+−v− .

To conclude, it is enough to see that the particle density is σ-invariant and decreasing
under the action of G.

2.2.5 Rate of convergence

Theorem 2.2.7 (Rate of convergence to the limit measure).
Let G be the (v−, v+)-GA with initial measure µ ∈Mix. Then:

∀ε > 0, dM(Gt∗µ, δ̂0) = O
(
t−1/4+ε

)

If furthermore µ ∈ Ber=:

dM(Gt∗µ, δ̂0) = Ω
(
t−1/2

)

Proof. We first prove the theorem when G is the (−1, 0)-gliders automaton. By defining
0` ∈ A` the word containing only zeroes, the distance can be rewritten:

∀t ∈ N, dM(Gt∗µ, δ̂0) =
∞∑

`=1

1
2`G

t
∗µ
(
AZ\[0`]

)
.

Lower bound (µ ∈ Ber=): dM(Gt∗µ, δ̂0) > Gt∗µ
(
AZ\[0]

)
. We conclude with Theorem

2.2.6.

Upper bound: We give an upper bound for Gt∗µ(AZ\[0`]) = µ(∃0 ≤ d ≤ `,Gt(x)d =
±1) for ` ∈ N and t ∈ N. By Lemma 2,

∀d ∈ Z, Gt(x)d = +1⇔ Sx(d) < min
[d+1,d+t]

Sx.
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Therefore:

Gt∗µ

( ⋂̀

d=0
[+1]d

)
≤ µ

(
min
[0,`]

Sx < min
[`+1,t]

Sx

)

≤ µ
(

min
[0,t]

Sx ≥ −`
)

≤ µ
(

min
[0,1]

Stx ≥ −
`√
t

)

By Corollary 2.2.5, using the same notations as in the previous proofs:

Gt∗µ (∃0 ≤ d ≤ `, xd = +1) ≤ P
(

min
[0,1]

StX′ ≥ −
`√
t

)

≤ P
(

min
[0,1]

Bt ≥ −
`√
t
− Ct

)
where Ct = O

(
t−

1
4 +ε

)

= O
(
t−

1
4 +ε

)

for any ε > 0, following the same calculations as in Section 2.2.4. The case of −1 particles
is symmetrical, and we conclude.

General case: Apply the same method as in the previous section, considering that dM
and all considered measures are σ-invariant and that any CA is Lipschitz w.r.t dM.

2.2.6 Extension to other cellular automata

Definition 2.2.7. Let F1, F2 be two CAs on AZ and BZ, respectively. We say that F1 fac-
torises onto F2 if there exists a factor π : AZ → BZ such that π ◦ F1 = F2 ◦ π.

In other words, F1 admits a particle system (P, π, φ) with B = P ∪ {0} and where φ is a
cellular automaton on BZ.

In this section, we extend the Theorems 2.2.2 and 2.2.6 to automata that factorise onto
a gliders automaton, and discuss conditions for the extension of Theorem 2.2.7. In Section
2.1.3, we exhibited a general method to find such a factor using experimental intuition when
such a factor is not obvious.

In other words, using the formalism from Section 2.1, we extend the theorems to automata
that admit a particle system (P, π, φ), where P = {−1,+1} and φ acts as a gliders automaton.

In order to extend the theorem to such CAs, starting from an initial measure µ, we must
first ensure that π∗µ ∈ Mix. We show that the third condition in the definition of Mix is
invariant under factor.

Proposition 2.2.8. Let π : AZ → BZ be a factor, µ ∈Mσ(AZ) and k > 0 any real such that∑
n≥0 αµ(n)k <∞. Then, ∑n≥0 απ∗µ(n)k <∞.
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Proof. We keep the notations from the definition of αµ(n). π is defined by a local rule with
neighbourhood N ⊂ [−r, r] for some r > 0. Then, π−1B0

−∞ ⊂ Br
−∞ and π−1B∞n ⊂ B+∞

n−r.
By σ-invariance, we have for all n απ∗µ(n) < αµ(n− 2r), and the result follows.

Hence, if µ ∈ Mix, we only have to prove that π∗µ weighs evenly the sets of particles −1
and +1, and that the corresponding asymptotic variance is not zero. Under these assumptions,
we can extend some of the previous results with the forbidden patterns playing the role of the
particles.

Corollary 2.2.9. Let F : AZ → AZ be a CA and µ ∈ Mσ(AZ). Suppose that F factorises
onto a (v−, v+)-GA via a factor π such that π∗µ ∈Mix.

Then Theorem 2.2.2 and the first point of Theorem 2.2.6 hold if we replace “xk = ±1” by
“π(x)k = ±1”.

Examples: (In all the following, we use the convention � = 0,� = 1,� = 2,� = 3.)

Figure 2.12: The 3-state cyclic CA, a one-sided captive CA and the product CA.

Traffic automaton: Let A = {0, 1} and F184 be the elementary CA corresponding to rule
#184. F184 factorises on the (−1,+1)-gliders automaton, using the factor found in Sec-
tion 2.1.4:

00 7→ +1
11 7→ −1

otherwise → 0

This factor is represented in Figure 2.5. If µ is a measure such that π∗µ ∈ Mix, then
Theorem 2.2.2 and the first point of Theorem 2.2.6 hold.

For example, this is true for the 2-step Markov measure defined by the matrix

(
p 1− p

1− p p

)

and the eigenvector

(
1/2
1/2

)
with p > 0. A particular case is the Bernoulli measure of pa-
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rameters (1
2 ,

1
2). Theorem 2.2.7 can also be extended by considering dM(F t184∗µ, δ̂01),

since this distance can be bounded knowing the density of particles.

3-state cyclic automaton: Let A = Z/3Z and C3 be the 3-state cyclic automaton. We con-
sider the factor π defined in Section 2.1.4:

ab 7→ +1 if a = b+ 1 mod 3
ab 7→ −1 if a = b− 1 mod 3
ab 7→ 0 if a = b

If µ is such that π∗µ ∈Mix, then Theorem 2.2.6 applies. This is true in particular when µ
is any 2-step Markov measure defined by a matrix (pij)1≤i,j≤3 satisfying p01 +p12 +p20 =
p10 +p21 +p02, all of these values being nonzero, with (µi)1≤i≤3 its only eigenvector. This
includes any nondegenerate Bernoulli measure. However, even when the limit measure
is known (e.g. starting from the uniform measure), Theorem 2.2.7 does not apply.

One-sided captive automata: Let F be any one-sided captive cellular automaton defined
by a local rule f . As explained in Section 2.1.4, F factorises onto the (−1, 0)-gliders
automaton with a factor defined by:

ab 7→ +1 if a 6= b, f(a, b) = a
ab 7→ −1 if a 6= b, f(a, b) = b
ab 7→ 0 if a = b

For an initial measure µ, if π∗µ ∈ Mix, then Theorem 2.2.2 and the first point of Theo-
rem 2.2.6 apply.

Notice that this class of automata contains the identity (∀a, b ∈ A, f(a, b) = b) and the
shift σ (∀a, b ∈ A, f(a, b) = a). However, since we have in each case π−1(+1) = ∅ or
π−1(−1) = ∅, it is impossible to find an initial measure that weighs evenly each kind of
particle, and so π∗µ cannot belong inMix. The limit measure, however, depends on the
exact rule, and Theorem 2.2.7 does not apply.

Counter-example:

Product automaton: LetA = Z/2Z and F128 be the CA of neighbourhood {−1, 0, 1} defined
by the local rule f(x−1, x0, x1) = x−1 · x0 · x1. Using the formalism from Section 2.1.3,
we can see that F128 factorises onto the (−1, 1)-GA by the factor

π :





01 → +1
10 → −1

otherwise → 0

If µ is any Bernoulli measure, then π∗µ satisfies all conditions ofMix except that σµ = 0;
indeed, we can check that for π∗µ-almost all configurations, the particles +1 and −1
alternate. Hence, only one particle can cross any given column after time 0, and therefore

∀α > 0, µ
(
T−n (x)
n ≤ α

)
−→
n→∞ 0. Furthermore, any particle survives up to time t only if it

is the border of a initial cluster of black cells larger than 2t cells, which happens with a
probability µ([1])2t exponentially decreasing in t.
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Even though we showed that the asymptotic distributions of entry times are known for
some class of cellular automata and a large class of measures, this covers only very specific
dynamics. It is not known how these results extend for more than 2 particles and/or other
kind of particle interaction. In particular, there is no obvious stochastic process characterising
the behaviour of such automata that would play the role of Sx in our proofs.
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Section 2.3

A case study: the 3-state cyclic
automaton

As we saw in the previous section, information about the behaviour of the particles is not al-
ways sufficient to determine the limit measure(s). In this section, we perform an in-depth study
of the typical asymptotic behaviour of an automaton with simple defect dynamics (namely, the
3-state cyclic automaton defined earlier), but whose limit measure cannot in most cases be
described with the methods of the previous sections. Without changing our general approach,
we refine our tools to describe more precisely the small-scale relationship between the random
walk process and the space-time diagram of the automaton in this particular case.

In this section, C3 denotes the one-sided 3-state cyclic automaton on the neighbourhood
{0, 1} and alphabet A = Z/3Z by the local rule:

f(u0, u1) =
{
u0 + 1 if u1 = u0 + 1 mod 3,
u0 otherwise.

The two-sided version of this CA was introduced by Fisch ([Fis90b],[Fis90a]) as a deter-
ministic model to emulate an interacting particle system with stochastic dynamics. We consider
the one-sided version here to simplify proofs, but all our results hold for the two-sided version.

As described in Section 2.1.4, this automaton factorises on the (-1,0)-gliders automaton by
the factor π : 10, 02, 21 7→ +1, 01, 20, 12 7→ −1, otherwise 7→ 0.

We showed using Corollary 2.1.3 that, starting from any ergodic measure µ that satisfies
π∗µ([+1]) = π∗µ([−1]), no particle remains in the µ-limit set. In other words, any accumulation
point of (Ct3∗µ)t∈N is a convex combination of δ̂0, δ̂1 and δ̂2. In general, this argument is not
sufficient to determine exactly the limit measure. Actually, when µ is a Bernoulli measure, we
show the following result:

Theorem 2.3.1 (Main result).
Let µ be a Bernoulli measure on (Z/3Z)Z with nonzero parameters (λ0, λ1, λ2). Then:

Ct3∗µ −→t→∞ λ2δ̂0 + λ0δ̂1 + λ1δ̂2.

This is quite surprising since it implies that the asymptotic frequency of each colour i is
equal to the initial frequency of its “prey” i− 1.

We dedicate the rest of the section to this proof. Since we already know that any limit
point of (Ct3∗µ)t∈N is a convex combination of δ̂0, δ̂1 and δ̂2, it remains to show that for each i,
µ(Ct3(x)0 = i)→ λi−1.
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As in Definition 2.2.2 for any x ∈ AZ, we define the random walk Sx by:

Sx(0) = 0 and ∀k ∈ Z, Sx(k + 1)− Sx(k) =





−1 if xk+1 − xk = 1 mod 3
0 if xk+1 − xk = 0 mod 3
+1 if xk+1 − xk = −1 mod 3

We also introduce the piecewise linear and rescaled process Skx . See Section 2.2 for details.

Since µ is a Bernoulli measure, Sx is a Markov chain on the state space Z, with the particular
property that Sx(t+ 1)− Sx(t) only depends on Sx(t) mod 3.

Lemma 3.
∀x ∈ AZ, ∀t ∈ N, Ct3(x)0 − x0 ≡ min

[0,t]
Sx mod 3

Proof. By induction, the minimum decreasing by one only when a particle crosses the 0
column.

Definition 2.3.1 (Colour, bases, dives). Let x ∈ AZ.
The colour at time t is x0 + Sx(t) mod 3.
t is a base if t = argmin

[0,t]
Sx.

The dive starting from time t is the interval [t, t+ t′] where t′ = minT∈N{Sx(T ) < Sx(t)}.

Sketch of the proof: By Lemma 3, the colour in the central column at time t corresponds
to the colour of the last minimum (last base). An interval between two bases is a dive, and a
dive cannot contain a base. We define the type of a dive as the constant value of Ct3(x)0 on
that dive, which is the colour of the last base.

Therefore we need to understand the relation between the length of a dive and the colour
of the initial point. Since the large-scale behaviour of the walk is similar to a Brownian motion,
it is known that the length of a dive has infinite expectation, so that we cannot simply compare
the expectations. To understand this relationship, we partition each dive into sub-dives starting
from points of colour 0, and determined the expected number of sub-dives depending on the
colour of the initial point (Lemma 4). Since the time spent outside of these dives is negligible
(Lemma 5), it does not affect the asymptotic frequency of each color (Lemma 6).

Let us begin the proof. We partition time in consecutive dives in the following way:

Definition 2.3.2 (Dive partition).
We define inductively two families (Xn)n∈N and (Yn)n∈N of time intervals:

• Let t0 = min {t ∈ N | x0 + Sx(t) = 0[3]};
• X0 is the dive starting from t0. Denote its end point t′0;
• Yn = [t′n + 1, tn+1 − 1], where tn+1 = min {t ∈ N | x0 + Sx (t′n + t) = 0[3]};
• Xn is the dive starting from tn. Denote its end point t′n.
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x0 + Mx(t) mod 3 (colour)

0
2
1
0
2 type 2 type 2

type 0

tt0

X0

t′
0

Y0

t1

X1

t′
1

Y1

t2

X2

Figure 2.13: The first three dives of a random walk. Red edges correspond to a change of base.

Furthermore define n(t) = max{n | tn ≤ t}.

The times ti are stopping times, that is, they are µ-almost surely finite and for all i and t,
the event ti = t only depends on the value of the variables {xk : k < t}. As a consequence
(strong Markov property), for all i, the values of Sx(t) for t ≥ ti given Sx(ti) are independent
from {xk : k ≤ ti}. The same statements apply to times t′i.

Lemma 4. The stochastic process (t(Xi))i∈N, which represents the type of each successive
dive, is a Markov chain of transition matrix:




λ2 λ2 λ2
λ0

λ0+λ2
λ0

λ0+λ2
0

λ1λ2
λ0+λ2

λ1λ2
λ0+λ2

1− λ2


 .

Proof. Suppose that t = t′i, that is, we just finished the diveXi. It follows that x0+Sx(t′i) =
1 mod 3. The values of Sx(t) for t > t′i given Sx(t′i) are independent from {xk : k ≤ t′i}.
We remarked earlier that the time evolution of Sx depended only on the colour of the initial
point, which is here 1. This shows that the relative evolution of the walk Sx(t′i+t)−Sx(t′i)
is independent from Sx(t′i) and {xk : k ≤ t′i}.

By definition of the dive Xi, the value of the last minimum before t′i is one of {Sx(t′i)+
1, Sx(t′i), Sx(t′i)−1} (if it was lower, Xi would be included in a larger dive of type 0, which
is a contradiction). More precisely, these three values correspond to the cases where the
type of Xi is 2, 1 and 0, respectively. The type of the next dive, t(Xi+1), depends only
on the last minimum before time t′i and the future time evolution Sx(t′i + t) − Sx(t′i) for
t > 0. As we just saw, knowing the last minimum before time t′i is the same as knowing
t(Xi). Since Sx(t′i + t)− Sx(t′i) is independent from all past variables, this shows that for
all (kj)0≤j≤i+1 ∈ (Z/3Z)i+2:

µ
(
t(Xi+1) = ki+1 | t(Xi) = ki, . . . , t(X0) = k0

)
= µ

(
t(Xi+1) = ki+1 | t(Xi) = ki

)
.

In other words, (t(Xi))i∈N is a Markov chain.

Now let i ∈ N and assume for clarity that t(Xi) = 1. After time t′i, Sx can remain
constant for some time, but the probability that it takes a step up before any step down
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is λ0
λ0+λ2

. In this case the dive Xi+1 starts and it is again of type 1.
In the other case, the walk reaches a new base of colour 2. From there, consider the

two following events:

(i) Sx reaches a new base of colour 0, i.e. it takes a step down from its current position;
(ii) Sx starts a dive of type 2, i.e. it takes two steps up from its current position.

We determine the probability that event (i) happens before event (ii). We can ignore
constant steps and only consider steps up and down by renormalising. Then any path for
which event (i) happens first is an alternating up-down path ending with a down step to
reach the new base of colour 0. Hence :

µ (event (i) happens before event (ii)) = λ0
λ0 + λ1

·
∑

n∈N

λ1
λ0 + λ1

· λ2
λ0 + λ2

= λ0
λ0 + λ1

· 1
1− λ1λ2

(λ0+λ1)(λ0+λ2)

= λ0
λ0 + λ1

· (λ0 + λ2)(λ0 + λ1)
λ0

= λ0 + λ2

and in this case the dive Xi+1 is of type 0. To sum up,

• µ(Xi+1 = 1 | Xi = 1
)

= λ0
λ0+λ2

;

• µ(Xi+1 = 0 | Xi = 1
)

=
(
1− λ0

λ0+λ2

)
(λ0 + λ2) = λ2;

• µ(Xi+1 = 2 | Xi = 1
)

=
(
1− λ0

λ0+λ2

)
λ1 = λ1λ2

λ0+λ2
.

The other columns of the matrix are obtained in a similar manner.

Thus (t(Xi))i∈N is an irreducible and aperiodic Markov chain of eigenvector



λ0
λ2
λ1


, which

means that µ(t(Xi) = j) −→
i→∞

λj−1. To see that the matrix is aperiodic, notice that for each

state j, µ
(
t(Xi+1) = j | t(Xi) = j

)
> 0.

Now let us consider the lengths `(Xi) = t′i − ti and `(Yi) = ti+1 − t′i for i ∈ N. Since ti and
t′i are stopping times, we deduce by the strong Markov property that all lengths (`(Xi))i∈N and
(`(Yi))i∈N are independent random variables.

Furthermore, `(Xi) only depends on {Sx(t) : t ≥ ti}. By the strong Markov property, this
means that `(Xi) given Sx(ti) is independent from {xk : k ≤ ti}. By we remarked earlier than
the relative time evolution Sx(t + k) − Sx(t) for k > 0 only depended on Sx(t) mod 3, and
this is sufficient to know the length of the dive. Since the dives Xi all start by definition from a
point of colour 0, their length `(Xi) all follow the same law `(X). By a similar argument, the
lengths `(Yi) all follow the same law `(Y ).

An interval Yi corresponds to a path that never leaves a “strip” of width 2 which have a fixed
positive probability to end at each instant, and thus E[l(Y )] < ∞. An interval Xi corresponds
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to a first-passage process in a symmetrical random walk, which implies E[l(X)] = ∞ (see
[Red01]).

Now we investigate the relationship between t(Xi), `(Xi) and `(Yi). On the one hand, t(Xi)
only depends on the last minimum before time ti and therefore is independent from {xk : k ≥
ti}. On the other hand, we saw earlier that `(Xi) was independent from {xk : k ≤ ti}
by strong Markov property. Therefore `(Xi) is independent from all previous (t(Xk))k<i and
(`(Xk))k<i, and t(Xi) is independent from all previous (`(Xk))k<i. However `(Yi) is dependent
on t(Xi) and t(Xi+1), but we prove that these lengths can be neglected.

Define Y (t) = t0 +∑n(t)
i=0 `(Yi).

Lemma 5. For almost all x, Y (t) = O
(√

t
)
.

Proof. Let us show that for almost all x, n(t) = O(
√
t). For a fixed constant C > 0,

µ
(
n(t) > C

√
t
)
≤ µ



C
√
t∑

i=0
`(Xi) < t




≤ µ
(
`(X0) < t ∩ `(X1) < t ∩ · · · ∩ `(XC

√
t) < t

)

≤ µ (`(X0) < t)C
√
t ,

the third step being by independence of the (`(Xi))i∈N. Let us give a bound on µ (`(X0) < t).

Let k0, . . . kn . . . be the consecutive points such that x0 + Sx(ki) = 0[3]. Define the
walk S′x as S′x(i) = 1

3(x0 +Sx(ki)). That is, S′x follows Sx but jumps from a point of colour
0 to the next. Since the (ki)i∈N are stopping times and their colour is fixed, S′x is now a
standard independent, unbiased random walk.

By definition, k0 = t0. If Sx(t0 + 3) = Sx(t0) + 3, i.e. Sx goes up three steps consec-
utively, then S′x(1) = 1

3Sx(t0) + 1. If from there on S′x stays above 1 for t steps, then Sx
stays above 1 for (at least) t steps, and a fortiori `(X0) ≥ t.

This first event happens with probability λ0 ·λ1 ·λ2. The second event can be restated
in the following way: the survival time of the walk S′x starting from 1 is greater that t.
According to [Red01], this happens with probability C′√

t
for some fixed constant C ′. Now,

fixing D = λ0 · λ1 · λ2 · C ′, we have for any constant C:

µ
(
n(t) > C

√
t
)
<

(
1− D√

t

)C√t

−→
t→∞

e−D/C

and therefore µ
(
n(t) = O(

√
t)
)

= 1.
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As a consequence, since the Yi have bounded expectation, Y (t) = O(
√
t) µ-almost

surely.

Lemma 6. Let f : R+ → R+ such that f(α) = o(α). Then:

µ
(
Ct3(x)0 is constant on t ∈ [α− f(α), α]

)
−→
α→∞ 1.

Proof. For α large enough, we have:

µ
(
Ct3(x)0 is constant on [α− f(α), α]

)
≥ µ

(
min

[0,α−f(α)]
Sx ≤ min

[α−f(α),α]
Sx

)

≥ µ

 min

[0,1− f(α)
α

]
Sαx ≤ min

[1− f(α)
α
,1]
Sαx




By Theorem 2.2.5, we build a process X ′ distributed according to µ and a family of
Brownian motions (Bn)n∈N such that sup[0,1] |Snx (t) − Bn(t)| →

n→∞ 0. For any ε > 0,

µ

(
min

[0,1−ε]
SαX′ ≤ min

[1−ε,1]
SαX′

)
−→
α→∞ µ

(
min

[0,1−ε]
Bα ≤ min

[1−ε,1]
Bα

)
. By Theorem 5.28 in [MP10],

the location of the last minimum of a Brownian motion on [0, 1] is arcsine-distributed.
Therefore, for α large enough:

µ
(
Ct3(x)0 is constant on [α− f(α), α]

)
≥ 2
π

arcsin
√

1− ε− ε

and since this number tends to 1 as ε→ 0, we conclude.

Proof of Theorem 2.3.1. Define n′(t) = n(t−Y (t)). In other words, n′(t) = max
n∈N

n∑

i=0
`(Xi) ≤

t. Since all lengths (`(Xi))i∈N are independent from the types (t(Xi))i∈N, the same can
be said for n′(t).

Combining Lemmas 6 and 5, we can see that

µ
(
Ct3(x)0 is constant on [α− Y (α), α]

)
−→
α→∞ 1.

If t ∈ Xi, we have Ct3(x)0 = t(Xi) = t(Xn(t)). This is still true if t ∈ Yn(t) except if the
process has already reached a new base during this time interval Yn(t). By the previous
remark, the probability that this happens tends to 0 as t→∞.



2.3. A CASE STUDY: THE 3-STATE CYCLIC AUTOMATON 127

Therefore, µ-almost surely, for any i ∈ {0, 1, 2}:

µ
(
Ct3(x)0 = i

)
∼

t→∞
µ
(
C
t−Y (t)
3 (x)0 = i

)

∼
t→∞

∞∑

j=0
µ
(
n′(t) = j ∩ t(Xj) = i

)

∼
t→∞

∞∑

j=0
µ
(
n′(t) = j

) · µ (t(Xj) = i)

For any ε > 0, we can find N large enough so that |µ (t(XN ) = i)−λi−1| < ε. Furthermore,
µ(n′(t) > N) −→

t→∞
1. Consequently:

µ
(
Ct3(x)0 = i

)
≤ µ (n′(t) < N

)
+
∞∑

j=N
µ
(
n′(t) = j

) · µ (t(Xj) = i)

≤ ε+ (λi−1 + ε) for t large enough.

Since this is true for all i and ε, and
∑

i=0,1,2
µ
(
Ct3(x)0 = i

)
= 1, we conclude:

∀i ∈ {0, 1, 2}, µ
(
Ct3(x)0 = i

)
−→
t→∞

λi−1.





3Randomisation and rigidity

129



130 CHAPTER 3. RANDOMISATION AND RIGIDITY

Section 3.0

Introduction

Some cellular automata exhibit a typical asymptotic behaviour that is in a sense the opposite
of the self-organisation that we considered in the previous chapter: instead of “order emerging
from disorder”, that is, simple patterns emerging from an initial configuration with no particu-
lar property (e.g. drawn uniformly), we observe visually “disorder emerging from order”, that
is, convergence towards a state where all patterns are present with the same probability even
if the initial measure is heavily biased towards some patterns. In measure-theoretical terms, it
means that the distribution at time t converges to the uniform measure. This phenomenon is
called randomisation.

10 20 30 40 50

0.05

0.1

0.15

0.2

0.25

dM(F t
∗µ, λ)

t

Figure 3.1: Automaton defined by F102(x)0 = x0+x1 mod 2, starting from the initial Bernoulli
measure with parameters ( 1

10 ,
9
10). The graph gives experimental values of the distance to the

uniform measure as a function of time.

This kind of behaviour was first observed in elementary CA such as Rule #102, which cor-
responds to the cellular automaton performing addition mod 2 on the neighbourhood {0, 1}.
In this case, the phenomenon at hand is slightly more subtle: for any initial measure µ, the
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distribution at time t becomes closer to the uniform measure as long as t avoids a subsequence
of density 0 [PY02]. Notice in Figure 3.1 how white cells are predominant near the powers of
two, and the distribution seems more uniform far from them. This phenomenon is called ran-
domisation in density, but in most papers the weakest property of randomisation in Cesàro
mean is considered instead.

Definition 3.0.1 (Randomisation).
Let F be a cellular automaton AZ → AZ, λ the uniform Bernoulli measure on AZ and
M⊂Mσ(AZ) a class of initial measures.

F randomises M if:
∀µ ∈M, F t∗µ −→t→∞ λ.

F randomises M in density if for any µ ∈ M this convergence holds on a subse-
quence of density one.

F randomises M in Cesàro mean if:

∀µ ∈M,
1
T

T∑

t=0
F t∗µ −→

T→∞
λ.

For example, M can be Ber(AZ) the set of nondegenerate Bernoulli measures on AZ, or
even a larger class under σ-ergodicity or mixing conditions. For a fixed class M, randomisa-
tion implies randomisation in density which implies randomisation in Cesàro mean. Notice
however that a notion of “randomisation for every initial measure” (takingM = Mσ(AZ)) is
unreasonable, because for example the uniform measure cannot be reached from a measure
supported by a periodic orbit. Still, even for M = Ber(AZ), there is no known randomising
cellular automaton (for simple convergence).

This property shares many characteristics with density classification on (Z/2Z)Z as intro-
duced in [Pac88]. Instead of converging towards the uniform measure, the automaton must
converge towards δ̂0 or δ̂1 depending on which of 0 or 1 appears more frequently in the initial
measure (the equality case is not specified). Both properties are linked to the problem of ro-
bust or reliable computation, that is, computation in presence of noise, which was introduced
in [vN56] in the context of Boolean circuits. If density classification corresponds to the ability
to keep a bit of memory (monochromatic configuration) in presence of noise [GKL87], also
called fault tolerance, randomisation corresponds to the ability to correct to imperfection of
a source of randomness. Another similarity is that no cellular automaton is known to classify
density in dimension one, but experimental candidates are known. This justifies an experimen-
tal approach to find preliminary evidence for randomisation, similarly as [Fat13] for density
classification.

It is clear that a randomising automaton (simple or in Cesàro mean) must be surjective
(Theorem 3.1.1). The first positive results concerned automata that are group homomor-
phisms, since the group structure gives access to many powerful tools. For example, the first
historical result is due to Lind ([Lin84]), who proved that the cellular automaton performing
addition mod 2 on the neighbourhood {0, 1} randomised in Cesàro mean the class of non-
degenerate Bernoulli measures. However, he also showed that this result did not hold for
simple randomisation, as we detailed above. Numerous results extended the set of initial
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10 20 30 40 50

0.05

0.1

0.15

0.2

0.25

dM(F t
∗µ, λ)

t

Figure 3.2: Automaton defined by F (x)0 = x−1 + x0 · x1 + x2 mod 2, starting from the initial
Bernoulli measure with parameters ( 1

10 ,
9
10). One of the candidates for randomisation when

A = Z/2Z. The graph gives experimental values of the distance to the uniform measure as a
function of time.

measures and the set of cellular automata for randomisation in Cesàro mean in various ways
[MM98, FMMN99, PY02, PY03]. All these results are summed up in Section 3.1.1.

Nevertheless, none of these articles found sufficient conditions or even a candidate for
simple randomisation. It seems that a group structure, which was used in virtually all proofs of
randomisation in density and Cesàro mean, is actually detrimental for simple randomisation.
For example, in the case where the alphabet is Z/nZ, Proposition 3.1.2 suggests that such
automata cannot be good candidates. We took different approaches to add a perturbation to
an algebraic automaton such as composing its local rule with a permutation; we obtained good
candidates experimentally, but with all usual algebraic tools unavailable, we were unable to
provide a proof.

With this experimental approach, we conjectured that such properties as bipermutativ-
ity or positive expansivity are key to the randomising process. In Section 3.1.2, we make a
brute-force exploration of the space of bipermutative automata for small alphabets and neigh-
bourhoods and give experimental statistics that back up this conjecture. This approach is not
practical for positive expansivity since no algorithm for testing this property is known [Luk10].

A related topic is the study of rigidity, that is, how measures invariant under the action
of certain cellular automata among a class M ∈ Mσ(AZ) must be the uniform measure. M
is usually the class of measures that satisfy some conditions such as σ-ergodicity, full support,
nonzero entropy, σ-mixing, etc. Of course a single limit measure (pointwise or in Cesàro
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mean) is always invariant under the action of the automaton, so a rigidity result could be a
first step towards a randomisation result. This problematic was developed around Furstenberg
conjecture [Fur67] relative to measures on the unit circle invariant by multiplication by 2
and 3. Concerning cellular automata, some results concerning restricted classes of automata
[Miy79, Miy94, HMM03, Piv05, Sab07] were an inspiration to find randomisation candidates.

In Section 3.2.1, we give an alternative and simpler proof of a rigidity result on the addition
mod 2 automaton from [Miy94]. In Section 3.2.2, we consider a family of bipermutative CA on
the alphabet Z/nZ obtained by composing the local rule of an affine automaton by a permuta-
tion (in particular, they belong to a class we conjectured to be randomising). Using the same
tools as in [HMM03], we obtained a rigidity result under σ-ergodicity and entropy conditions.
In particular, when n is prime, this result implies that all invariant measures satisfying those
conditions are the uniform measure.

This chapter is the result of an ongoing collaboration between Irène Marcovici, Alejandro
Maass and ourselves.
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Section 3.1

Randomisation

3.1.1 State of the art and negative results

In this section, we state some necessary conditions for randomisation, as well as some partial
positive results concerning randomisation in Cesàro mean. In particular, we show that the
cellular automata that have been studied the most for randomisation in Cesàro mean are not
good candidates for randomisation in simple convergence. Instead, we conjecture that another
class is more suited to this purpose. This claim is backed up by experimental evidence in the
next section.

Proposition 3.1.1 (Hedlund [Hed69]).
F∗λ = λ if, and only if, F is a surjective automaton.

In particular, if F randomises any nonempty class (directly or in Cesàro mean), then F is
surjective. Indeed, if F t∗µ −→t→∞ λ, it follows that F∗λ = λ. The same is true for Cesàro mean
convergence.

Proof of Proposition 3.1.1.
(⇒) For any u ∈ A∗, λ(F−1([u])) = λ([u]) 6= 0, so F−1([u]) 6= ∅. For x ∈ AZ,

F−1(x) = ⋂
n F
−1([x[−n,n]]−n) 6= ∅ by closure.

(⇐) Without loss of generality, assume the neighbourhood of F is [0, r] for some r > 0.
The preimage of any cylinder [u] is just an union of cylinders [v] with |v| = |u| + r, and
conversely the image on any cylinder [v] is included in a cylinder [u] with |v| = |u| + r.
Therefore:

∀n ∈ N,
∑

u∈An
Card

{
v ∈ An+r : F ([v]) ⊂ [u]

}
= |A|n+r

We aim at proving that every term of this sum is equal. Suppose that there exists u ∈ A∗
such that Card{v ∈ A|u|+r : F ([v]) ⊂ [u]} < |A|r. Now, for any i > 0, consider the set
Wi = {w ∈ Ai|u|+(i−1)r) : ∀j ≤ i, u @j(|u|+r) w}. It is clear that |Wi| = |A|(i−1)r.

However, for any w′ ∈ Ai·(|u|+r), F ([w′]) ⊂ Wi implies F ([w′[j(|u|+r),(j+1)(|u|+r)]]) ⊂ [u]
for any j ≤ i. Therefore there are at most (|A|r − 1)i such w′. For i large enough,
(|A|r−1)i < |Wi| = |A|(i−1)r. To sum up, we have a set of words of length n = i|u|+(i−1)r,
and each of these words have a preimage that is a set of words of length n + r; however,
for cardinality reasons, one of these preimages must be empty, which is in contradiction
with surjectivity.

Therefore, for all u ∈ A∗, we have Card{v ∈ A|u|+r F ([v]) ⊂ [u]} = |A|r, and

F∗λ([u]) =
∑

v∈A|u|+r
F ([v])⊂[u]

λ([v]) = |A|r · 1
|A||u|+r = 1

|A||u| ,
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which means that F∗λ = λ.

Most positive results in the literature concern cases where the set AZ is endowed with a
group structure (AZ,+) and the cellular automata is a morphism for this structure. This is the
case in particular if (A,+) is itself a finite group, in which case AU (for a finite U) and AZ are
groups for the componentwise group operation (product groups). Unless explicitly mentioned,
we only consider abelian groups.

Definition 3.1.1 (Linear and affine automata).
A cellular automaton F is algebraic if there exists an abelian group structure (AZ,+)

such that F is an endomorphism AZ → AZ.

If AZ has a product group structure, it is equivalent to define F by a local rule f acting
on the neighbourhood N such that f : AN → A is an homomorphism. In this case, we say F
is linear.

F is affine if it can be written as F (x) = G(x) + ∞a∞, where a ∈ A, G is a linear
automaton, and the operation is componentwise.

F factorises on a (nontrivial) affine automaton if there is an alphabet B, with |B| > 2,
a factor π : AZ → BZ and an affine automaton G : BZ → BZ such that the following diagram
commutes:

AZ AZ

BZ BZ

F

ππ

G

The term “linear” comes from the case A = Z/nZ, where an automaton is linear if and
only if its local rule f : AN → A can be written f((ai)i∈N ) = ∑

i∈N xiai for some choice of
(xi)i∈N ∈ (Z/nZ)N . We also use the term nontrivial to exclude the identity and the powers of
the shift.

Definition 3.1.2 (Bipermutative automata).
Let F be a cellular automaton defined by a local rule f acting on the neighbourhood [a, b],

for a, b ∈ Z. F is bipermutative if, for all ω ∈ Ab−a−1, the following conditions are satisfied:

• a 7→ f(ω · a) is bijective (right-permutative);
• a 7→ f(a · ω) is bijective (left-permutative).

F is permutative if it is right or left-permutative.

We present some positive results relative to the randomisation problem, giving in each case
the class of automata and the class of initial measures. By one site Cesàro convergence, we
mean that only the asymptotic distribution of F t(x)0 is described. By affine + (∗), we mean
the class of affine cellular automata on Z/nZ such that for every prime divisor p of n, at least
two coefficients are relatively prime to p. For most recent results, two main methods were
used: stochastic processes and renewal theory (lines 3 and 5), and harmonic analysis (line
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4). In each case, hypotheses on the initial class of measures are quite technical and related to
these methods, and we refer to each original article for full definitions. However, all these sets
of measures include nondegenerate Bernoulli and full-support Markov measures.

Class of automata
Class of initial

measures
Type of

convergence
Reference

F (x)0 = x0 +x1 mod 2 nondegenerate
Bernoulli

Cesàro mean [Lin84]

subclass of
right-permutative
A = Z/2Z

nondegenerate
Bernoulli

one site Cesàro [MM98]

F (x)0 = αx0 + βx1
|A| prime power

complete connections
summable decay

Cesàro mean [FMMN99]

A = Z/nZ
affine + (∗) harmonically mixing Cesàro mean

[PY02,
PY03]

A = Z/nZ
affine + (∗)

complete connections
summable decay

Cesàro mean [HMM03]

Notice that all these results were concerned with Cesàro mean convergence. Indeed, we
have the following result:

Proposition 3.1.2. For n ∈ N, let A = Z/nZ and endow AZ with the product group. Then
an affine cellular automaton cannot randomise the set Ber(AZ) of nondegenerate Bernoulli
measures on AZ.

This is a new result even though the proof is a generalisation of a result of Lind [Lin84] in
the case A = Z/2Z and F (x)0 = x0 + x1, and the main ideas were present in [PY02, PY03] in
the case |N | = 2. We first introduce the convolution product.

Definition 3.1.3 (Convolution product).
Let µ, ν ∈Mσ(AZ). µ⊗ ν, the convolution product of µ and ν, is defined as:

For any borelian U, µ⊗ ν(U) =
∫ Z

A

∫ Z

A
1U (x+ y)dµ(x)dν(y).

The convolution product is associative.

To clarify the structure of this proof, we give a sketch of the simple case A = Z/2Z and
F (x)0 = x0 +x1. By induction, we have F t(x) = ∑t

k=0
(t
k

)
xk. When t = 2n, one can check (still

by induction) that F 2n(x) = x0 + x2n . From that, we can deduce that for any initial Bernoulli
measure µ, F 2n

∗ µ→ µ⊗ µ, and most Bernoulli measures do not satisfy µ⊗ µ = λ.

This phenomenon taking place around powers of two explains the behaviour observed in
Figure 3.1, and this result shows that a similar phenomenon occurs for larger alphabets and
neighbourhoods.
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Proof of Proposition 3.1.2. Let F be an affine cellular automaton on alphabet (Z/nZ,+).
Since endomorphisms of Z/nZ are all of the form x 7→ x · y for some y ∈ Z/nZ, the local
rule f of F can be written as f((xi)i∈N ) = ∑

i∈N αi · xi + β for some neighbourhood N
and some (αi) ∈ (Z/nZ)N , β ∈ Z/nZ.

Decomposing n is prime factors, we get an integer k, a sequence of distinct primes
(pi)i≤n and a sequence of positive integers (qi)i≤n such that n = ∏

i≤n p
qi
i , and by the

Chinese remainder theorem:
Z/nZ '

∏

i≤n
Z/pqii Z.

Therefore:
Hom((Z/nZ)N ,Z/nZ) '

∏

i≤n
Hom((Z/pqii Z)N ,Z/pqii Z).

In other words, a linear automaton (Z/nZ)Z → (Z/nZ)Z can be decomposed in a unique
way as a product of linear automata (Z/pqii Z)Z → (Z/pqii Z)Z, and the same is true for
affine automata. SinceMσ((Z/pqii Z)Z) ⊂Mσ((Z/nZ)Z) up to the inclusion function that
sends a Bernoulli to a Bernoulli, it is enough to show that at least one of these automata
does not randomise Ber(Z/pqii Z).

Therefore we assume without loss of generality that A = Z/pqZ for some prime p and
some q > 0, and also that N = [0, d] for some d > 0 by composing F with a power of σ if
necessary. We keep the notation f((xi)0≤i≤d) = ∑d

i=0 αi·xi+β for some (αi) ∈ (Z/pqZ)[0,d],
β ∈ Z/pqZ.

Define the polynomial PF ∈ Z/pqZ[X] as PF (X) = ∑d
i=0 αiX

i. We prove by straight-
forward induction that Fn(x)0 = ∑dn

i=0 α
i
nxi + βn, where αin is the coefficient of PF (X)n

corresponding to Xi and βn is some constant.
Furthermore, by the multinomial formula, we have:

PF (X)n =
nd∑

`=0




∑

k1+2k2+···+dkd=`
k0+k1+···+kd=n

(
n

k0, . . . , kd

)
d∏

i=0
αkii


X

`. (3.1)

where
( n
k1,...,kd

)
is the multinomial coefficient defined as n!

k1!···kn! . Now we show that,
when n = pk for any k ≥ q, P (X)pk admits less than d ·pq+1 nonzero coefficients (modulo
pq). We use the following generalisation of Kummer’s classical result about congruences
of binomial coefficients:

Theorem 3.1.3 (Fray, [Fra67]).
Let p be a prime number, k0, . . . , kd ∈ Nd+1 and n = k0 + · · ·+ kd. The number:

max
{
k : pk

∣∣∣
(

n

k0, . . . , kd

)}

is equal to the number of carries that appear when adding k1 + · · ·+ kd = n in base p.
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Corollary 3.1.4. Let p be a prime number, k ≥ q > 0 two integers and k0, . . . , kd ∈ Nd+1

satisfying ∑i ki = pk. We have

pq
∣∣∣
(

pk

k0, . . . , kd

)
unless all ki are divisible by pk−q.

This corollary follows directly from the theorem by noting that, since pk is written
100 · · · 00 in base p, the only way to get less than q carries in the addition k0 + · · ·+kd = pk

is that the last k − q digits of each ki are all zeroes. See Figure 3.3 for an illustration.

1 1 1 0 0 0

+ 1 0 0 0 0

+ 1 2 0 0 0

1 0 0 0 0 0

Figure 3.3: Illustration of the corollary with p = 3, k = 5. To get q = 2 carries or less, the
3 = k − q last digits of each ki must be 0.

In particular, in Equation 3.1 with n = pk, the coefficient of X` is nonzero only if ` is
divisible by pk−q, which makes for at most d · pq + 1 nonzero coefficients. In other words,

∀k ≥ q, PF (X)pk =
dpq∑

i=0
αip

k−q

pk
Xipk−q .

The coefficients
(
αip

k−q

pk

)
0≤i≤dpq

∈ (Z/pqZ)dpq+1 and βpk can only take a finite number of

values. Therefore we can find a sequence (kn)n∈N where each αip
kn−q

pkn
is equal to a constant

ai and the βpkn is equal to a constant b. In other words,

∀n ∈ N, PF (X)pkn =
dpq∑

i=0
aiX

ipkn−q

∀n ∈ N,∀x ∈ AZ, F p
kn (x)0 =

dpq∑

i=0
aixipkn−q + b

We now show that F p
kn

∗ µ −→
t→∞

⊗dpq

i=0 a
∗
iµ⊗ δ̂b, where a∗iµ is the image measure of µ under

multiplication by ai. We show that this convergence holds for every cylinder [u], which
is sufficient since cylinders form a base of the topology. For u ∈ Al and any n ∈ N, and
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denoting b` = b · · · b · · · b ∈ A`,

F p
kn

∗ µ([u]) =
∑

v0,...,vdpq∈A`
a0v0dots+adpqvdpq+b`=u

µ
(
[v0]0 ∩ [v1]pkn−q ∩ · · · ∩ [vdpq ]dpkn

)

=
∑

v0,...,vdpq∈A`
a0v0+···+adpqvdpq+b`=u

µ([v0]0) · µ([v1]pkn−q) · · ·µ([vdpq ]dpkn ) + O
n→∞(1)

=
dpq⊗

i=0
a∗iµ([u]) + O

n→∞(1)

where the second line is obtained by dpq applications of shift-mixing, since all cylin-
ders depend on variables located pkn−q − l → ∞ cells apart. Therefore F p

kn

∗ µ con-
verges in weak-∗ convergence to ⊗dpq

i=0 a
∗
iµ([u]) ⊗ δ̂b. It suffices then to find a nonde-

generate Bernoulli measure such that ⊗dpq

i=0 a
∗
iµ([u])⊗ δ̂b 6= λ, for example by considering

µ = Ber
(
1− ε, ε

pq−1 , . . . ,
ε

pq−1

)
for ε small enough that (1− ε)dpq > 1

pq .

One should not conclude that randomisation is impossible for any affine automata on any
Bernoulli initial measure. For example, take A = Z/5Z, F the linear automaton defined by

F (x)0 = x0 + 2 · x1 mod 5 and µ = Ber
(

1+ 1√
5

2 , 0,
1− 1√

5
4 ,

1− 1√
5

4 , 0
)

. Then one can check that

F∗µ = a, which implies of course that F t∗µ→ a. This should be considered as coincidental, as
opposed to a “structural” randomisation on a large class.

As a side remark, this proof gives an insight as to the elements of V(F, µ), for example in
the simple case F (x)0 = x0 + x1 with A = Z/2Z and an initial σ-mixing measure µ. For any n
and k, V(F, µ) contains all measures of the form

⊗2n
i=1 F

k
∗ µ, and also measures νn,k such that

F k∗ νn,k = ⊗2n
i=1 µ. By closure, V(F, µ) also contains the uniform measure. We believe that these

cases cover all measures of V(F, µ), but this is not proven and the νn,k are not well understood.

Roughly speaking, we just saw that the algebraic structure brings some “randomising
power”, but also too much regularity in the space-time diagram which prevents the automaton
from randomising in pointwise convergence. Visually, we obtained good results by adding a
perturbation consisting in composing the local rule of a linear automaton by a permutation.
We conjecture that the “randomising power” does not come from algebraicity but from more
general properties, while the regularity of algebraic automata is actually detrimental to the
randomising process.

Definition 3.1.4 (Positively expansive automaton).
A cellular automaton F is positively expansive if it admits an expansivity constant ε > 0
such that:

∀x 6= y ∈ AZ, ∃t ∈ N, d(F t(x), F t(y)) ≥ ε.

Conjecture 3.1.5. A nontrivial bipermutative automaton (not a power of σ) randomises in
Cesàro mean. Furthermore, it randomises directly if, and only if, it does not factorise on an
affine automaton.
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A stronger version of this conjecture would be replace the bipermutativity hypothesis by
positive expansiveness. However, the decidability of positive expansiveness is still an open
problem in the one-dimensional case (see for example [Luk10]), hence an exhaustive experi-
mental test of this conjecture seems unreasonable. However we give in next section an example
of a positively expansive, non-bipermutative automaton that seems to randomise experimen-
tally.

3.1.2 Experimental evidence

In this section, we give some experimental evidence for the randomisation process.

Proposition 3.1.6. If |A| + |N | ≤ 5, then any bipermutative cellular automaton defined on
alphabet A and neighbourhood |N | is affine.

Proof. Taking N of the form [0, r] without loss of generality, we enumerated with the help
of a computer all pairs (|A|, |N |) with |A|+ |N | ≤ 5 and all bipermutative local rules for
each pair. We then enumerated all possible group structures on A, and all affine automata
for each group structure. Both sets were equal.

Proposition 3.1.2 is a strong hint that affine automata are not good randomisation candi-
dates. In the following, we consider the case |A| = 2 and |N | = 4, which are the values for
which the set of cellular automata to test is the smallest.

We further reduce the set to explore by removing cellular automata that behave in essen-
tially the same way. Let SA be the set of permutations of the set A.

Definition 3.1.5 (Mirror and permutation operators).
The mirror operator is defined as:

∀a ∈ AZ, ∀i ∈ Z, b(a)i = a−i.

Let τ ∈ SA. The permutation operator associated to τ is defined as:

∀a ∈ AZ, ∀i ∈ Z, Tτ (a)i = τ(ai).

Definition 3.1.6 (Equivalence).
We say that two cellular automata F and G are mirror-equivalent, and we write F ∼

mir
G,

if F ◦ b = b ◦G.
We say that two cellular automata F and G are permutation-equivalent, and we write
F ∼

perm
G, if there is a permutation τ ∈ SA such that F ◦ Tτ = Tτ ◦G.

We simply say that F and G are equivalent if F ∼ G, where ∼ is the symmetric and transitive
cloture of ∼

mir
∪ ∼
perm

.

Proposition 3.1.7. This equivalence relation preserves affinity and bipermutativity. If the
initial class of measures is invariant under the mirror and permutation operators, then it also
preserves the randomising character of cellular automata.
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Proof. This is a direct consequence of the definition and of the fact that the uniform
Bernoulli measure is invariant under these operators.

Thus, we perform our tests only for one representant per equivalence class. For the same
reason, we assume the neighbourhood of the tested automata is [0, r] for some r > 0.

Experimental procedure
To test experimentally the randomising properties of cellular automata, we fix an arbitrary

nonuniform, nondegenerate, computable Bernoulli measure µ and we approximate the value
of dM(F t∗µ, λ) for t ranging from 0 to 50, where λ is the uniform measure. The value of
50 is arbitrary but is experimentally large enough to make a difference between apparently
randomising and nonrandomising behaviours.

The choice of the particular initial measure may impact the phenomenon, in particular with
“coincidental randomisation” as described earlier. However, we did not have enough resources
to test many initial measures with enough repetitions to get significant results (each test took
between one and two days). We repeated the test with a few different initial measures and
fewer repetitions, obtaining the same apparent (though not significant) results regardless of
the initial measure.

Our experimental procedure is as follows:

First fix a maximal pattern length `max. We have
∣∣∣∣∣∣
dM(F t∗µ, λ)−

`max∑

l=0

1
2l max

u∈Al

∣∣∣∣F
t
∗µ([u])− 1

|A|l
∣∣∣∣

∣∣∣∣∣∣
≤ 1

2`max

We choose `max so as to control the first error term 1
2`max .

Draw independently n words (xi[0,`max+50r−1])0≤i≤n according to µ, meaning that the word
u is drawn with probability µ([u]). Then compute F t(xi)[0,`max−1] for t ∈ [0, 50] and each i.
For every t ∈ [0, 50], l ≤ `max and u ∈ Al, (1[u](F t(xi)[0,l−1]))i≤n is a sequence of independent
Bernoulli variables of parameter F t∗µ([u]). Therefore dn,tu = ∑n

i=0 1[u](F t(xi)[0,l−1]) follows the
corresponding binomial law of parameters (n, F t∗µ([u])), and by the central limit theorem,

1√
n

dnu − nF t∗µ([u])
F t∗µ([u])(1− F t∗µ([u])) −→

law
N (0, 1),

where N (0, 1) is the standard normal distribution centered on 0 of variance 1. More precisely,
if Dn,t

u and Φ are the cumulative distribution functions of the above distribution and a standard
normal distribution, respectively, the Berry-Esseen theorem states that:

sup
x∈R
|Dn,t

u (x)− Φ(x)| ≤ 1√
n

C(1− 2F t∗µ([u]))
F t∗µ([u])2(1− F t∗µ([u]))2

where C < 0.4748 [She11]. Denote εn,tu this error term, which depends on our estimate of
F t∗µ([u]), but it is typically very small when the estimate is close to 1

2 .

Intuitively, for n large enough, d
n
u
n is almost distributed like a Gaussian centered on F t∗µ([u]),

of variance 1√
n

1
F t∗µ([u])(1−F t∗µ([u])) ≤

1
2
√
n

. If we draw a variable according to this Gaussian, it
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would fall in the interval F t∗µ([u]) ± 1
2
√
n

Φ−1
(

1+p
2

)
with probability at least p. That means

that, to obtain a confidence level p on the value of F t∗µ([u]), we get a confidence interval:
∣∣∣∣
dnu
n
− F t∗µ([u])

∣∣∣∣ ≤
1

2
√
n
· Φ−1

(1 + p

2 + εn,tu

)
with confidence level p.

Now notice that

P
(

max
u∈Al

∣∣∣∣∣F
t
∗µ([u])− dn,tu

n

∣∣∣∣∣ ≥ C
)
≤ |A|l · P

(∣∣∣∣F
t
∗µ([v])− dnv

n

∣∣∣∣ ≥ C
)

for any constant C > 0 and any arbitrary v ∈ Al. Thus, to get a confidence level p on
the maximum of |A|l positive terms, it is enough to get a confidence level 1 − 1−p

|A|l on each
individual term. Therefore:

max
u∈Al

|F t∗µ([u])− dn,tu | ≤
1

2
√
n
· Φ−1

(
1− 1− p

2|A|l + max
u∈Al

εn,tu

)
with confidence level p.

To sum up,
∣∣∣∣∣∣
dM(F t∗µ, λ)−

`max∑

l=0

1
2l max

u∈Al

∣∣∣∣∣
dn,tu
n
− 1
|A|l

∣∣∣∣∣

∣∣∣∣∣∣
≤ 1

2
√
n
·
∑

l≤`max
Φ−1

(
1− 1− p

2|A|l + max
u∈Al

εn,tu

)
+ 1

2`max

In all the following, we use p = 0.99, `max = 7 and we draw n = 400, 000 configurations.
The radius of the confidence interval varies with time since εn,tu depends on the estimate of
each F t∗µ([u]). Nevertheless, since this term is experimentally negligible, we give only an
upper bound.

Results for A = 2, |N | = 4

The results of our tests are shown in Figures 3.7 (pointwise convergence) and 3.8 (con-
vergence in Cesàro mean). For each equivalence class of bipermutative cellular automata
(obtained by exhaustive enumeration and testing), we indicate whether it corresponds to lin-
ear cellular automata and we underline one representant (using the same numbering system
as the elementary cellular automata, see Definition 0.1.15) on which the test is performed. On
the right side is drawn our estimation of dM(F t∗µ, λ) for t ranging from 0 to 50, where µ is the
Bernoulli measure of parameters 1

4 and 3
4 . The plotted value has a confidence level at p = 0.99

up to an error at most 0.0102.
The results seem to support the conjecture, keeping in mind that when |A| = 2, all au-

tomata factorising on a linear automata are linear themselves. To better understand the phe-
nomenon, we also represent one space-time diagram for the representants of the first two
classes on Figure 3.4. It should be apparent that the peaks in the first graph correspond to
times when the density of 0 and 1 are not uniform (more zeroes than one).

Example (Non-abelian linear automaton).
We consider the simplest cellular automaton with a noncommutative group structure: takeA =
S3, neighbourhood N = {0, 1} and local rule f(a0, a1) = a0 ◦ a1. We approximate dM(F t∗µ, λ)
for t ranging from 0 to 50, where µ is the Bernoulli measure of parameters ( 1

32 ,
1
32 ,

1
16 ,

1
8 ,

1
4 ,

1
2)
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Linear automata Bipermutative, non-affine automata

Figure 3.4: Space-time diagrams of rules 21930 (left) and 22185 (right). Arrows correspond to
the peaks in the first graph of the table.

(arbitrary). The plotted value have a confidence level at p = 0.99 up to an error at most
0.0102. Even though the following graph show peaks located at powers of two (16 then 32),
the confidence interval is way too broad to reach a conclusion (notice the scale is about 10
times smaller than other graphs). We did not have enough computing power and time to reach
a definitive conclusion.

10 20 30 40 50

0.01

0.02

0.03

0.04

0.05

0.06

Figure 3.5: dM(F t∗µ, λ) as a function of t where F is non-abelian linear.

Example (Positively expansive, non bipermutative, randomising automaton).
We use the notion of two-sided permutation cellular automata defined in [JNY13], where the
authors prove the expansiveness of a class of automata not very different from bipermutative
automata. We consider here the simplest member from this class: a cellular automaton F
defined on the alphabet {0, 1}, the neighbourhood {0, 1, 2, 3}, and the local rule

f(u0, u1, u2, u3) =





u0 + u2 if u1 = 0;

u0 + u3 if u1 = 1.

It is clear that this automaton is not bipermutative (and thus cannot factorise on a linear
automaton), and it is positively expansive as proved in [JNY13], Theorem 4.7. Experimental
results (Figure 3.6) seem to suggest that this automaton randomises. Similarly to the other
experiments, this diagram shows an estimation of dM(F t∗µ, λ) for t ranging from 0 to 50, where
µ is the Bernoulli measure of parameters 1

4 and 3
4 . The plotted value have a confidence level

at p = 0.99 up to an error at most 0.0102.
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Figure 3.6: dM(F t∗µ, λ) as a function of t where F is positively expansive.
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equivalence
class

linearity
f(a, b, c, d) =

dM(F t∗µ, λ) as a function of t
where µ = Ber(1

4 ,
3
4) and t ∈ {0, . . . , 50}.

21930
43605

linear
a+ d

10 20 30 40 50

0.05

0.1

0.15

0.2

0.25

22185
27285

non affine
a+ (1− b)×
(1− c) + d

10 20 30 40 50

0.05

0.1

0.15

0.2

0.25

22950
26010
39525
42585

non affine
a+ b×

(1− c) + d
10 20 30 40 50

0.05

0.1

0.15

0.2

0.25

23205
26265
39270
42330

linear
a+ b+ d

10 20 30 40 50

0.05

0.1

0.15

0.2

0.25

27030
38505

linear
a+ b+ c+ d

10 20 30 40 50

0.05

0.1

0.15

0.2

0.25

38250
43350

non affine
a+ b× c+ d

10 20 30 40 50

0.05

0.1

0.15

0.2

0.25

Figure 3.7: Experimental results for pointwise convergence, A = 2, |N | = 4.
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equivalence
class

linearity
f(a, b, c, d) =

∑
t≤T dM(F t∗µ, λ) as a function of T

where µ = Ber(1
4 ,

3
4) and T ∈ {0, . . . , 50}.

21930
43605

linear
a+ d
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non affine
a+ (1− b)×
(1− c) + d

10 20 30 40 50

0.05

0.1
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22950
26010
39525
42585

non affine
a+ b×

(1− c) + d
10 20 30 40 50

0.05

0.1

0.15

0.2

0.25

23205
26265
39270
42330

linear
a+ b+ d
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linear
a+ b+ c+ d
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non affine
a+ b× c+ d
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0.1

0.15

0.2

0.25

Figure 3.8: Experimental results for Cesàro mean convergence, A = 2, |N | = 4.
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Section 3.2

Rigidity

Surjective CA admit the uniform Bernoulli measure as invariant measure, but they may have
many other invariant measures. For some cellular automata, we can obtain rigidity results,
which consists in proving that any F -invariant measure satisfying some properties (excluding
for example measures supported by periodic orbits) must be the uniform measure. Since a
single limit measure (in pointwise or Cesàro mean convergence) is invariant, this could be a
first step towards a randomisation proof.

Rigidity methods for probability measures stem from Furstenberg’s conjecture [Fur67], that
states that any nonatomic probability measure on the unit circle invariant under multiplication
by 2 and 3 (mod 1) must be uniform. This conjecture received a partial positive answer
[Rud90] when the considered measure has nonzero entropy, but the general case is still open.

3.2.1 Mixing criterion

Let us consider the cellular automaton defined on the alphabet A = Z/pZ by Fp(x)k = xk +
xk+1 mod p. The uniform Bernoulli measure λ is an invariant measure of Fp, but Fp has many
other invariant measures, such as δ̂0 and other measures supported by a periodic orbit. We
prove below a first rigidity result for that CA. Let us mention that Miyamoto has obtained
similar results when p = 2 using harmonic analysis [Miy79, Miy94].

Proposition 3.2.1 (Miyamoto, [Miy94]).
Let A = Z/2Z and µ ∈ Mσ(AZ) be a F2-invariant measure that is a convex combination of
σ-mixing measures. Then µ is a convex combination of δ̂0 and λ.

Proposition 3.2.2 (Marcovici).
Let A = Z/pZ and µ ∈Mσ(AZ) be a σ-mixing, Fp-invariant measure with full support on AZ.
Then µ is the uniform measure λ.

Proof. For n ∈ N, define the CA Gn = F p
n

p . Since x 7→ xp is a morphism, we have by
straightforward induction Gn(x)0 = x0 + xpn (scaling property).

Let µ be a σ-mixing measure with full support on AZ that is invariant under the action
of Fp. Then, for any n ∈ N, µ is an invariant measure of Gn. Let us fix some ` ≥ 1 and
consider the cylinders of length `. Let w ∈ A` be such that µ([w]) = minu∈A` µ([u]),
and assume that there exists some w′ ∈ A` such that µ([w′]) > µ([w]). We set ε =
µ([w′])− µ([w]) > 0.

Since µ is σ-mixing:

∀α > 0,∃n ∈ N,∀u, v ∈ A`,
∣∣∣µ
(
[u] ∩ σ−pn [v]

)
− µ([u])µ([v])

∣∣∣ < α

2` .
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The measure µ is invariant under Gn, so:

∀u ∈ A`, µ([u]) = µ(G−n([u])) =
∑

v∈A`
µ([v] ∩ σ−pn([u− v])),

where the linear operations on words are made bit by bit modulo p.
In particular, we obtain :

µ([w]) =
∑

v∈A`
µ([v] ∩ σ−pn [w − v])

≥
∑

v∈A`
µ([v])µ([w − v])− α

≥
∑

v∈A`
v 6=w−w′

µ([v])µ([w − v]) + µ([w − w′])µ([w′])− α

≥
∑

v∈A`
v 6=w−w′

µ([v])µ([w]) + µ([w − w′])(µ([w]) + ε)− α

≥ µ([w]) + εµ([w − w′])− α.

Any choice of α < εµ([w − w′]) gives a contradiction. Thus, the only Fp-invariant
measure of full support that is σ-mixing is the uniform measure.

3.2.2 Entropy criterion

In this section, we use a criterion based on σ-ergodicity and entropy that ensures that invariant
measures of A family of bipermutative CA must be the uniform measure λ. Since F commutes
with the shift σ, the couple (F, σ) defines a Z2 action on AZ.

Let P be a finite partition of AZ, that is, a covering of AZ by a finite number of disjoint
sets. We denote by P` the partition corresponding to {[u]−` : u ∈ A2`+1}. The refinement of
two partitions P and P ′ is the partition defined by:

P ∨ P ′ = {A ∩B : A ∈ P and B ∈ P ′}.

Definition 3.2.1 (Entropy).
The entropy of the partition P is defined by:

Hµ(P) = −
∑

A∈P
µ(A) log(µ(A)).

The entropy of a cellular automaton F : AZ → AZ is defined by:

hµ(F ) = lim
`→∞

lim
N→∞

1
N
Hµ

(
N−1∨

n=0
F−n(P`)

)
.
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This limit exists by subadditivity. We refer for example to [Wal82] for a complete introduc-
tion to entropy.

Note that the entropy of the shift σ can also be written:

hµ(σ) = lim
k→∞

∑

u∈Ak
µ([u]) logµ([u]).

In the following theorems, for different cellular automata, we characterise F -invariant
measures that satisfy the following conditions (∗):

(i) µ ∈Mσ−erg(AZ),
(ii) hµ(F ) > 0,

Ergodicity with respect to σ is a strong assumption, but the assumption of ergodicity for
the action (F, σ) is not sufficient to guarantee the results.

Theorem 3.2.3 (Host, Maass, Martinez [HMM03]).
Let A = Z/pZ with p prime, and let F be the linear CA defined by F (x)0 = ax0 + bx1 + c for
some a, b ∈ Z/pZ∗, c ∈ Z/pZ.

If µ is F -invariant and satisfies (∗), then µ = λ.

We generalise the tools of [HMM03] to prove a similar rigidity result when the local func-
tion is “perturbed” by composition with a permutation.

Theorem 3.2.4.
Let A = Z/nZ, and let F be a bipermutative CA defined by F (x)0 = ρ(ax0 + bx1 + c) for
some a, b ∈ Z∗n, c ∈ Zn, and ρ ∈ S(A).

If µ is F -invariant and satisfies (∗), then hµ(F ) = log k, where k divides n. In partic-
ular, if n is a prime number, then hµ(F ) = logn and µ = λ.

First let us introduce some preliminary results.

We denote by B the Borel σ−algebra of AZ. We set B1 = F−1(B), and given a measure
µ ∈M(AZ), we define µx as its conditional measure with respect to B1 at point x. That is, for
A ∈ B, one has µx(A) = E(1A|B1)(x), and µ(·) =

∫
AZ µx(·)dµ(x).

For x ∈ AZ, we set F(x) = {y ∈ AZ : F (y) = F (x)} the fiber of x.

Lemma 7. Let F : AZ → AZ be a cellular automaton and let µ ∈Mσ(AZ). We have:

1. σ∗µx = µσ(x) ,
2. the support of the measure µx is supp(µx) = F(x).

Let us now assume that F is a bipermutative CA of neighbourhood N = {0, 1}. That means
that, for any x ∈ AZ and for any a ∈ A, there exists a unique element y ∈ F(x) such that
y0 = a. For ω ∈ S(A), we can thus define the operator:

Tω : AZ −→ AZ

x 7−→ y such that y ∈ F(x) and y0 = ω(x0).
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For ω ∈ S(A), we also define:

φω(x) = Tω∗µx({x}) = µx(T−1
ω (x)) = µx({Tω−1(x)}).

In particular, we have φId(x) = µx({x}) and φω(x) = φId(Tω−1(x)). Finally, we set:

Eω = {x ∈ AZ : φω(x) > 0}.

Proposition 3.2.5 (Entropy formula for bipermutative CA, Section 4.3 of [HMM03]).
Let F be a bipermutative CA with N = {0, 1} and µ ∈Mσ(AZ). Then:

hµ(F ) =
∫

AZ
− lnφId(x)dµ(x).

Proposition 3.2.6. Let µ be a (σ, F )-invariant measure, ergodic for σ and of positive entropy
for F . The following properties are satisfied:

1. φId ◦ σ = φId µ-a.e.;
2. There is a constant c such that φId ◦ F = φId = c µ-a.e.;
3. µ(EId) = 1;
4. For ω ∈ S(A), Tω−1∗1Eω∗µ is absolutely continuous with respect to µ, that is: if µ(A) = 0,

then µ(Tω(A) ∩ Eω) = 0;
5. φω = φId µ-a.e. in Eω.

Proof. 1. By Lemma 7, σ∗µx = µσ(x). Consequently, φId(σ(x)) = µσ(x)({σ(x)}) =
µx({x}).

2. By the first point, for any real r, the set φ−1
Id ({r}) is σ-invariant. By σ-ergodicity of

µ, it means the function φId is equal µ-a.e. to some constant c. Since µ is F -invariant,
it follows that φId(F (x)) = c for µ-a.e. x. We thus obtain φId(F (x)) = φId(x) = c
for µ-a.e. x.

3. By the first point and the σ-ergodicity of µ, we have µ(EId) = 0 or µ(EId) = 1.
Since hµ(F ) > 0 by hypothesis, it follows from Proposition 3.2.5 that µ(EId) = 1.

4. We have µ(A) =
∫
AZ µx(A)dµ(x), so that if µ(A) = 0, then µx(A) = 0 µ-a.e. In

particular, for µ-a.e. x ∈ Tω(A), 0 = µx(A) ≥ µx(T−1
ω (x)) = φω(x), thus x 6∈ Eω.

5. By the second point, φId(F (x)) = φId(x) for µ-a.e. x. Using the fourth point, we
obtain that for µ-almost every x ∈ Eω, φId(F (Tω−1(x))) = φId(Tω−1(x)). Since by
definition F (Tω−1(x)) = F (x), it comes φId(x) = φId(Tω−1(x)) = φω(x) for µ-a.e.
x ∈ Eω.

Proposition 3.2.7. Let ω ∈ S(A). If there exists d ∈ N such that Tω ◦ σd = σd ◦Tω, then for
any ω′ ∈ S(A), we have: φω = φω′◦ω µ-a.e. in Eω′ .
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Proof. For any d > 0, σd-invariant measures form a closed, convex set and their extremal
points are σd-ergodic measures [Wal82]. Therefore every σd-invariant measure can be
written as a convex combination of σd-ergodic components.

Let ν be such a σd-ergodic component of µ. The measure F∗ν is σd-invariant and
ergodic for σd, and it is absolutely continuous with respect to F∗µ = µ. Thus, F∗ν is an
ergodic component of µ for σd, and it is equal to σjν for some j ∈ {0, . . . , d− 1}, so that
F d∗ ν = σjdν = ν.

The function φω is σd-invariant, since φω(σd(x)) = φId(Tω−1(σd(x))) = φId(σd(Tω−1(x))),
and by the first point of Proposition 3.2.6, φId(σd(Tω−1(x))) = φId(Tω−1(x)) = φω(x) µ-
a.e. Thus, for each ergodic component ν of µ (for σd), φω is equal ν-a.e. to some constant
cν,ω. And since F d∗ ν = ν, we obtain that φω(F d(x)) = φω(x) = cν,ω ν-a.e. This is true for
each ergodic component of µ. Consequently, φω(F d(x)) = φω(x) µ-a.e.

Using the fourth point, we obtain that for µ-a.e. x ∈ Eω′ , φω(F d(Tω′−1(x))) =
φω(Tω′−1(x)). Since F d(Tω′−1(x)) = F d(x), it follows that φω(F d(Tω′−1(x))) = φω(F d(x)) =
φω(x) µ-a.e. Finally, φω(Tω′−1(x)) = φω(x), that is, φω(x) = φω′◦ω(x) for µ-a.e. x ∈
Eω′ .

Proof of Theorem 3.2.4. For k ∈ Z/nZ, let ωk ∈ S(A) be the permutation defined by
ωk(j) = j + k. For simplicity, we replace the notations Tωk , φωk , Eωk by Tk, φk, Ek respec-
tively.

Set v = b−1a (by hypothesis, F is bipermutative and a, b are invertible in Z/nZ) and
let d be such that v2d = 1. Observe that Tk ◦ σ2d = σ2d ◦ Tk, since two elements of the
same fiber can be represented as follows.

. . . x0 x1 x2 x3 . . . x2d . . .

. . . x0 + k x1 − kv x2 + kv2 x3 − kv3 . . . x2d + k . . .

Let µ be a (σ, F )-invariant measure, ergodic for σ and of positive entropy for F . We know
by Proposition 3.2.6, third point, that µ(E0) = 1, and that there exists a constant c such
that φk(x) = c µ-a.e. in Ek.

By Proposition 3.2.7, for any i, k ∈ A, φk = φi+k µ-a.e. in Ei.
Let us notice that by definition, ∑n−1

j=0 φj(x) = µx(F(x)) = 1. Let j be the smallest
element of {1, . . . , n} such that µ(Ej) > 0. There exists such a j, since otherwise, we would
have c = 1 and by Proposition 3.2.5 hµ(F ) = 0. Then, in Ej , we have µ-a.s. c = φ0 = φj =
φ2j = φ3j = . . . Moreover, for values i that are not in the subgroup of Z/nZ generated by
j, we have µ-a.s. φi = 0, since otherwise, we would get a contradiction with the definition
of j. Consequently, c = gcd(j, n)/n, and by Proposition 3.2.5, hµ(F ) = − log c. If n is
prime, then the only possibility is that gcd(j, n) = 1 and hµ(F ) = logn, so that µ = λ,
meaning that µ is the uniform measure.





4Conclusion and perspectives
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In this thesis, we considered various questions centered around limit measures of cellu-
lar automata. The interest in limit measures comes from two main reasons: they are a good
description of the typical asymptotic behaviour of a cellular automata iterated on a random
configuration, and as such are a good tool to describe self-organisation phenomena; and they
are a natural notion of output when considering that cellular automata are performing com-
putation on sources of randomness.

The main result of this thesis is, in Chapter 1, the characterisation of all measures that can
be reached as limit measures by a cellular automaton starting from a simple measure µ by
computability conditions. The main tools were computability analysis on spaces of probability
measures, and a sophisticated construction involving Turing machine simulations to compute
any probability measure in cellular automata with minimal hypotheses. This result completely
characterises probability measures that can be algorithmically simulated by cellular automata
and partly explains the variety of behaviours observed in simulations. The remaining gaps are
mostly the question of which full support measures can be reached in this way without in-
creasing the alphabet, and in which ways it is possible to have the simulated (output) measure
depend on the initial (input) measure).

In Chapter 2, we studied various questions related to the typical asymptotic behaviour of
a family of cellular automata comporting finite words behaving like interacting particles. We
explored consequences of the particle dynamics on the limit measure, especially when they
exhibits good collision properties, and on the asymptotic time evolution of some parameters
related to the distribution of the particles. This required to model the time evolution of the
particles by a well-known random walk process, which gave us access to standard tools: in
particular, the invariance principle to approximate the process by a Brownian motion. Refining
this approach allowed us to handle one more difficult example, but generalising this work
to more general particle dynamics (and thus wider classes of cellular automata) will require
further work.

In Chapter 3, we looked for a cellular automaton that converges to the uniform Bernoulli
measure starting from a wide class of initial measure (randomisation phenomenon). We con-
jectured that a link exists between some combinatorial and dynamical properties and this
phenomenon, which was backed up by experimental statistics. However, proving that even
one cellular automaton exhibits such a behaviour is still an open problem. We provided a first
step of a tentative proof through the study of conditions that force an invariant measure under
the action of the cellular automaton to be the uniform Bernoulli measure.

Now we would like to mention some open questions that are of a particular interest to
us and that we are or have been studying, but for which we did not get obtain results that
warranted a mention in this thesis.

Characterising the limit measures in dimension d > 1

In Chapter 1, we characterised measures and sets of measures that can be reached asymptoti-
cally (as µ-limit measures set) by one-dimensional cellular automata iterated on some simple
initial measure. The reason this result was limited to dimension one is the highly ad hoc na-
ture of the construction, which relies on many properties of dimension one such as the fact
that each segment has exactly two neighbours.
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Open question. What sets of measures V ⊂ Mσ(AZd) can be obtained as µ-limit measures
set of some cellular automata F : BZd → BZd with B ⊃ A for some simple initial measure
µ ∈Mσ(AZd)?

Martin Delacourt suggested a construction based on a similar approach of partitioning
space in disjoint areas and performing computation independently on each area. However, the
shape of the areas and the auxiliary processes are very different, and some technical difficulties
have not been solved yet. This is an ongoing collaboration, but we are confident that a similar
result holds for higher dimensions.

Computational power and dynamics of surjective CA

In Section 1.3, we provided a construction with no auxiliary states that could reach any semi-
computable measure without full support at the limit. Doing the same in the full support case
would require the corresponding cellular automaton to be surjective; therefore, to fill the gap
left by Corollary 1.4.4, we need to understand the computational power of surjective automata
in the context of simulation probability measures.

Since surjective cellular automata leave the uniform measure invariant, a direct extension
of Theorem 1.3.1 – and consequently Corollary 1.4.4 – is impossible. Nevertheless, we cannot
conclude that surjective automata have no computational power at all: in Section 3.1, and
particularly Proposition 3.1.2, we saw that not all surjective automata converge to the uniform
measure when starting from a nonuniform measure. Therefore one can ask the following
question:

Open question. Let us fix an initial measure µ ∈ Mσ(AZ). What measures or sets of
measures can be reached at the limit by iterating a surjective cellular automaton F : AZ → AZ

on µ ?

As we explained above, the answer depends on the choice of µ, and in particular the
question is only relevant if µ 6= λ, in contrast with the non-surjective case. We do not expect
that all semi-computable measures can be reached in this way due to the highly constrained
dynamics of surjective automata. This could be a very good example of how restricting the
dynamics of the model can influence its computational power.

4-state cyclic automaton

Using results from [Fis90b] and Section 2.1, we can show that the 4-state cyclic automaton
iterated on the uniform measure does not have any particle remaining in the µ-limit set. How-
ever, the proof of Fisch solves the main difficulty and is highly technical. We are unable to
give a simpler proof of this result within our framework, and to generalise it to other Bernoulli
measures as we did with the 3-state cyclic automaton.

Open question. If µ is a nondegenerate Bernoulli measure, do we have:

F tµ→ ν with ν ∈ Conv(δ̂0, δ̂1, δ̂2, δ̂3)?

By analogy with our results in Section 2.3, it seems even more challenging to determine
exactly the weight given to each Dirac in the limit measure(s) depending on the parameters
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Figure 4.1: The 4-state cyclic automaton.

of the initial Bernoulli measure. In particular, it is difficult to find a simple stochastic process
that describes the time evolution of the CA, playing the same role as the Brownian motion in
Section 2.3. Experimental statistics did not let a clear relationship appear as in Theorem 2.3.1.

Density classification problem

Definition 4.0.2 (Density classification problem).
Let F be a cellular automaton on alphabet {0, 1} and M ⊂ Mσ(AZ) a class of initial
measures.
F performs density classification on M if:

∀µ ∈M,
µ([0]) > µ([1])⇒ F t∗µ −→t→∞ δ̂0

µ([1]) > µ([0])⇒ F t∗µ −→t→∞ δ̂1

,

the behaviour not being specified when µ([0]) = µ([1]).

Open question. Can we find a cellular automaton performing density classification for a large
class of initial measures?

If the randomisation problem can be seen as noise correction in a perfect source of ran-
domness, this problem can be seen as noise correction to keep one bit of information. This
problem was introduced in [Pac88], with the main candidate being the Gács-Kurdiumov-Levy
cellular automaton [GKL87, dSM92], shown in Figure 4.2.

Recently, many researchers took an experimental approach to find new rules that seemed to
perform best on finite configurations (see [Fat13] for a survey), including probabilistic cellular
automata. Recent progress [BFMM12] solved the problem in dimension 2 and higher; however,
it is still open in dimension one even for small classes.
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Figure 4.2: The Gács-Kurdiumov-Levy cellular automaton, a candidate for density classifica-
tion, iterated on an initial measure µ = Ber(1

4 ,
3
4).

In Section 1.5, we constructed a cellular automaton that converged to a limit measure that
was a function of a parameter, the density of a special state in the initial measure. In addition,
we saw in Section 1.3 that it was possible under some circumstances to get rid of the auxiliary
states in this kind of construction. Combining these approaches, and barring some technical
difficulties, we may be able to construct a density classifying CA.

Notice that, by opposition to the current candidates which are relatively simple cellular au-
tomata, such a solution would be highly sophisticated with an extremely large neighbourhood
and very slow convergence.
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[DKB06] Jean-Charles Delvenne, Petr Kůrka, and Vincent Blondel. Decidability and univer-
sality in symbolic dynamical systems. Fundamenta Informaticae, 74(4):463–490,
2006.

[DLMSS56] Karel De Leeuw, Edward F. Moore, Claude E. Shannon, and Norman Shapiro.
Computability by probabilistic machines. Automata studies, 34:183–198, 1956.

[DMC94] Rajarshi Das, Melanie Mitchell, and James P. Crutchfield. A genetic algorithm dis-
covers particle-based computation in cellular automata. Parallel Problem Solving
in Nature III, pages 244–353, 1994.

[DPST11] Martin Delacourt, Victor Poupet, Mathieu Sablik, and Guillaume Theyssier. Direc-
tional dynamics along arbitrary curves in cellular automata. Theoretical Computer
Science, 412(30):3800–3821, 2011.

[dSM92] Paula Gonzaga de Sá and Christian Maes. The Gacs-Kurdyumov-Levin automaton
revisited. Journal of Statistical Physics, 67(3-4):507–522, 1992.

[Elo94] Kari Eloranta. The dynamics of defect ensembles in one-dimensional
cellular automata. Journal of Statistical Physics, 76:1377–1398, 1994.
10.1007/BF02187067.

[EN92] Kari Eloranta and Esa Nummelin. The kink of cellular automaton rule 18 performs
a random walk. Journal of Statistical Physics, 69(5-6):1131–1136, 1992.



BIBLIOGRAPHY 161

[Fat13] Nazim Fatès. Stochastic cellular automata solutions to the density classification
problem. Theory of Computing Systems, 53(2):223–242, 2013.

[Fis90a] Robert Fisch. Cyclic cellular automata and related processes. Physica D: Nonlinear
Phenomena, 45(1–3):19–25, 1990.

[Fis90b] Robert Fisch. The one-dimensional cyclic cellular automaton: a system with de-
terministic dynamics that emulates an interacting particle system with stochastic
dynamics. Journal of Theoretical Probabilities, 3(2):311–338, 1990.

[FM10] Sébastien Ferenczi and Thierry Monteil. Infinite words with uniform frequencies,
and invariant measures. In Valérie Berthé and Michel Rigo, editors, Combina-
torics, Automata and Number Theory, pages 374–415. Cambridge University Press,
2010.

[FMMN99] Pablo A. Ferrari, Alejandro Maass, Servet Martinez, and Peter Ney. Cesàro mean
distribution of group automata starting from measures with summable decay.
Ergodic Theory and Dynamical Systems, 20(6), 1999.

[Fra67] Robert D. Fray. Congruence properties of ordinary and q-binomial coefficients.
Duke Mathematical Journal, 34:467–480, 1967.

[Fur67] Harry Furstenberg. Disjointness in ergodic theory, minimal sets, and a problem in
diophantine approximation. Theory of Computing Systems, 1(1):1–49, 1967.

[Gác01] Peter Gács. Reliable cellular automata with self-organization. Journal of Statistical
Physics, 103(1-2):45–267, 2001.

[GHR11] Stefano Galatolo, Mathieu Hoyrup, and Cristobal Rojas. Dynamics and abstract
computability: computing invariant measures. Discrete and Continuous Dynamical
Systems-Series A, 29(1):193–212, 2011.

[GKL87] Peter Gács, Georgii L. Kurdiumov, and Leonid A. Levin. One-dimensional homoge-
neous media dissolving finite islands. Problemy Peredachi Informatsii, 14:92–96,
1987.

[Gra83] Peter Grassberger. New mechanism for deterministic diffusion. Physical Review A,
28:3666–3667, 1983.

[Gra84] Peter Grassberger. Chaos and diffusion in deterministic cellular automata. Physica
D: Nonlinear Phenomena, 10(1–2):52 – 58, 1984.

[Grz57] Andrzej Grzegorczyk. On the definitions of computable real continuous functions.
Fundamenta Mathematicae, 44:61–77, 1957.

[HC97] James E. Hanson and James P. Crutchfield. Computational mechanics of cellular
automata: An example. Physica D: Nonlinear Phenomena, 103(1-4):169–189,
1997.

[HCM98] Wim Hordijk, James P. Crutchfield, and Melanie Mitchell. Mechanisms of emer-
gent computation in cellular automata. In Parallel Problem Solving from Nature V,
pages 613–622. Springer, 1998.



162 BIBLIOGRAPHY

[HdMS11] Benjamin Hellouin de Menibus and Mathieu Sablik. Self-organization in cellular
automata: a particle-based approach. In Developments in Language Theory, pages
251–263, 2011.

[HdMS12] Benjamin Hellouin de Menibus and Mathieu Sablik. Entry times in automata with
simple defect dynamics. In Enrico Formenti, editor, Proceedings 18th international
workshop on Cellular Automata and Discrete Complex Systems and 3rd international
symposium Journées Automates Cellulaires, volume 90 of Electronic Proceedings in
Theoretical Computer Science, pages 97–109. Open Publishing Association, 2012.

[HdMS13] Benjamin Hellouin de Menibus and Mathieu Sablik. Characterisation of sets
of limit measures after iteration of a cellular automaton on an initial measure.
arXiv:1301.1998, accepted to Ergodic Theory and Dynamical Systems, 2013.

[Hed69] Gustav A. Hedlund. Endomorphisms and automorphisms of the shift dynamical
system. Mathematical Systems Theory, 3(4):320–375, 1969.

[HM10] Michael Hochman and Tom Meyerovitch. A characterization of the entropies
of multidimensional shifts of finite type. Annals of Mathematics. Second Series,
171(3):2011–2038, 2010.

[HMM03] Bernard Host, Alejandro Maass, and Servet Martinez. Uniform Bernoulli measure
in dynamics of permutative automata with algebraic local rules. Discrete and
Continuous Dynamical Systems, 9:1423–1446, 2003.

[Hoc09] Michael Hochman. On the dynamics and recursive properties of multidimensional
symbolic systems. Inventiones Mathematicae, 176(1):131–167, 2009.

[Hur87] Lyman P. Hurd. Formal language characterizations of cellular automaton limit
sets. Complex Systems, 1:68–80, 1987.

[Hur90] Mike Hurley. Ergodic aspects of cellular automata. Ergodic Theory and Dynamical
Systems, 10(4):671–685, 1990.

[JNY13] Camilo Jadur, Masakazu Nasu, and Jorge Yazlle. Permutation cellular automata.
Acta applicandae mathematicae, 126:203–243, 2013.

[Kar94] Jarkko Kari. Rice’s Theorem for the limit sets of cellular automata. Theoretical
Computer Science, 127:229–254, 1994.

[KCG94] Pascal Koiran, Michel Cosnard, and Max Garzon. Computability with low-
dimensional dynamical systems. Theoretical Computer Science, 132(1–2):113 –
128, 1994.
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