
Master Parisien de Recherche en Informatique, voie universitaire 2022–2023

Handout
Computability, Complexity, Models of Computation

Benjamin Hellouin de Menibus, IUT d’Orsay

Version of January 23, 2023

Foreword

This document is a handout for the class “Computability, Complexity, Models of Com-
putation” taught at the MPRI – university track, Université Paris-Saclay, 2022–2023.
Thanks to Emma Caizergues, Atte Torri, Léo Kulinski, Matthieu Robeyns, Mohamed
Bassiouni, Pablo Arnault and Paul Patault for various suggestions, improvements, and
course notes.

Contents

1 Models of computation and intuitive computability 2
1.1 Models of computation, Church-Turing thesis 2
1.2 Turing machines . 4
1.3 Computable functions . 4
1.4 A few operations on computable functions 5

2 Encodings, cardinality issues and diagonalisation 6
2.1 Encodings and countability . 6
2.2 Encodings and computability . 7
2.3 Uncomputable functions: the diagonalisation technique 7
2.4 Computable objects and representations 8

3 Programs working on programs, reductions, oracles 10
3.1 Programs as input and output . 10
3.2 The halting problem . 11
3.3 Turing reductions . 11
3.4 Rice’s theorem . 12
3.5 A few reduction exercises . 13
3.6 Computability beyong the halting problem 14

1

Master Parisien de Recherche en Informatique, voie universitaire 2022–2023

4 Computable enumerations 14
4.1 Generalities . 14
4.2 Strong (many-one) reductions . 16

5 Recursive and primitive recursive functions 17
5.1 Primitive recursive functions . 17
5.2 The Ackermann function . 18
5.3 Recursive functions . 19

6 Complexity classes 19
6.1 General overview . 19
6.2 Time– and space–bounded classes . 19
6.3 Nondeterministic models of computation 21
6.4 Randomised complexity . 23

7 Reductions and completeness in complexity 24
7.1 Reductions again . 24
7.2 Time– or space–bounded reductions . 25
7.3 Natural complete problems . 26

8 Computability on real numbers 27
8.1 Individual real numbers . 27
8.2 Real-valued functions . 28

9 Symbolic dynamics; computability in other topics 30
9.1 Tiling spaces and domino problems . 30
9.2 Simulating universal computation . 31
9.3 Meaning of the results . 32

A few notations
For a finite set of symbols A, called an alphabet, A∗ denotes the set of finite words or
strings made of symbols from A. For example, an integer written in binary is a word on
the alphabet A = {0, 1}. The empty string is denoted ε.

A partial function f : A → B is a function that, on some inputs, does not have an
output; in this case, we write f(a) = ⊥. A partial function that always has an output
is called total. In contrast with the usual convention in mathematics, functions that are
not always total unless specified.

1 Models of computation and intuitive computability

1.1 Models of computation, Church-Turing thesis
A model of computation is a set of formal rules to describe programs. Every program,
when given an input, computes an output, both being finite words on an alphabet A.

2

Master Parisien de Recherche en Informatique, voie universitaire 2022–2023

A function A∗ → A∗ that can be computed by such a program is called computable (in
this model).

Note. The choice of A is a part of the model (and often A = {0, 1}); some models
naturally work on N, which amounts to the same. We will see later that this distinction
is not very important, through the use of encodings.

You might know some theoretical models of computation such as Turing machines,
λ-calculus, Boolean circuits, recursive functions. . . . Any programming language, in its
way, defines a model of computation1.

In the computability section of this course, we will use various models depending on
the circumstances, and the reason we can do that is because they compute the same
functions:

Church-Turing thesis A function that is computable by a reasonable model of com-
putation is computable by a Turing machine. A model that computes exactly the same
function as Turing machines is called Turing-complete; there are many such models.

This is a general (one might say philosophical) principle; you can understand it as the
basic expectation when introducing a new model, which does not mean we should not
prove it! There is a lot of leeway around the word “reasonable”, but we will use various
Turing-complete models (without proving this fact) and non-Turing complete models will
be explicitely mentioned as such.

Definition 1. A function is computable if it is computable by any Turing-complete
model, such as Turing machines.

Since most models are equivalent, why should we use different models? They can differ
in terms of:

– expressivity: programs are easy to write.

– minimalism: there are few allowed operations, so proofs are easy to write.

– practicality: they are easy to translate to actual hardware (we won’t care about
that).

Programming languages are robustly Turing-complete, so this point of view lets you
write proofs of computability using your favorite language or even pseudocode in a slightly
sloppy manner. For example, the following Python program is a reasonable proof that
the function n 7→ 2n (on positive integers) is computable:
def power2 (int n){

int result = 1
for i from 1 to n

result = 2* result
output result

}

1This requires us to disregard some practical limits — size of the stack, integers of limited size. . . —
that are present in the actual compiler or interpreter. Rather, imagine the expected behaviour of these
programs on an ideal computer with no such software or hardware limitation.

3

Master Parisien de Recherche en Informatique, voie universitaire 2022–2023

1.2 Turing machines
This section is written in a compact way and is only for fixing conventions and notation;
you are expected to know what a Turing machine is.

A Turing machine is given by a tuple (n,m, δ), where:

– n is the number of states, m is the number of tape symbols;

– δ : {0, . . . , n−1}×{#, 0, . . . ,m−1} → {0, . . . , n−1}×{#, 0, . . . ,m−1}×{−1, 0,+1}
is a transition function.

A Turing machine is a program that works as follows. The machine has:

– an infinite tape whose every cell contains a symbol in {#, 0, . . . ,m − 1}, where #
is a special “empty” symbol;

– a head whose position is given by an integer p ∈ N;

– a state in {0, . . . , n− 1}.

A configuration is a tuple (x, p, e) with x a finite word, p a head position, and e a state.
It means that the tape contains x followed by empty symbols.

– The machine receives as input some x ∈ {1, . . . ,m}∗. The initial configuration (at
time 0) is M0(x) = (x, 1, 0).

– Assume that we are at time t in configuration M t(x) = (x, p, e). Let i, d, e′ =
δ(xp, e), where xp is the tape symbol at position p. The configuration at time t+ 1
is M t+1(x) = (x′, p′, e′), where:

– x′ is equal to x except that x′
p = i;

– p′ = p+ d (the head moves).

– Whenever M t(x) = (x, p, n − 1) (n − 1 is the last state), the machine halts: the
computation is complete and the output is x, the nonempty part of the tape. After
this point, the configuration no longer changes.

Note. You have probably encountered alternative definitions for Turing machines: dif-
ferent symbols, more tapes. . . This does not change the Turing-completeness of the model,
so this is a matter of taste and the computed functions are the same (again, the Church-
Turing thesis).

1.3 Computable functions
For a Turing machine M on input x, we denote:

– M(x)↓ if the machine eventually halts. In this case, we write M(x)↓= y (and say
“on input x, M halts and outputs y”) where y ∈ A∗ is the word written on the tape
in the halting configuration.

– M(x)↑ if the machine never halts.

4

Master Parisien de Recherche en Informatique, voie universitaire 2022–2023

Turing machines compute, in general, partial functions: there is no output if the machine
doesn’t halt.

Definition 2. A Turing machine M computes a function f : {0, . . . ,m − 1}∗ →
{0, . . . ,m− 1}∗ if for any input x, we have:

f(x) = ⊥ ⇒ M(x)↑
f(x) ̸= ⊥ ⇒ f(x) = M(x)↓ .

In other words,

– if f(x) is defined, the machine must halt on input x and output the expected output;

– if f(x) is not defined, the machine never halts (or it “loops”) on input x.

Now is the proper time to make a clear distinction in your head between functions
and programs (= Turing machines). A program always computes a single function, but a
function may be computed by no program, or by many of them. A function doesn’t halt
or loop and it always has a value (even if it is ⊥).

1.4 A few operations on computable functions
This intuitive point of view on computability might be slighlty jarring if you are used to
more solid mathematical frameworks. I choose to do it this way because writing programs
in Turing machines or other minimalistic models is tedious and does not help to build the
simple intuition that a computable function is just a function for which you can write a
program.

It should be intuitive that computability is preserved by the usual operations on
booleans, strings or integers. such as addition, concatenation, composition, logic opera-
tors. . .

Let us do a proof for, say, composition. Assume f and g are computable functions,
and write the program:
program f\circ g(int n){

int m = P_g(n)
output P_f(m)

}

where P_f and P_g are the programs that compute f and g. This program clearly com-
putes f ◦ g. Notice that if either g(n) = ⊥ or f(g(n)) = ⊥, the whole program loops: this
seems like a reasonable result when you consider the definition of composing two partial
functions.

If we wanted to write a formal proof, we would use a simple well-defined model such
as Turing machines.

Exercice 1. Assume that f and g are total computable functions N → N. Which of the
following functions are computable? For which can’t you tell in general?

1. n 7→ 1 if f(n) = g(n), 0 otherwise.

2. n 7→ the smallest m > n such that f(m) = 0.

3. n 7→ f−1(n) (if you know that f is a bijection).

5

Master Parisien de Recherche en Informatique, voie universitaire 2022–2023

2 Encodings, cardinality issues and diagonalisation

2.1 Encodings and countability
For an object to be handled by a computer program, it must be represented in memory
— encoded — by a finite number of symbols. This is the case for inputs and outputs of
Turing machines2, and in fact, for every other model that we will use. Sets whose objects
can be represented by a finite amount of bits are said to be countable.

Definition 3. A set X is countable if, for some alphabet A, one of the two following
equivalent conditions holds:

– there is an encoding of X in A∗, that is, an injection φX : X → A∗;

– there is a decoding from A∗ to X, that is, a surjection φ−1
X : A∗ → X.

As the notation suggests, encoding then decoding should output the initial value. The
injectivity / surjectivity condition means that every object from X can be represented by
one word in A∗, or possibly several. It is fine if a word in A∗ encodes nothing, but two
different objects in X cannot have the same encoding.

Any finite set X is of course countable; if X is infinite, we can even find a bijection.
X = N can be encoded on {0, 1} through the binary encoding, or on {0, . . . , 9} through
the decimal encoding, or many other ways.

An important equivalent definition is the following:

Definition 4. A set X is countable if there is an enumeration of X, i.e. a surjection
N → X, or (equivalently) an encoding of X in N, i.e. an injection X → N.

If X is infinite, the enumeration gives us a list x1, x2, x3 . . . that lists all objects is X.
Countability as “the ability to represent objects using a finite number of symbols”

should make it an intuitive notion. To train this intuition, let us do a formal proof.

Theorem 1. Let D and D′ be two countable sets. Then D ×D′ is countable.

Proof. Intuitively, we can encode an element (d, d′) ∈ D×D′ by concatenating an encoding
of d to an encoding of d′. To make sure we can decode unambiguously, we add a fresh
comma symbol , to mark the limit between the encodings.

Formally, let φD : D → S∗ be the encoding for D and φD′ : D′ → S ′∗ for D′. We
define φD×D′ as the encoding that, on input (d, d′), outputs the string φD(d), φD′(d′).
Let us check that φD×D′ is an injection: take two pairs (a, a′) ̸= (b, b′). If a ̸= b, then
the prefixes of φD×D′(a, a′) and φD×D′(b, b′) that come before the comma are different, so
φD×D′(a, a′) ̸= φD×D′(b, b′). Similarly if a′ ̸= b′.

2You can consider the behaviour of Turing machines on infinite inputs, but it does not make sense in
the standard notion of computability where you halt after a finite number of steps.

6

Master Parisien de Recherche en Informatique, voie universitaire 2022–2023

2.2 Encodings and computability
We have defined computable functions on words (strings). We can now extend the defi-
nition to functions D → D′, where D and D′ are countable sets, by encoding members of
D and D′ as words.

Definition 5. Let φD and φ′
D be encodings of D and D′, respectively. A function f : D →

D′ is computable if the function φD(x) 7→ φ′
D(f(x)) is computable (the latter function

works on words, so we can use the previous definition).

This makes intuitive sense: if you want to compute a function N → N, you first encode
the input in binary, execute the program, and decode the output to get the result.

This means that, outside of strings, the definition of computability may depend on the
choice of encoding. In practice, this is not a problem and the definition is invariant for
any reasonable encoding3. For example, computable functions are the same when written
in binary and decimal.

Note. In the definition, to compute the function φD(x) 7→ φ′
D(f(x)), notice that not all

words in A∗ are acceptable inputs (they may not encode an object from D — for example,
in the binary encoding, we usually forbid leading zeroes). In a program computing this
function, the behaviour for these inputs is undefined and it may do whatever it wants.

Exercice 2. Among the following functions, for which does it make sense to ask whether
they are computable?
Z → Z : n 7→ −n;
N × N → N × N : (a, b) 7→ (a+ b, a− b);
N → Q : n 7→ 1/n;
N → R : x → sin(x).

2.3 Uncomputable functions: the diagonalisation technique
Here we take a small mathematical detour to see how the countability hypothesis on
inputs and outputs restricts the universe of computable functions.

Theorem 2. The set of computable functions is countable.

Proof. For any computable function, there exists a program that computes it. This pro-
gram is a finite string. Therefore we can encode any computable function by the shortest
program that computes it. Since each program computes a single function, this is an
injection.

This proof works for any model. By the alternative definition, we can enumerate
programs P0, P1

Exercice 3. Find an encoding of Turing machines.

To prove the existence of noncomputable functions, we show that there are more
functions than programs. We do the following result for N → N but it would work for
any countable infinite sets.

3To get a formal proof, we would need to prove that the function that switches encodings is computable.

7

Master Parisien de Recherche en Informatique, voie universitaire 2022–2023

Theorem 3. The set of total functions N → N is uncountable. It follows that the set of
partial functions is also uncountable (there are even more of them).

The following proof uses a very important technique called diagonalisation.

Proof. By contradiction, suppose that the set of total functions N → N is countable. Let
us enumerate them as f0, f1 . . . (this is a surjection, so all total functions should appear
in the list). Let us define:

F : N → N
n 7→ fn(n) + 1

F is total, and I claim that F does not appear in the list. For any k, we have by definition
F (k) ̸= fk(k), and therefore F ̸= fk. This is a contradiction.

Exercice 4. Using the same proof method, show that the set of real numbers is uncount-
able.

Again, the following theorem holds for any infinite countable sets.

Theorem 4. There is an uncomputable function {0, 1}∗ → {0, 1}∗.

Proof. The set of functions {0, 1}∗ → {0, 1}∗ is uncountable, and the set of computable
functions {0, 1}∗ → {0, 1}∗ is countable. Therefore there must be a noncomputable func-
tion; in fact, uncountably many of them.

The noncomputable function built by the diagonalisation method is not very explicit.
We will see more concrete examples later.

This result offers a new perspective on classical mathematical objects. All integers can
be described using finite information (a finite word), and the same is true for computable
functions (a program), but there is no language that allows us to describe all functions
N → N using finite words.

However, you have probably already encountered many functions that had a finite
description, such as f : n 7→ 2n. The functions that are explicitely defined and used
in mathematics have a finite description, so you only ever meet a countable subset of
functions N → N. These functions are often computable, but not always.

2.4 Computable objects and representations
Up to now, we have defined computability only for functions. In order to talk about
computability for other objects, such as sets or languages, we provide a representation
of the object in the form of a function that contains the same information and whose
input and output are countable.

Note. Try to keep in mind the difference between:

– an encoding: representing objects as strings so that they can be handled as input–
output by programs;

– a representation: representing objects as functions so that they can be considered
computable (or not).

8

Master Parisien de Recherche en Informatique, voie universitaire 2022–2023

Exercice 5. Among the following objects, try to make sense of the question of whether
they are computable. That is, can you represent them as a function whose input and
output are countable?

1. the integer 7;

2. the boolean representing the truth value (0 or 1) of Riemann’s conjecture;

3. the following problem: given a graph, find a Hamiltonian cycle?;

4. the language L ⊂ {0, 1}∗ of palindromes;

5. the subset P ⊂ N of prime numbers;

6. the real number π.

1. Representations for a single integer almost don’t make sense; every representation
works and should show that all integers are computable. For example, the integer
n can be represented by the function {ε} → N : ε 7→ n.

2. Notice that this is not a function: this is a single boolean, even if it depends on
the world in which we live. Just like an integer, a boolean can be represented by a
function that doesn’t read its input (always true, or always false). We don’t know
which function it is, but in any case there is a program that computes the correct
boolean, so it is computable.

For these two examples, and more generally for individual objects with a finite repre-
sentation, the notion of computability is degenerate (everything is computable). Before
explaining the next examples, let me underline that, in contrast with encodings, the
definition of computability can and often does depend on the choice of representation.

In practice, we agree on a standard representation to define, for each kind of object,
when it is computable. In the case that another representation proves useful, this is
another notion of computability with a different name. Here are some standard represen-
tations:

Definition 6. In the following, X is a countable set.

– A problem (given x ∈ X, does x satisfy the property P?) is represented by its boolean
function X → {0, 1}.

– A set S ⊂ X is represented by its indicator function 1S : X → {0, 1}, defined by
1S(x) = 1 ⇔ x ∈ S.

– A language L ∈ {0, 1}∗ is a type of set, so the previous definition applies.

– A real number r is represented by an approximation function ar : N → Q such that
|r − ar(n)| ⩽ 2−n.

The definition for real numbers is perhaps the least intuitive. We will talk a bit more
about computations on real numbers in a later section.

9

Master Parisien de Recherche en Informatique, voie universitaire 2022–2023

Names It is usual to say that a function is computable, that a problem or question is
decidable, that a language or set is recursive. This is historical baggage, and you can
consider these words as synonyms.

Now let us see another natural representation for sets that yields another definition
for computability:

Definition 7. A set S ⊂ X is computably enumerable4, c.e. for short, if there is a
computable surjection f : N → S.

We already called such a function an enumeration in Definition 4. Caution: in
contrast to Definition 4, we can’t use alternative definitions here.

Theorem 5. If S is computable, then S is computably enumerable.

Proof. Let us do the proof when S ⊂ N. Since S is computable, by definition, the function
1S is computed by some program P_S. Consider the following program:
program enum(int n){

int count = 0;
for i from 0 to infinity :

if P_S(i):
count += 1;

if count = n:
output i;

}

On input n ∈ N, it ouputs the n-th element of S, in increasing order. It should be
clear that it is a surjection on S. Notice that the program may loop if S has less than n
elements. This is not a concern.

A computably enumerable set is not necessarily computable. We will prove this later,
when we have the tools for it.

3 Programs working on programs, reductions, oracles

3.1 Programs as input and output
We mentioned earlier that programs form a countable set. It follows that a program can
be given as input or output to another program, encoded as a string.

You can imagine that programs are manipulated through their source code, which is
a string. This is not such a strange idea: a compiler, for example, receives as input a
program and outputs a program (in different languages).

Definition 8. A universal program U is a program that, given as input a program P
and a word x, behaves as follows:

– if P (x)↑, then U(P, x)↑;
4Often called recursively enumerable — remember my above remark.

10

Master Parisien de Recherche en Informatique, voie universitaire 2022–2023

– if P (x)↓, then U(P, x)↓= P (x)↓.

U is able to simulate the behaviour of any program given as input. In actual comput-
ing, U is said to execute the program, and you find such functions (often called exec) in
various programming languages.

3.2 The halting problem
The halting problem (for programs) consists in deciding, given a program and a string as
input, whether the program halts on the input. Formally:

halt :
P × A∗ → {0, 1}

(P, x) 7→
{

1 if P (x)↓
0 if P (x)↑

Theorem 6. The halting problem is undecidable (= uncomputable).

Proof. For the sake of contradiction, assume that the halting problem can be computed
by a program stop. Consider the following program:
program f(program P){

if stop(P, P) = 0
output 0

else
loop

}

Now ask yourself: what is the output of stop(f, f)? If stop(f, f) = 0, this means that
f(f)↓= 0; if stop(f, f) = 1, then f(f)↑. But in both cases, this is a contradiction with
the definition of stop.

This may seem a funny result with a magical proof, but the impossibility of deciding
the halting problem has far-reaching consequences in actual problems of program verifi-
cation. We will see in a moment that there is nothing specific about halting, and that
most problems on programs are undecidable.

3.3 Turing reductions
To find new uncomputable functions, we develop a tool to compare the difficulty of com-
puting different functions. Intuitively, f is “easier to compute” than g if

If I can get the values of g(x) for any x, I can write a program that computes f .

This means, in particular, that if I has a program that computes g, then I could write
a program that computes f .

Let us take a toy example5. Imagine we are in a strange model working on inte-
gers where the allowed operations are plus, minus, and division by 2. Which is easier,
multiplying or squaring?

5Thanks to https://fr.wikipedia.org/wiki/Réduction_(complexité)

11

https://fr.wikipedia.org/wiki/R�duction_(complexit�)

Master Parisien de Recherche en Informatique, voie universitaire 2022–2023

– Squaring is easier than multiplying, since square(x) = mult(x, x).

– Multiplying is easier than squaring, since mult(x, y) = square(x+y)−square(x)−square(y)
2 .

We are only making comparative statements: we have no reason to expect that any
of these functions is computable in this strange model, but we can nevertheless compare
their difficulty. What did we do? We wrote a special kind of program, called a reduction,
that gets access to an additional operation in addition to those allowed in the model. We
say the other function is given as an oracle.

Let us do a formal definition.

Definition 9 (Turing reduction). Let f and g be two functions A∗ → A∗. We say that
f is Turing-reducible to g, and we write f ⩽T g, if f can be computed given g as
an oracle. In other words, f is computable if we add to the model a new operation that
computes g (as a “black box”).

The notation f ⩽T g can be thought of as “f is easier (or as difficult) than g”.

We define similarly ⩾T ,≡T , <T
When writing pseudocode, receiving g as an oracle allows us to write operations such

as y = g(x) regardless of whether g is computable or not. On Turing machines, this can
be formalised using an additional oracle tape and a special oracle state; when the
computation enters the oracle state, the machine “magically” replaces the contents x of
the oracle tape by g(x).

The motivation for Turing reduction is the following theorem:

Theorem 7. If f ⩽T g with g computable, then f is computable.
If f ⩽T g with f uncomputable, then g is uncomputable.

Proof. f ⩽T g means that there is a program P receiving g as an oracle that computes f .
Since g is computable, there is a program Pg that computes g. Every time the operation
to compute g is used in P , we replace it with a call to the program Pg. We obtain a
program with no oracle that computes f .

It is important to understand that uncomputable functions can be compared, and some
could be “more uncomputable” that others. There is in fact a whole theme of research
about the mathematical structure of ⩽T and ≡T and their equivalence classes (Turing
degrees).

Turing reduction is just one kind of reduction, which is suited to computability and
uncomputability, but not (for example) to P̧ and N, , for the following reasons:

Exercice 6. Prouvez que deux fonctions calculables sont toujours Turing-équivalentes
(≡T).

In other contexts, we will introduce other kinds of reductions.

3.4 Rice’s theorem
Let us put this new notion of reduction to good use.

Theorem 8 (Rice’s theorem). Let T be a nontrivial property on computable functions
(not always true or false).

Then halt ⩽T T . In particular, T in uncomputable.

12

Master Parisien de Recherche en Informatique, voie universitaire 2022–2023

It seems interesting that halting, despite being uncomputable, is the easiest property
on computable functions.

This theorem is deceptively simple-looking and there are quite a few devils in the
details. Since the inputs of T are computable functions, it is natural to encode them by
a program that computes them. However, T is not a property of the program, it is a
property of the function. For the following examples, ascertain if they are properties of
the function or of the program, and get an intuition of whether they seem undecidable.

– Do we have f(ε) = ⊥? (the empty input)

– Is there a while loop somewhere?

– Can we find an input x such that f(x) ̸= 2?

– Does the program loop on every input?

Another formulation is that the theorem applies to semantic properties — their
meaning, i.e. the computed function – and not syntactic properties — what is actually
written in the program.

Proof. Define ∞ : x 7→ ⊥, and assume that it does not satisfy T (the other case is
symmetric). Since T is not trivial, there is a function f that satisfies T .

Now, we will define a function ψ that transforms one program into another. Given as
input a program P and a string x, ψ outputs the following program:
program (input y){

P(x);
output f(y);

}

– ψ is computable: simply write down the above code and replace x by its value and
P by its program (both given as input).

– if P (x)↓, then ψ(P, x) computes f and satisfies T . If P (x)↑, ψ(P, x)↑, so ψ(P, x)
computes ∞ and does not satisfy T .

We are ready for the reduction that proves halt ⩽T T .
program stop(program P, string x) oracle T{

if T(ψ(P,x)): output 1
else: output 0

}

3.5 A few reduction exercises
Exercice 7. Are the following problems computable or uncomputable?

=1:
M × M × {0, 1}∗ → {0, 1}

(f, g, x) 7→
{

1 if f(x)↓= g(x)↓
0 if f(x)↓≠ g(x)↓

13

Master Parisien de Recherche en Informatique, voie universitaire 2022–2023

=2:
M × M × {0, 1}∗ → {0, 1}

(f, g, x) 7→
{

1 if f(x)↓= g(x)↓
0 otherwise.

Exercice 8. Are the following functions computable or uncomputable?
1. Halting on empty input: P 7→ 1 if P (ε)↓, 0 if P (ε)↑.

2. Halting for P : x 7→ 1 if P (x)↓, 0 if P (x)↑.

3. Halting before k steps: (P, n, k) 7→ 1 if P (x) halted before k steps of computation, 0
otherwise.

4. Dead code detection: let P be a program in <your favourite language> and f
the name of a subprogram. Is f called when P is executed ?

3.6 Computability beyong the halting problem
Are there any functions strictly harder than the halting problem, or are all uncomputable
functions Turing-equivalent?
Definition 10. Let g : A∗ → A∗ be an arbitrary function. Denote haltg the halting
problem on programs that receive g as an oracle. That is, for any program P that receives
an oracle g and any input x, haltg(P, x) = 1 if P (x)↓, and 0 if P (x)↑.
Theorem 9 (Turing jump). For any function g, haltg >T g.

This means that haltg ⩾T g and haltg ̸⩽T g.

Proof. We define a program p that receives as input two strings x, y and outputs a pro-
gram:
program () oracle g{

if g(x) = y: output 1
else: loop

}

The reduction haltg ⩾T g is:
program (string x) oracle haltg {

for any string y:
if haltg(prog, x, y): output y

}

To show that haltg ̸⩽T g (strict inequality), do the same proof as the halting problem
with programs that receive g as an oracle.

4 Computable enumerations

4.1 Generalities
We saw earlier that sets, languages and decision problems (all objects that are represented
by functions with image in {0, 1}) have different representations that lead to different
notions of computability:

14

Master Parisien de Recherche en Informatique, voie universitaire 2022–2023

– by the indicator function 1X (if it is computable, the set is computable)

– by some enumeration, i.e. a surjection enumX : N → X (if one such enumeration is
computable, the set is computably enumerable).

There are other reasonable representations but they mostly end up equivalent to these
two. Notice that the second definition uses the notion of enumeration that comes from
the definition of a countable set (Definition 4), so you could call this notion “computably
countable” instead. Watch out: you cannot use the inverse function here (injection X →
N).

We also made a note that we are now able to reformulate as follows:

Theorem 10. Let X be a set, 1X its indicator function, enumX an enumeration of X.
Then enumX ⩽T 1X . It follows that a computable set is computably enumerable.

Before going further, we prove an equivalent definition:

Theorem 11. A set X is computably enumerable if, and only if, the partial indicator
function 1⊥

X is computable, where 1⊥
X : x 7→ 1 if x ∈ X, ⊥ if x /∈ X.

This theorem gives us a lot of insight into the difference between computable and
computably enumerable. Before doing the proof, note that X is computable if and only
if Xc (its complement) is. Indeed, you can exchange 0 and 1 in the output of a program
that computes 1X . However, this theorem shows that being computably enumerable is
not symmetrical by exchanging 0 and 1.

If Xc is c.e., we say that X is co-computably enumerable.

Proof. (⇐) Given a computable enumeration enumX , the following program computes
1⊥

X :
program 1 (input x){

for all n from 0 to ∞:
if enum_X(n) = x:

output 1
}

It outputs 1 if x ∈ X (because enumX is a surjection), and loops otherwise.

(⇒) Assume that 1⊥
X is computable. The following program computes an enumeration

of X:
program enum_X (input n){

S = []
for all t from 0 to ∞:

for all strings x of length ⩽ t:
simulate 1⊥

X(x) during t steps of computations
if this simulation stops:

add x to S
if S contains n elements : output S[n]

}

15

Master Parisien de Recherche en Informatique, voie universitaire 2022–2023

If x ∈ X, then 1⊥
X(x) will stop after some time t. When n is large enough, enumX(n)

will enter the t-th step of the loop and output x. So enumX is an enumeration (=
surjection on X).

Exercice 9. Show that the set S = {(P, x) ∈ A∗ ×A∗ : P (x)↓} is computably enumerable
but is not computable.

Theorem 12. If X is c.e. and co-c.e., then X is computable.

Proof. We have two computable enumerations: ϕ that enumerates elements from X,
and ϕc that enumerates elements from Xc. This means that each element of {0, 1}∗ is
enumerated by exactly one of the functions. Therefore, the following program:
program f(input x){

for all i from 0 to ∞:
if x = ϕ(i): output 1
if x = ψ(i): output 0

}

always halts and computes 1X .

This world of asymmetrical computability, where 0 and 1 play very different roles,
can only exist for sets, languages or decision problems, and more generally functions with
image in {0, 1}

4.2 Strong (many-one) reductions
If we take a function f : X → {0, 1} (a decision problem, the indicator function of a
set. . .), and f̄ the opposite function obtained by switching 0 and 1, then it is clear that
f ≡T f̄ . However, it is possible that f is c.e. and not f̄ (this is the case whenever f is not
computable). This tells us that Turing reduction is too coarse to work with computable
enumerations.

Definition 11 (Strong (many-one) reduction). Let f and g be two functions A∗ → A∗.
We say that f is strongly (or many-one)-reducible to g, and we write f ⩽m g, if f is
computable by a program receiving g as an oracle where the program can use g only once
at the end of the program, without changing the result.

A perhaps more formal equivalent definition is that there is a computable function p
such that f(x) = g ◦ p(x) for all input x.

By definition it should be clear that many-one reductions are stronger than Turing
reductions, that is, f ⩽m g ⇒ f ⩽T g. In particular, just like in Turing reduction, if
f ⩽m g and g is computable, then f is computable. What is new is the following result:

Theorem 13. If g is c.e. and f ⩽m g, then f is c.e.; the same is true for co-c.e.

This means that strong reductions are the right kind of reduction to work in asym-
metrical computability.

16

Master Parisien de Recherche en Informatique, voie universitaire 2022–2023

5 Recursive and primitive recursive functions

Recursive functions are a so-called functional model of computation, instead of a “me-
chanical” definition where a computable function is some combination of elementary com-
puting operations on an input. Here, the definition consists in some base functions that
are assumed computable, and some operations on functions that can be “done by hand”
and thus preserve computability. For this model, the functions are Nk → N.

5.1 Primitive recursive functions
Definition 12. Primitive recursive functions are the following base functions:

Constant 0;

Successor n 7→ n+ 1;

Projections πk
i : x1, . . . , xk → xi,

that can be combined with the following operations:

Composition if f, g1, . . . , gk are primitive recursive, then h(x) = f(g1(x), . . . , gk(x)) are.

Primitive recursion if f and g are primitive recursive, then the recursively defined
function:

h(0, x) = f(x)
h(n+ 1, x) = g(h(n, x), n, x)

is primitive recursive.

Exercice 10. Show that the following functions are primitive recursive:

1. addition add : a, b 7→ a+ b

2. multiplication mult : a, b 7→ a× b

Notice that primitive recursive functions always halt. Indeed, primitive recursion is
“controlled” in the sense that the first argument tells you from the beginning how many
iterations there will be in the loop. This is equivalent to a for loop (where the index
can’t be changed inside the loop).

It turns out that such a controlled recursion is not enough for Turing-completeness,
even for total functions.

Theorem 14. There is a computable total function that is not primitive recursive.

Proof. First convince yourself that the set of primitive recursive functions is countable.
Let f0, f1 . . . be a computable enumeration of this set.

It is not hard to write a universal program U for primitive recursive functions: given
a primitive recursive function f and an integer n, U(f, n)↓= f(n).

By diagonalisation, the function computed by the following program:

17

Master Parisien de Recherche en Informatique, voie universitaire 2022–2023

program diago(int n){
output U(f_n ,n)+1

}

cannot be primitive recursive.

This argument is much more general and applies to any model of computation whose
programs always halts. Even more generally, any model of computation whose halting
problem is decidable cannot be Turing-complete.

This has deep consequences. The undecidability of the halting problem is not a weird
side effect of our models of computation but a necessary aspect. If you were given a
mechanism that prevents you from writing infinite loops, you can be sure it would also
wrongly prevent you from writing some programs that do halt, but where the mechanism
is too coarse to understand why.

5.2 The Ackermann function
Definition 13. The Ackermann function Ack : N2 → N is defined as follows:

– Ack(0, p) = p+ 1

– Ack(n+ 1, 0) = Ack(n, 1)

– Ack(n+ 1, p+ 1) = Ack(n,Ack(n+ 1, p))
Exercice 11. Show that the function is well-defined (the definition doesn’t loop).

Theorem 15. The Ackermann function is not primitive recursive.

Proof. You can easily prove by induction the following properties: Ack(2, x) = 2x + 3,
Ack is increasing relative to both inputs, Ack(x, y + 1) ⩽ Ack(x+ 1, y).

We will show that for any primitive recursive function f there is a t such that:

f(x1, . . . , xn) ⩽ Ack(t,max(xi)).
This proves that no such f can compute the Ackermann function.

Base functions The property is true with t = 0 for the three base functions.

Composition Let us assume it is true for some t for functions f and g1, . . . , gn. Then:

h(x) = f(g1(x), . . . , gk(x)) ⩽ Ack(t,Ack(t, x)) ⩽ Ack(t+ 1, x+ 1) ⩽ Ack(t+ 2, x)

Récursion primitive Let us assume that it is true for some t for functions f and g.
Let us show it is true for t+ 4 for the function h.

First, let us show by induction on n that for all n, h(n, x) ⩽ Ack(t+ 1, n+ x):

– h(0, x) = f(x) ⩽ Ack(t, x).

– Assume it is true for some n. Then h(n + 1, x) = g(h(n, x), n, x) ⩽ Ack(t,Ack(t +
1, x+ n)) = Ack(t+ 1, x+ n+ 1).

To conclude, denoting m = max(x, n), we have Ack(t + 1, n + x) ⩽ Ack(t + 1, 2m) ⩽
Ack(t+ 1,Ack(2,m)) ⩽ Ack(t+ 3,m+ 1) ⩽ Ack(t+ 4,m).

18

Master Parisien de Recherche en Informatique, voie universitaire 2022–2023

5.3 Recursive functions
A recursive function is a function obtained from the previous operations and:

Minimisation If f is a recursive function, then

µ(f)(x) = min{n ∈ N : f(n, x) = 0} or ⊥ if min doesn’t exist

is also recursive.

Theorem 16. The set of recursive functions is the set of computable functions.

This is just another example of the Church-Turing thesis.

6 Complexity classes

6.1 General overview
Complexity theory is the study of functions that are computable with limited resources.
It is motivated by the performance analysis of algorithms in a large sense. Depending
on the context, this study may focus on different kinds of resources: time or number
of steps before an algorithm halts, number of variables or amount of memory, number of
components (logic gates, states. . .), amount of communication (network algorithms), how
many times some operation is necessary (e.g. comparison for list sorting).

In the computability part of this course, we tried as much as possible to forget about
the underlying model, because all reasonable models define the same set of computable
functions (Church-Turing thesis). In the complexity part, the notion of ressource is an
aspect of the model and most classes are not robust to a change of model (if the class
even makes sense for another model).

There is a lot of reflection involved in which models and resources best capture real-
life performance bottlenecks in actual applications, but there is also a lot of theoretical
work to understand the structure of different types of classes. It is always great when two
classes coming from different models end up equal. In any case, remember that all the
functions we consider from now on are computable.

For objects that are not functions — sets, languages, real numbers — we study their
complexity by using representations, as explained in Section 2.4. In complexity, the choice
of representations and encodings may change the class, and it is a good habit to think
about it.

6.2 Time– and space–bounded classes
Definition 14 (Notations o and O). Denote f(n) = o(g(n)) (and say “f is a small o of
g”) when f(n)

g(n) → 0.
Denote f(n) = O(g(n)) (and say “f is a big O of g”) if there is a constant C > 0

such that f(n) ⩽ Cg(n).

We begin with the classical Turing machine model.

19

Master Parisien de Recherche en Informatique, voie universitaire 2022–2023

Definition 15 (Time complexity). Let T : N → N.
A function f is computable in time T (n) if there exists a Turing machine that, on

any input w of length n, halts after T (n) steps of computation at most and outputs f(w).
This is denoted f ∈ TIME(T (n)).

– P = PTIME = ⋃
k∈N TIME(nk)

– EXPTIME = ⋃
k∈N TIME(2nk)

For real algorithms, it is also usual to talk about linear complexity O(n), quadratic
complexity O(n2), quasi-linear complexity O(n log n). . .

You may wonder why we did not define a class LOGTIME = TIME(log n). A
logarithmic time does not allow a Turing machine to read its input, which seems a bit
absurd. There are ways to make sense of this notion by considering another model:
RAM machines (Random Access Memory), that can access any address in memory in
one step of computation. In this model, dichotomic search is in logarithmic time as
one would expect. Vous vous demandez peut-être pourquoi on ne définit pas une classe
LOGTIME = TIME(log n). Un temps logarithmique ne laisse pas à une machine de
Turing le temps de lire son entrée, ce qui semble un peu absurde. Il est possible de donner
un sens à cette notion dans un modèle différent : les machines RAM (Random Access
Memory), qui peuvent accéder à n’importe quelle case mémoire en une étape de calcul.
Dans ce modèle, la recherche dichotomique termine en temps logarithmique comme on
s’y attend.

Il s’agit d’un exemple d’un phénomène plus large : la complexité en temps sous-linéaire
est très sensible aux détails du modèle. La situation est meilleure pour des classes plus
grandes telles que P, et on a une version plus forte de la thèse de Church-Turing :

Church-Turing thesis for time complexity All Turing-complete models with a rea-
sonable notion of time can simulate each other with polyomial overhead. In particular,
they define the same classes P and EXPTIME.

Polynomial overhead is a lot if you’re doing computation on a real computer, but it’s
perfectly fine for theoreticians who work on P ?= NP, for example.

Definition 16 (Space complexity). A function f is computable in space S(n) if there
exists a Turing machine that, on any input w of length n, halts and outputs f(w) and
never writes outside of the first S(n) memory tape cells except for writing the output.
This is denoted f ∈ SPACE(S(n)).

The sentence “except for writing the output” can be formalised by having another
write-only tape called “output tape” . The intuition is that space complexity measures
the memory necessary to perform a computation, and having a program “pay” for the
size of its output does not correspond to this intuition.

– L = LOGSPACE = SPACE(log n)

– PSPACE = ⋃
k∈N SPACE(nk)

– EXPSPACE = ⋃
k∈N TIME(2nk)

20

Master Parisien de Recherche en Informatique, voie universitaire 2022–2023

Exercice 12. 1. Show that TIME(T (n)) ⊂ SPACE(T (n)) (if a function is com-
putable in time T (n), then it is computable in space T (n)).

2. What is the time and space complexity of the function n 7→ n+ 1? (slightly tricky)

3. What is the time and space complexity of computing f ∨ g (logical or) given the
complexity of computing f and g?

4. More difficult: show that PSPACE ⊂ EXPTIME. Hint: show that SPACE(S(n)) ⊂
TIME(CS(n)) for some constant C.

The next result is given without proof, but it is much more technical than its appear-
ance suggests. There is a good Wikipedia page on the topic.

Theorem 17 (Hierarchy theorem). Let t1 and t2 be two functions such that t1(n) =
o(t2(n)). Under some technical hypotheses, we have TIME(t1(n)) ⊊ TIME(t2(n)) (the
inclusion is obvious, the inequality not at all). We have a similar result for space.

This theorem is wrong without the technical hypotheses and there are some highly
aritifical cases where two functions are different but describe the same complexity classes.

6.3 Nondeterministic models of computation
Nondeterminism is the possibility of a model having different behaviours in a given con-
figuration. This does not seem to be a natural notion if you are writing actual programs;
however we will see that these classes can be interpreted as functions for which it is
possible to check efficiently whether a given value is the correct output. It is also of
considerable interest for theoreticians, as you surely know.

Let us start with the straightforward definition, where we extend the model of Turing
machines to allow for nondeterminism in the computation. The transition function now
gives a set of possible behaviours (state, symbol on the cell, movement of the head). From
a given starting configuration we now have a variety of possible computations, and we
must find a good notion of what is the output in this context.

Definition 17. A function f : A∗ → {0, 1} is computable in nondeterministic time
T (n) (denoted f ∈ NTIME(T (n))) if there is a nondeterministic Turing machine M such
that:

– M always stops after T (n) steps of computation at most;

– If f(x) = 0, then the machine always outputs 0 on input x.

– If f(x) = 1, then the machine sometimes outputs 1 on input x (it can output 0
the rest of the time).

First note that this is an asymmetrical definition: 0 and 1 do not play the same
role, exactly as in computable enumerations. We can therefore speak about coNTIME,
coNSPACE, etc.

For a more intuitive grasp of nondeterminism, we can use the same pseudocode lan-
guage to write programs, where in addition to the usual operations we are allowed to use
a function guess() which can output 0 or 1 nondeterministically. Such nondeterministic
programs are as powerful as nondeterministic Turing machines.

21

Master Parisien de Recherche en Informatique, voie universitaire 2022–2023

Exercice 13. The set PRIME of prime numbers is in coNP.

There is an alternative definition of nondeterministic classes that uses standard Turing
machines; this makes some proofs easier, such as comparing nondeterministic and deter-
ministic classes. Nondeterminism is replaced by a special input called certificate that
tells the machine which choices it should make instead of guessing.

Theorem 18. Let f : A∗ → {0, 1}. f ∈ NTIME(T (n)) if, and only if, there is a Turing
machine M such that, for any input x of length n,

– for any certificate y ∈ AT (n), M(x, y) stops after T (n) steps of computation at most;

– if f(x) = 0, then M(x, y)↓= 0 for every certificate y ∈ AT (n);

– if f(x) = 1, then there exists a certificate y ∈ AT (n) such that M(x, y)↓= 1.

Soit f : A∗ → {0, 1}. f ∈ NTIME(T (n)) si et seulement si il existe une machine de
Turing M telle que, sur toute entrée x de taille n,

– pour tout certificat y ∈ AT (n), M(x, y) s’arrête après au plus T (n) étapes de calcul;

– si f(x) = 0, alors M(x, y)↓= 0 pour tout certificat y ∈ AT (n);

– si f(x) = 1, alors il existe un certificat y ∈ AT (n)tel que M(x, y)↓= 1.

Why do we limit certificates to length T (n)? We saw a similar idea earlier: since
the program halts in time T (n), it would not have the time to read a longer certificate
anyway.

Here, the alternative interpretation is that a problem is in NP if a certificate that
guarantees that the answer is "yes" can be checked in polynomial time.

Definition 18 (Nondeterministic complexity classes). – NTIME(T (n)) : functions
that are computable in nondeterministic time T (n).

– NSPACE(S(n)) : functions that are computable in nondeterministic space S(n).
We similarly define classes NL = NLOGSPACE, NP = NPTIME, NPSPACE,

NEXPTIME. . .

Let us just mention that PSPACE = NPSPACE (Savitch’s theorem), so nondeter-
ministic space complexity classes are only studied for polynomial functions.

Let us do one formal proof to understand why the second definition can be more
convenient.

Theorem 19.
NP ⊂ PSPACE

Proof. If f ∈ NP, this means that there is a program P such that f(x) = 0 if, and only
if, P (x, y) = 0 for all certificates y of length T (|x|) for some polynomial T . Consider the
following program:

22

Master Parisien de Recherche en Informatique, voie universitaire 2022–2023

program (input x){
for all words y of length T (|x|):

if P(x,y) = 1:
output 1

output 0
}

Check that this is a deterministic program that computes f . The loop uses a space T (|x|)
to write the certificates in succession, and the program P uses polynomial time, so it also
needs polynomial space. Therefore the whole program uses polynomial space.

Theorem 20 (Overview).

L = LOGSPACE ⊂ NL ⊂ P = PTIME ⊂ NP ⊂ PSPACE ⊂ EXPTIME . . .

We have P ⊊ PSPACE (the classes are not equal). However, we do not know whether
P = NP, if NP = PSPACE, or if NP is somewhere in the middle.

The next result is given with no explanation; take it as an anecdote. For a complexity
class C, denote Cf the same class where all Turing machines in the definition receive the
function f as an oracle.

Theorem 21. There are two functions A,B such that

PA = NPA and PB ̸= NPB

This result immediately breaks a lot of purported proofs of P ?= NP: if the proof
keeps working after we add an oracle everywhere, it must be wrong.

6.4 Randomised complexity
A randomised program is a program written using the usual operations and an additional
operation random(), which outputs 0 or 1 with probability 1/2. Programs that use
randomness are common, so it makes sense to develop a framework to talk about their
complexity.

To formalise the notion, the situation is very similar to nondeterminism:

– we can define a new model, probabilistic Turing machines (that have access to an
additional random operation), or

– we find an alternative definition that only uses standard Turing machines.

Randomised complexity classes offer more variety than nondeterminism; BPP is just
an example of such a class.

Definition 19. A function f is computable in time T (n) with bounded probability
(write f ∈ BPTIME(T (n))) if there is a probabilistic Turing machine such that, on any
input x of length n,

– The machine always halts in time T (n)

– M(x)↓= f(x) with probability at least 2
3 .

23

Master Parisien de Recherche en Informatique, voie universitaire 2022–2023

Just as in the previous section, there is an alternative definition using certificates.

Theorem 22. A function f is computable in time T (n) with bounded probability if and
only if there is a Turing machine such that, for any input x of length n,

– M(x, y) halts in time T (n) for all certificates y;

– M(x, y)↓= f(x) for at least 2
3 of all possible certificates.

As earlier, the certificates y have length T (n). If the certificate is chosen at random,
the machine always halts and you will get the right answer at least 2/3 of the time.

Exercice 14. 1. What if we replaced 2
3 by another value, such as 1

2 or 3
4? (consider

only functions A∗ → {0, 1})

2. Show that P ⊂ BPP and that BPP ⊂ PSPACE.

The open question P ?= BPP is known as the derandomisation conjecture and is one
of the big open complexity questions; it is linked to questions about strong deterministic
pseudorandom generators.

This small excursion in randomised complexity was very limited in scope. There are
many other classes that use randomness:

– The answer is always correct but the time is bounded on average (ZPP).

– Asymmetric classes: the answer may be wrong on one side but not on the other
(RP).

– Classes with a limited number of random calls, etc.

Complexity theory has a lot of different subdomains with specific problems. If you
arrive in a new domain, the tools you know may no longer work, but the most important
thing is that you understand why the definitions make sense.

7 Reductions and completeness in complexity

7.1 Reductions again
Remember that reductions are used to compare the computational complexity of func-
tions.

We saw reductions used in computability in sections 3.3 and 4.2 (for general and
asymmetric computability, respectively). These reductions are not suited to complex-
ity classes: remember that two computable functions are always Turing-equivalent. To
compare functions inside some class C, we need an appropriate reduction.

Definition 20. Let C be a complexity class and ⩽ be a reduction.
A function f is C-hard for ⩽ if g ⩽ f for every g ∈ C.
f is C-complete if, in addition, f ∈ C.

24

Master Parisien de Recherche en Informatique, voie universitaire 2022–2023

C-complete functions are “the hardest functions in C”.
We will see in a moment how to choose ⩽ so that these notions are useful.

Exercice 15. 1. If C is the set of computable functions, what are the C-complete
functions for ⩽T ? The C-hard functions?

2. If f is C-complete and f ⩽ g, what does this mean for g? What if g ⩽ f?

3. A reduction ⩽1 is finer than a reduction ⩽2 if f ⩽2 g ⇒ f ⩽1 g. What relationship
do you have between the sets of C-complete functions for ⩽1 and ⩽2?

Let us start with a bit of completeness in computability:

Theorem 23. The halting problem is c.e.-complete for ⩽m.

Proof. For any c.e. function f : A∗ → {0, 1}, there is a program progf that, on input
x, halts if and only if f(x) = 1 (Theorem 11). You can use this program to write the
reduction to the halting problem.

Notice that a computable function cannot be c.e.-complete.

7.2 Time– or space–bounded reductions
Since a reduction is a program with access to an oracle, we can define time and space
bounds by considering that calling the oracles takes 1 step of computation and uses no
additional memory.

Definition 21. If f and g are two functions, g Turing-reduces to f in time T (n) if there
is a program receiving g as an oracle that, on any input x of length n, halts and outputs
f(x) in time T (n), and similarly for space.

We define many-one reductions similarly.
How can we choose a suitable reduction for each class ? There are two main aspects:

1. the reduction has to allow less power (less resources) than functions from the class
itself.

2. the reduction has to be strong (many-one) if we are dealing with an asymmetrical
class.

First point. If the reduction has more power than the class, then we can have f ⩽ g
with g ∈ C but f /∈ C, which goes against the intuition of “more difficult” . If the
reduction allows exactly as much power, then the whole class will be C-complete: for
example, you can check that all functions in P are equivalent for Turing reduction in
polynomial time6. However this reduction is a reasonable choice for PSPACE.

Second point. This is why many-one reductions exist. Since Turing reductions allow
us to exchange true and false freely, they cannot distinguish e.g. NP and co-NP. If this
is not clear, refer back to Section 11.

6Hint: the reduction can do the computation without using the oracle.

25

Master Parisien de Recherche en Informatique, voie universitaire 2022–2023

Some examples

– P-completeness is usually relative to LOGSPACE reductions7.

– NP-completeness is defined by strong (many-one) reductions in polynomial time,
also called Karp reductions.

– PSPACE-completeness and EXPTIME-completeness are defined by Turing reduc-
tions in polynomial time.

Outside of standard cases most papers will explicitely mention which reduction is
being used.

7.3 Natural complete problems
Up to now it is not clear if complete problems should even exist. Here we show a general
technique to build a first complete problem: predicting the behaviour of a Turing machine
corresponding to the definition of the class.

Here is the first P-complete prediction problem:

predP :

M × {0, 1}∗ × N[X] → {0, 1}

(M,x, p) →


1 if M(x)↓= 1

in at most p(|x|) steps of computation
0 otherwise.

Halting and prediction problems are equivalent but the latter make proofs slightly
easier.

Theorem 24. predP is P-complete for LOGSPACE reductions.predP est P-complet
pour les réductions LOGSPACE.

Proof. For clarity, take a function f : A∗ → {0, 1} ∈ P. By definition of P, there is a
program M and a polynomial T such that M(x)↓= f(x) in time T (n) for all inputs x,
where n is the length of x.

To compute f with access to an oracle predP , just call predP (M,x, t). Remember that
the space used for calling the oracle (in particular, the length of x) is not counted in space
complexity.

If you go back to your notes on NP-completeness, you can check that Cook’s theorem –
which proves that SAT is NP-complete – is actually a reduction to the prediction problem
in nondeterministic Turing machines:

M × {0, 1}∗ × N[X] → {0, 1}

(M,x, p) →


1 if there is a certificate y such that M(x, y)↓= 1

in at most p(|x|) steps
0 otherwise.

7There are other possible reductions, such as NC reductions. Whether they give a different set of
P-complete functions is an open problem.

26

Master Parisien de Recherche en Informatique, voie universitaire 2022–2023

8 Computability on real numbers

This part has two objectives: learning how to do computability on uncountable spaces,
and understanding how computability corresponds to classical mathematical properties.

We will work on real numbers between 0 and 1 because it makes the definitions cleaner.

8.1 Individual real numbers
We saw in Section 2.1 that our definition of computability requires us to represent objects
as functions with countable inputs and outputs (objects with a finite description).

Note. The set of such functions is not countable; it has the so-called cardinality of the
continuum. The reason why real numbers can be represented as functions with countable
intput–output, and therefore why we can do computability on them, is because they also
have the cardinality of the continuum.

In fact, real numbers have two main representations. We can represent x ∈ R:

1. by a binary (or decimal) representation:

binx : N → {0, 1}
n 7→ n− th bit of x

2. by a rational approximation:

approxx : N → Q
n 7→ q such that |q − x| ⩽ 1

2n

In the second case, the choice of the approximation gap 1
2n is not significant. It could be,

say, 1
n

instead.
Note that every real number can be approximated by rationals, and that every ratio-

nal number is computable. What matters is that a single program computes the whole
sequence of rational numbers. Some authors say that the sequence is uniformly com-
putable to insist that there is only one program computing the whole sequence.

Theorem 25. Both representations are equivalent. That is,

∀x ∈ R, binx ≡T approxx.

Proof. We dinstinguish the cases where x is rational or irrational.

– x ∈ Q. In this case, binx and approxx are computable. The binary representation
of x is ultimately periodic, so we can write a program that distinguishes every case
and output the correct digit. For example, if x = 0, 11010010010010 . . . , binx would
be:

1, 2 7→ 1 and otherwise, n 7→ 1 if n ≡ 1 mod 3, 0 otherwise,

and approxx is just the constant function that outputs x.

27

Master Parisien de Recherche en Informatique, voie universitaire 2022–2023

– x /∈ Q.

1. binx ⩾T approxx: if we have oracle access to binx, we can compute a ratio-
nal approximation of x by taking the first n bits of its binary representation.
Formally,
program approx_x (input n) oracle bin_x{

out = 0
for i from 1 to n:

out = 2* out + bin_x(i)
output out /2^n

}

2. binx ⩽T approxx: this is the subtle direction. First notice that if you move
along the real line, the n-th bit changes at 2−n intervals (more precisely, the
interval limits are k2−n with k ∈ Z).
since x /∈ Q, x is not the limit of any interval, so for a large enough k, x− 2−k

and x + 2−k are in the same 2−n interval. This means that we know the k-th
bit of x if we have an approximation of x up to 2−n.
program bin_x (input k) oracle approx_x {

for n from k to infinity :
a = approx(x, n)

if a− 2−k and a+ 2−k have the same n-th bit:
output this bit

}

This program may never halt if x ∈ Q: when x is on an interval limit no
approximation will be enough.

8.2 Real-valued functions
In this section, we extend progressively our framework to define the computability of
functions R → R. R is not countable, and these functions cannot be represented as
functions with countable inputs and outputs in general8, so we need new definitions here.

First let us think about the strategies real computer programs use to handle real
numbers:

– Symbolic approach: we fix a few symbols (π, log(n), cos(n) . . .) and we only handle
the real numbers that can be expressed in this way — a countable subset.

– Approximation approach: we work with rational numbers (e.g. fixed-precision
numbers of the form q

2n) and input and output are approximations.

The second approach will provide more robust definitions (the first one is “just” string
rewriting). While we work on the definitions, we will make sure that they correspond to
the practical meaning of computability, and we will find many mathematical notions that
we already know.

Let us begin with a simple case.
8This is because this set is larger than the continuum

28

Master Parisien de Recherche en Informatique, voie universitaire 2022–2023

Definition 22. A function f : Q → R is computable if there exists a program M that,
given x as input, can provide an approximation of f(x) at any required precision:

∀x ∈ Q,∀n ∈ N, |M(x, n)↓ −f(x)| ⩽ 1
2n

Exercice 16. If f : Q → R is computable, show that f(q) is computable for any q ∈ Q.
To work on functions R → R, the input as well as the output need to be given

as approximations. However, think about the function 1Q (1Q(x) = 1 if x ∈ Q and 0
otherwise). What would computing that function even mean?

If we want to approximate f(x) but we only have an approximation of x (say, we have
xn such that |x − xn| ⩽ 1

2n), we need to make sure that f(xn) is not too far from f(x) –
otherwise no computation can make sense.

We will have to assume that f is continuous in quite a strong sense:
If we want to compute an approximation of f(x) with precision 1

2n ,
we need an approximation of x with precision 1

2g(n) where g is computable.
g is called the modulus of continuity in mathematics. In the end, we see that there

are two error sources to handle:
– our input is an approximation of the real input.

– our program can only output an approximation of the correct result even on a
rational input.

We arrive at the following definition which should correspond to the intuitive definition
of computing a real function in programming:
Definition 23. A function f : R → R is computable if there are two programs C (com-
putation) and P (precision) such that:

∀x ∈ R,∀n ∈ N, |xn − x| ⩽ 1
2P (n)↓ ⇒ |C(xn, n)↓ −f(x)| ⩽ 1

2n

Theorem 26. If f is computable, then f is continuous.
How do we use this definition to compute f(x) with precision 1

2n in practice?
1. Compute P (n+ 1).

2. Provide a rational xn that approximates x with precision 1
2P (n+1) .

3. Output C(xn, n+ 1).
Exercice 17. 1. Show that if f : R → R is computable and x is computable, you can

write a program that, on input n, outputs an approximation of f(x) with precision
1

2n .

2. Corollary of the above: show that if x is computable, then f(x) is computable.
The whole definition works with rational approximations. We could instead require

the program to output the first n bits of f(x). This would not work at all. Try to prove
that x 7→ 3x is computable in decimal and you will have problems.

Some examples of uncomputable real functions:
– Any discontinuous function;

– The constant function x 7→ r where r is an uncomputable real.

29

Master Parisien de Recherche en Informatique, voie universitaire 2022–2023

9 Symbolic dynamics; computability in other topics

9.1 Tiling spaces and domino problems
Up to now, undecidable or complete problems were all about programs. This is Turing
FM, where computabilists talk to computabilists.

You probably already know many natural NP-complete problems; most classes also
have a variety of natural problems coming from different mathematical topics. Let us
meet a few of them that come from tilings.

Definition 24. Given:

– An alphabet, that is, a finite set of symbols A.

– A finite set F of forbidden patterns, which are objects from U → A for some
finite U ⊂ Z2.

A colouring of Z2 ou pavage – that is, a function Z2 → A – is admissible (for F) if
no forbidden pattern appears in it. The associated tiling space is the set of its admissible
tilings.Étant donnés :

– Un alphabet A, autrement dit, un ensemble fini de symboles.

– Un ensemble fini F de motifs interdits, qui sont des objets de U → A pour un
ensemble fini U ⊂ Z2.

Un coloriage de Z2 ou pavage – c’est-à-dire, une fonction Z2 → A – est admissi-
ble (for F) si aucun motif interdit n’y apparait. L’espace de pavage associé à F est
l’ensemble de ses pavages admissibles.

The fundamental problem of the domain is the domino problem: given a tiling space
(given A and F), does an admissible tiling exists?

This problem is actually undecidable. Here we will make proofs for a simpler variant
so that they remain accessible.

Definition 25. The seeded domino problem:

Input An alphabet, a set of forbidden patterns, and an integer n in unary,

Output The answer to one of the following questions (depending on the variant)

– Seed(∞,∞): can the seed be extended to an admissible tiling of Z2 ?
– Seed(n, n): can the seed be extended to an admissible tiling of the square [0, n]2

?
– Seed(n,∞): can the seed be extended to a tiling of the band [0, n] × Z ?

These problems appear pretty easy at first glance, but some difficult combinatorics
emerge when the number of symbols increases, as we will prove. What kind of programs
can we write?

30

Master Parisien de Recherche en Informatique, voie universitaire 2022–2023

– Seed(n, n): it is not hard to write a brute force program in polynomial space that
tests all possibilities. By guessing the tiling and then checking it in polynomial time,
we can see that the problem is actually in NP.

– Seed(n,∞): for clarity, assume that the forbidden patterns are only adjacency
constraints (two symbols). Try to tile the rectangle n × |A|n. If you cannot find
an admissible tiling, then the answer must be false. If you find such a tiling, then
one line has to appear twice (pigeonhole principle) and we can tile the band by
reapeating the periodic part, so the answer is true.
By guessing the lines of the tiling in succession we can turn this idea into a NPSPACE
= PSPACE program.

– Seed(∞,∞): we can try to find tilings on squares [0, n]2 by brute force as before.
If some square does not have an admissible tiling, the answer is certainly false;
if we find a periodic admissible tiling, the answer is certainly true; but it is not
certain that we will always find such a tiling. We can say that it is co-computably
enumerable, because we will find a square that cannot be tiled if the answer is
“false”.

9.2 Simulating universal computation
We can build an alphabet, a set of forbidden patterns and a seed such that any admissible
tiling represents the space–time diagram of some computation of a Turing machine (that
can be nondeterministic if needed):

(todo pictures)
Thus, any admissible tiling that extends the seed must contain the computation of a

Turing machine.
This simulation leads to the following completeness results:

Theorem 27. 1. Seed(∞,∞) is co-c.e.-complete.

2. Seed(n, n) is NP-complete.

3. Seed(n,∞) is PSPACE-complete.

Proof. 1. We make a reduction to the halting problem by adding the tile representing
the halting state of the Turing machine to the set of forbidden patterns. There is
an admissible tiling if and only if the machine never stops.

2. We make a reduction to the prediction problem by adding to the forbidden patterns
the tile representing the halting state with the tape value 0 (false). There is an
admissible tiling if and only if there is a computation that answers 1 in time n.

3. Same reduction as above.

1. On fait une réduction au problème de l’arrêt en ajoutant la tuile représentant l’état
d’arrêt de la machine de Turing à l’ensemble des motifs interdits. Il y a un pavage
admissible si, et seulement si, la machine ne s’arrête pas.

2. On fait une réduction au problème de prédiction en ajoutant aux motifs interdits la
tuile représentant l’état d’arrêt de la machine de Turing si la réponse est 0 (faux).

31

Master Parisien de Recherche en Informatique, voie universitaire 2022–2023

Il y a un pavage admissible si, et seulement si, il existe un calcul qui répond 1 après
au plus n étapes de calcul.

3. Même réduction que ci-dessus.

I will mention with no proof that Seed(1, n) is NL-complete; you can look for infor-
mation on the reachability problem in graphs.

9.3 Meaning of the results
In this example, as is often the case, completeness results in complexity and computability
go together depending on whether we consider the finite or infinite versions of problems,
and they come from some simulation of universal computation in an apparently nice
combinatorial setting.

First remember that we are working on worst-case complexity / computability. Those
problems might be solvable in 99.9% of the cases by heuristics — this is a big problem
in cryptography, for example. It is possible to provide better guarantees, but this is yet
another domain of computability.

Still, these results tell us that we will not find nice, general methods to solve the
problem (or to solve it much faster): these are impossibility statements or lower bounds
for computational, but also mathematical complexity.

Intellectually, impossibility results should have the same value as positive results, but
you might find them a bit arid9. A more positive point of view is that a nice general
method “kills” the problem — there is nothing more to do — whereas impossibility
results give a good justification for considering easier variants, approximations, additional
hypotheses, etc., and in a way give more value to the partial results.

If you find yourself nostalgic for the Hic Svnt Dracones of ancient maps, now that
there is nothing more to explore, uncomputability results are your dragons — and they
are here, provably, forever.

9if you are looking for funding. . .

32

	Models of computation and intuitive computability
	Models of computation, Church-Turing thesis
	Turing machines
	Computable functions
	A few operations on computable functions

	Encodings, cardinality issues and diagonalisation
	Encodings and countability
	Encodings and computability
	Uncomputable functions: the diagonalisation technique
	Computable objects and representations

	Programs working on programs, reductions, oracles
	Programs as input and output
	The halting problem
	Turing reductions
	Rice's theorem
	A few reduction exercises
	Computability beyong the halting problem

	Computable enumerations
	Generalities
	Strong (many-one) reductions

	Recursive and primitive recursive functions
	Primitive recursive functions
	The Ackermann function
	Recursive functions

	Complexity classes
	General overview
	Time– and space–bounded classes
	Nondeterministic models of computation
	Randomised complexity

	Reductions and completeness in complexity
	Reductions again
	Time– or space–bounded reductions
	Natural complete problems

	Computability on real numbers
	Individual real numbers
	Real-valued functions

	Symbolic dynamics; computability in other topics
	Tiling spaces and domino problems
	Simulating universal computation
	Meaning of the results

