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Dans ce cours, on étudie des algorithmes et des structures de données, ainsi que les techniques
qui permettent de raisonner sur les algorithmes.

Du code et des preuves. Chaque semaine, nous étudierons au moins un nouvel algo-
rithme, c’est-à-dire une méthode permettant de résoudre automatiquement un problème
donné. On présentera tous les algorithmes étudiés sous la forme de programmes, écrits le
plus souvent en java, et dans certains chapitres en caml. Il sera ainsi possible de les tester,
de suivre pas à pas leur exécution, et de raisonner avec précision.

Nous verrons également chaque semaine des outils mathématiques qui permettent de
décrire un problème à résoudre pour ensuite concevoir un algorithme associé, ou analyser
un algorithme pour justifier que celui-ci résoud correctement le problème posé ou pour
prédire son temps d’exécution.

Le cours mélange donc des aspects mathématiques et algorithmiques, et vise à la fois à
vous faire découvrir des structures de données et algorithmes fondamentaux en informa-
tique et à affûter vos capacités de raisonnement.

Plan. Le cours est séparé en trois parties, correspondant à trois grandes formes d’organi-
sation des données sur lesquelles nous travaillerons.

I. Tableaux. Techniques de base pour justifier le bon fonctionnement d’un algorithme
et analyser son coût d’exécution. Algorithmes de recherche et de tri. Objectifs : sa-
voir décrire précisément un problème à résoudre, suivre pas à pas l’exécution d’un
algorithme, expliquer le fonctionnement d’un algorithme et justifier qu’il répond au
problème posé, estimer le coût d’un algorithme.

II. Graphes. Modélisation d’un problème à résoudre sous la forme d’un graphe. Rela-
tions binaires, relations d’ordre, relations d’équivalence. Algorithmes d’affectation de
ressources, d’ordonnancement, d’exploration, de classification. Objectifs : abstraire un
problème concret et le modéliser par une question sur des graphes, appliquer ou ana-
lyser un algorithme de graphes, déduire de la solution abstraite sur les graphes une
solution concrète au problème d’origine, justifier qu’un algorithme termine, raisonner
rigoureusement sur les propriétés structurelles d’un graphe.

III. Arbres. Structures de données hiérarchiques ou arborescentes. Arbres de recherche,
files de priorité, manipulation d’objets syntaxiques, récurrence structurelle. Objectifs :
représenter et manipuler des structures de données intrinsèquement récursives, pro-
grammer des fonctions récursives, raisonner par récurrence.

Organisation pédagogique. Votre apprentissage nécessite trois choses.
1. Acquérir des informations brutes. C’est facile, il suffit d’avoir les bons documents sous

la main, et de les lire. Ce poly a été écrit justement pour cela.
2. Comprendre ces nouvelles informations et les intégrer à l’ensemble de vos connais-

sances. C’est plus délicat, cela demande un peu de temps, et l’interaction avec les
enseignants peut être une aide déterminante.

3. Vous entraîner à mettre vos nouvelles connaissances en pratique. C’est en particulier
le rôle des séances de TD/TP, mais aussi du travail à la maison après les séances.

Nous allons mettre en place le rituel hebdomadaire suivant, pour tirer le meilleur parti des
séances partagées avec les enseignants et pour que les cours « magistraux » se concentrent
sur le point numéro 2. Chaque semaine, avant le cours, vous lirez un chapitre du poly et
répondrez à un (tout petit) questionnaire en ligne. Toujours avant le cours, j’analyserai vos
réponses au questionnaire pour adapter le contenu de la séance. Pendant le cours lui-même,
je me concentrerai sur les questions et difficultés révélées par vos réponses au question-
naire. Après cela, vous devriez arriver en séance de TD prêts à passer directement à l’étape
suivante : la pratique.
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Vos objectifs de lecture hebdomadaire. Nous travaillerons chaque semaine sur un
nouveau chapitre. La partie à lire sera systématiquement « l’ensemble des sections du cha-
pitre dont le titre ne commence pas par “approfondissement” ». Le temps de référence à
consacrer à cette lecture chaque semaine est environ une heure. Le premier objectif de cette
lecture est de vous familiariser avec les concepts de la semaine, et d’intégrer leurs définitions,
ainsi que de voir dans les grandes lignes le fonctionnement et les propriétés de l’algorithme
étudié. Vous n’avez pas besoin de tout comprendre en détail à ce stade.

Notre premier contrat est le suivant : si vous avez effectivement lu les parties demandées
avant la séance, alors vous pourrez suivre l’essentiel du cours sans être largués. Vous pouvez
lire en plus les parties d’approfondissement ou non, en fonction de votre temps et de votre
intérêt.

Le bon usage du questionnaire hebdomadaire. Le questionnaire accompagne votre
lecture, et est inclus dans l’heure à passer avant chaque séance. Il est systématiquement
composé de deux parties.

— Un petit nombre de questions à choix multiples, qui testent une compréhension ba-
sique des définitions du chapitre. Votre performance à ce QCM n’est pas notée : c’est
pour vous l’occasion de vous assurer que vous avez correctement lu, et pour moi un
moyen de détecter quels aspects ont été bien ou mal interprétés.

— Deux questions en texte libre, vous demandant d’expliquer deux aspects de votre choix
du chapitre : un que vous jugez important ou intéressant, et un qui représente une
difficulté. Il n’y a pas de « bonne réponse » à ces questions : ma principale mesure
de qualité est que vous ayez rédigé quelques lignes (par exemple, deux phrases) avec
vos mots à vous. Si vous hésitez entre plusieurs points à évoquer, vous pouvez les
mentionner tous, ou en sélectionner un seul selon les critères de votre choix.

Important : vous pouvez vous servir du texte libre, et en particulier celui dédié aux diffi-
cultés, pour formuler des questions directes auxquelles je m’efforcerai de répondre pendant
le cours. De manière générale, je me sers des réponses aux questionnaires pour adapter le
contenu de chaque séance.

Notre deuxième contrat est le suivant : chaque semaine, une partie de la séance de cours
sera dédiée aux principales difficultés et demandes exprimées via le questionnaire. Note : il
faut répondre au plus tard la veille de la séance pour me permettre de faire cela. Le temps
d’une séance ne permettant pas toujours de répondre à toutes les questions, je maintiendrai
également à jour une foire aux questions avec quelques réponses additionnelles.

Participation et contrôle continu. Une partie de votre note de contrôle continu sera
déterminée par le fait que vous participiez de manière honnête et régulière aux question-
naires hebdomadaires. Interprétation de « régulière » : répondre à 9 questionnaires sur 10
est parfait. Répondre à seulement la moitié n’est pas régulier. Interprétation de « honnête » :
vos réponses libres contiennent effectivement une ou deux phrases, qui sont personnelles
et en rapport avec le chapitre.

Bilan sur l’organisation. En vous astreignant à la lecture et au questionnaire hebdoma-
daires, vous vous assurez une bonne répartition du travail sur le semestre, une résolution
précoce d’un certain nombre de difficultés qui pourraient sinon entraver la suite de votre
semestre, et de manière générale vous profitez de séances de cours plus agréables à suivre
et mieux adaptées à votre progression.
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Première partie

Tableaux
Cette partie est dédiée aux techniques de bases permettant de justifier le bon fonctionne-

ment d’un algorithme et d’analyser le coût de son exécution. On prendra comme exemples des
algorithmes manipulant des tableaux, qui seront systématiquement exprimés en langage Java.

1 Chercher

1.1 Panorama : recherche dichotomique
Problème : chercher un élément x dans un tableau tab. On veut renvoyer :

— un indice i tel que tab[i] contient x, si x apparaît dans le tableau,
— la valeur spéciale -1, si x n’apparaît pas dans le tableau.

Solution simple : recherche séquentielle. On énumère toutes les cases du tableau, on
s’arrête si on trouve l’élément cherché, et on renvoie -1 si on a parcouru tout le tableau sans
trouver l’élément. En java :

static int sequentialSearch(int x, int[] tab) {
for (int i=0; i < tab.length; i++) {

if (tab[i] == x) return i;
}
return -1;

}

Cet algorithme est simple, et répond sans aucun doute au problème posé.

Solution alternative, lorsque l’on sait que les éléments du tableau sont triés en
ordre croissant : recherche dichotomique. On définit un intervalle de recherche [lo, hi [
(indice lo inclus et indice hi exclu). L’intervalle couvre à l’origine tout le tableau et devient
progressivement plus petit. On s’arrête lorsque l’on trouve l’élément ou lorsque l’intervalle
de recherche devient vide. À chaque étape on considère la case mid du milieu de l’intervalle
(arrondi vers le bas) : si l’élément cherché est plus petit on poursuit la recherche dans la
moitié gauche [lo, mid [, et s’il est plus grand on poursuit dans la moitié droite [mid + 1, hi [.
Dans tous les cas mid est exclu du nouvel intervalle. En java :

static int binarySearch(int x, int[] tab) {
int lo = 0;
int hi = tab.length;
while (lo < hi) {

int mid = lo + (hi-lo)/2;
if (tab[mid] == x) return mid;
if (x < tab[mid]) { hi = mid; }
else { lo = mid+1; }

}
return -1;

}

L’algorithme est nettement plus subtil. Est-on bien certain qu’il fonctionne? En quoi est-il
mieux que le précédent?

Comparaison empirique. On peut tester les deux fonctions sur des tableaux aléatoires
et constater qu’elles donnent les mêmes résultats : elles sont vraisemblablement correctes.
Pour aller plus loin : comparaison des temps d’exécution sur des tableaux de différentes
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tailles. Temps moyens pour 100 recherches aléatoires dans des tableaux d’une taille donnée,
en micro-secondes :

Taille sequentialSearch binarySearch

10 0,9 1,0
20 1,2 1,1
50 2,2 1,4

100 4,8 1,8
1 000 38 2,5

10 000 352 2,9
1 000 000 21 000 7,1

100 000 000 2 100 000 18

Les performances des deux fonctions sont radicalement différentes. On doit pouvoir expli-
quer ce phénomène.

Analyse de complexité de sequentialSearch. Deux scénarios.
1. Si x est dans tab, on énumère tous les éléments jusqu’à la première occurrence de x. Si

toutes les positions sont équiprobables pour cette occurrence on consulte en moyenne
la moitié des éléments du tableau.

2. Si x n’est pas dans tab, on consulte tous les éléments du tableau.
Dans tous les cas on s’attend à consulter un nombre d’éléments proportionnel à la taille du
tableau.

Analyse de complexité de binarySearch. La boucle while rend le comportement plus
difficile à prédire.

Première étape : vérifier que l’algorithme progresse et finit toujours par s’arrêter. Argu-
ment : l’intervalle de recherche [lo, hi [ devient strictement plus petit à chaque étape, tôt ou
tard il devient donc vide et l’algorithme s’arrête.

Deuxième étape : mesurer l’évolution de [lo, hi [ pour prédire le nombre d’étapes maxi-
mal avant arrêt. Observation : la longueur de l’intervalle est environ divisée par deux à
chaque étape. Propriété plus précise : si 0 ≤ hi− lo < 2𝑘 , alors l’algorithme s’arrête après 𝑘
tours de boucle au maximum. Démonstration par récurrence sur 𝑘.

— Si 0 ≤ hi − lo < 20 = 1, alors hi = lo. La condition de la boucle est invalide, le
programme s’arrête.

— Soit 𝑘 tel que si 0 ≤ hi − lo < 2𝑘 , alors l’algorithme s’arrête après 𝑘 tours de boucle
au maximum (hypothèse de récurrence).
Supposons 0 ≤ hi−lo < 2𝑘+1. Si hi−lo < 2𝑘 on conclut par hypothèse de récurrence.
Sinon, en particulier lo < hi. On fait un premier tour de boucle et on calcule un indice
mid tel que 0 ≤ mid − lo < 2𝑘 et 0 ≤ hi − (mid + 1) < 2𝑘 . Puis :

— soit le programme renvoie mid, d’où arrêt,
— soit le programme poursuit après avoir modifié hi en mid : par hypothèse de ré-

currence le programme réalise au maximum 𝑘 tours de boucle supplémentaires,
— soit le programme poursuit après avoir modifié lo en mid + 1 : de même, par

hypothèse de récurrence le programme réalise au maximum 𝑘 tours de boucle
supplémentaires.

Dans tous les cas : au maximum 𝑘 + 1 tours de boucle au total.
Conclusion : pour tout tableau de taille strictement inférieure à 2𝑘 , la recherche d’un élément
utilise au maximum 𝑘 tours de boucle. Autrement dit, la recherche dichotomique teste la
présence ou l’absence d’un élément dans un tableau trié de taille 𝑁 en consultant seulement
log2(𝑁 ) éléments du tableau environ. Cela explique la différence de comportement observée
avec la recherche séquentielle.

En supposant que vous êtes sûr
de vous, comment convaincre un

camarade sceptique?

Correction de la recherche dichotomique. Justifions que la recherche dichotomique
fonctionne à coup sûr, quand bien même elle ne consulte que très peu d’éléments du tableau.

Cas simple : lorsque l’on renvoie un indice de tableau avec la ligne

if (tab[mid] == x) return mid;
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on vient bien de tester que la case d’indice mid du tableau tab contient précisément l’élé-
ment x cherché. La réponse est correcte à coup sûr.

Cas compliqué : lorsque l’on renvoie -1 il faut justifier que l’on n’a pas pu rater l’élément
cherché. Fait clé : l’élément cherché x ne peut jamais se trouver en dehors de l’intervalle de
recherche [lo, hi [, car tous les éléments de tab [0, lo [ sont strictement inférieurs à x, et tous
les éléments de tab [hi, 𝑛 [ lui sont strictement supérieurs. Autrement dit : au cas où l’élé-
ment serait dans le tableau, il ne pourrait être qu’à l’intérieur de l’intervalle de recherche.
Or, cet intervalle est vide lorsque l’on renvoie -1 : l’élément ne peut pas s’y trouver. On peut
résumer cet argument par le schéma suivant, qui détaille la signification de chaque variable,
et les propriétés connues du tableau.

0 lo hi 𝑛
↓ ↓ ↓ ↓

tab → < x zone de recherche > x

Reste à démontrer que le « fait clé » est bien toujours valide. Le procédé est similaire à celui
d’une récurrence.

— À l’initialisation l’intervalle [lo, hi [ couvre tous les indices du tableau : x ne peut
assurément pas se trouver en dehors.

— Supposons qu’au début d’un tour de boucle, lo soit tel que tout élément tab[𝑖] du
tableau d’indice 𝑖 < lo soit strictement inférieur à x, et que hi soit à l’inverse tel que
tout élément tab[𝑖] du tableau d’indice 𝑖 ≥ hi soit strictement supérieur à x. On a trois
cas possibles.

1. Si le programme s’arrête en renvoyant mid, il n’y a rien à vérifier.
2. Si x < tab[mid], alors hi devient mid. Les mêmes éléments restent à gauche de

lo : ils sont toujours strictement inférieurs à x. Les éléments à droite du nouveau
hi sont les éléments à droite de mid. Le tableau étant trié, tout tel élément tab[𝑖]
vérifie tab[mid] ≤ tab[𝑖]. Comme x < tab[mid], ces éléments sont bien tous
strictement supérieurs à x.

3. Si x > tab[mid], alors lo devient mid + 1 et on conclut avec un raisonnement
symétrique au précédent.

Ainsi, notre fait clé est vrai à l’initialisation, puis préservé par chaque nouveau tour de
boucle : il reste vrai jusqu’à la fin de l’exécution du programme. En particulier, si la boucle
s’arrête du fait de l’invalidation du test lo < hi, c’est-à-dire si on arrive à une situation où
lo ≥ hi, alors les segments tab [0, lo [ et tab [hi, 𝑛 [ couvrent tout le tableau, qui ne peut
contenir x.

Preuve de sûreté de binarySearch. On a justifié que binarySearch :
— finit toujours par s’arrêter,
— consulte un nombre d’éléments au plus logarithmique en la taille du tableau,
— ne renvoie que des résultats corrects.

Il reste un angle mort dans cette analyse : le scénario où le programme s’interromprait à
cause d’une erreur. En l’occurrence le programme manipule un tableau : on a un risque
d’échec par une tentative d’accès en dehors des bornes du tableau.

Dans binarySearch, les seuls accès au tableau se font dans la boucle avec tab[mid] : il
faut justifier que mid est toujours tel que 0 ≤ mid < tab.length. Pour cela on démontre d’une
part que lo et hi sont toujours tels que 0 ≤ lo ≤ hi ≤ tab.length, et d’autre part que si
lo < hi, alors le calcul définissant mid assure que lo ≤ mid < hi.

Avec cette dernière étape on garantit donc que notre programme binarySearch s’exécute
toujours sans erreur et produit en un temps fini (et même en un temps très court) un résultat
correct. Autrement dit, binarySearch est une solution garantie sûre et efficace au problème
de la recherche d’un élément dans un tableau trié.

Dans ce cours nous allons découvrir de nombreux algorithmes ou structures de données
répondant à des problèmes variés, ainsi que les outils qui permettent de raisonner sur ces algo-
rithmes pour assurer qu’ils répondent bien au problème posé et évaluer leur efficacité.

1.2 Spécification d’un problème algorithmique
Un algorithme répond à un problème : étant données certaines entrées, produire un cer-

tain résultat ou effet. Avant même la conception d’un algorithme, il faut énoncer clairement
le problème posé.
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La spécification d’un problème comporte deux parties :
— description des contraintes que doivent vérifier les entrées (préconditions),
— description du résultat attendu.

Exemple pour l’exponentiation. On veut calculer la 𝑛-ème puissance d’un nombre 𝑎.
— Condition : 𝑛 doit être un entier positif ou nul.
— Le résultat de power(𝑎, 𝑛) doit être 𝑎𝑛.

La spécification du résultat se ramène à un unique prédicat : power(𝑎, 𝑛) = 𝑎𝑛, de même
que pour la précondition : 𝑛 ≥ 0 (s’il est déjà convenu qu’on ne manipule que des nombres
entiers).

Exemple pour la recherche dans un tableau trié. On veut chercher un élément 𝑥 dans
un tableau 𝑡 trié.

— Condition : 𝑡 doit être trié en ordre croissant.
— Le résultat de binarySearch(𝑥, 𝑡) doit être un entier 𝑖 tel que 𝑡[𝑖] = 𝑥 s’il en existe,

et -1 sinon,
Cette spécification est plus subtile. Voici son articulation logique explicitée.

— Condition : « être trié » est une propriété complexe. Sa définition contient une quan-
tification sur les indices du tableau 𝑡, que l’on suppose de taille 𝑛.

∀𝑖, 𝑗 ∈ [0, 𝑛 [ , 𝑖 < 𝑗 ⇒ 𝑡[𝑖] ≤ 𝑡[𝑗]

— Spécification du résultat 𝑟 de binarySearch(𝑥, 𝑡), en notant 𝑛 la longueur de 𝑡 : on
distingue deux cas, chacun impliquant encore une quantification sur les indices du
tableau.

— Si 𝑥 est présent dans 𝑡, c’est-à-dire si ∃𝑖 ∈ [0, 𝑛 [ , 𝑡[𝑖] = 𝑥 , alors le résultat doit
être un indice où 𝑥 apparaît : 𝑟 ∈ [0, 𝑛 [ ∧ 𝑡[𝑟] = 𝑥 .

— Si 𝑥 n’est pas présent dans 𝑡, c’est-à-dire si ∀𝑖 ∈ [0, 𝑛 [ , 𝑡[𝑖] ≠ 𝑥 , alors le résultat
doit vérifier 𝑟 = -1.

Le tout résumé en une liste de (deux) formules :
{

(∃𝑖 ∈ [0, 𝑛 [ , 𝑡[𝑖] = 𝑥) ⇒ 𝑟 ∈ [0, 𝑛 [ ∧ 𝑡[𝑟] = 𝑥
(∀𝑖 ∈ [0, 𝑛 [ , 𝑡[𝑖] ≠ 𝑥) ⇒ 𝑟 = -1

Une telle liste exprime une conjonction : toutes les formules doivent être valides.

Exemple pour la recherche d’une séquence. On se donne un texte 𝑡, et on y cherche
une séquence de lettres 𝑠.

— Condition : aucune, tous les textes et toutes les séquences cherchées sont a priori
admissibles.

— Le résultat de stringSearch(𝑠, 𝑡) doit être un entier 𝑖 tel que le texte 𝑡 contient une
occurrence de la séquence 𝑠 commençant au caractère d’indice 𝑖, s’il existe une telle
occurrence, et -1 sinon,

La spécification du résultat ressemble à celle vue pour la recherche dichotomique, mais fait
un usage plus riche des quantificateurs puisque l’occurrence d’une séquence est déterminée
par une suite de plusieurs lettres. Ainsi, « 𝑠 est présente dans 𝑡 » s’énonce « il existe un
indice 𝑖 à partir duquel tous les indices suivants correspondent aux lettres de 𝑠 ». En notant
𝑛𝑡 la longueur du texte 𝑡, et 𝑛𝑠 la longueur de la séquence 𝑠 :

∃𝑖 ∈ [0, 𝑛𝑡 − 𝑛𝑠] , ∀𝑗 ∈ [0, 𝑛𝑠 [ , 𝑠[𝑗] = 𝑡[𝑖 + 𝑗]

Au contraire, « 𝑠 est absente de 𝑡 » s’énonce « quelque soit l’indice 𝑖 de départ que l’on
considère, on trouve au moins une des lettres suivantes qui diffère de la lettre correspondante
de 𝑠 ».

∀𝑖 ∈ [0, 𝑛𝑡 − 𝑛𝑠] , ∃𝑗 ∈ [0, 𝑛𝑠 [ , 𝑠[𝑗] ≠ 𝑡[𝑖 + 𝑗]
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Préconditions. Elles décrivent les contraintes que doivent vérifier les données prises en
entrée par un algorithme. Dit autrement, les préconditions définissent les entrées valides,
et délimitent ainsi les contours du problème que l’on cherche à résoudre. Voici les manières
dont il faut considérer les préconditions, selon le point de vue pris.

— Conception : on peut tenir les préconditions pour acquises. On cherche à résoudre le
problème uniquement pour les entrées valides.

— Raisonnement : les préconditions deviennent des hypothèses. On suppose qu’elles
sont valides et on peut en déduire d’autres choses.

— Utilisation : il faut s’assurer que les entrées que l’on fournit à un algorithme sont bien
valides.

— Programmation : on peut interrompre le programme et produire un message d’erreur
lorsque les préconditions ne sont pas réalisées, pour indiquer à l’utilisateur qu’il n’a
pas suivi les règles. On peut aussi ne rien faire, et laisser le programme faire n’importe
quoi lorsque les entrées sont invalides.

Ainsi dans la conception d’un algorithme de recherche d’un élément dans un tableau trié,
toute considération sur les tableaux non triés est hors sujet : la recherche dans un tableau
non trié est un autre problème. Si un utilisateur utilise binarySearch sur un tableau non trié,
il a toutes les chances de recevoir en retour un résultat faux, mais c’est son problème. Note GL : le concepteur et le

programmeur sont en revanche
responsables du fait que le mode
d’emploi soit simple et clair.

Le
concepteur et le programmeur d’un algorithme ne sont pas responsables des utilisateurs qui
ne lisent pas le mode d’emploi.

1.3 Invariants de boucles
Pour montrer qu’un algorithme est correct, c’est-à-dire résoud le problème posé :

— on suppose qu’avant exécution les préconditions sont valides,
— à l’aide de ces hypothèses on justifie qu’après exécution, le résultat correspond à la

spécification.

Suivi de l’exécution d’un programme. Naturellement, le raisonnement suit l’exécution
de l’algorithme et l’évolution progressive des différentes variables ou données. Par exemple,
avec les trois instructions suivantes :

a = a-b
b = a+b
a = b-a

On note 𝑛𝑎 la valeur initiale de la variable a et 𝑛𝑏 la valeur initiale de la variable b. Après la
première instruction, a contient 𝑛𝑎 − 𝑛𝑏 . Après la deuxième, b contient (𝑛𝑎 − 𝑛𝑏) + 𝑛𝑏 = 𝑛𝑎.
Après la dernière, a contient 𝑛𝑎 − (𝑛𝑎 − 𝑛𝑏) = 𝑛𝑏 . Finalement, Autre programme avec le même

effet : a = a+b; b = a-b; a = a-b

les valeurs de a et b ont été
échangées. On peut présenter ce suivi dans un tableau donnant le contenu des variables
après chaque instruction.

a b

Initialement 𝑛𝑎 𝑛𝑏
a = a-b 𝑛𝑎 − 𝑛𝑏 𝑛𝑏
b = a+b 𝑛𝑎 − 𝑛𝑏 𝑛𝑎
a = b-a 𝑛𝑏 𝑛𝑎

Ce suivi précis pas-à-pas ne fonctionne pas pour les algorithmes plus complexes. Par exemple
pour cette fonction d’exponentiation rapide :

static int power(int a, int n) {
int r = 1;
while (n > 0) {

if (n % 2 == 1) r = r*a;
a = a*a;
n = n/2;

}
return r;

}

On a un nombre de tours dépendant de l’entrée, et une affectation conditionnelle qui, se-
lon l’entrée, est effectuée à certains tours de boucle et pas à d’autres. On ne peut suivre
l’exécution de cet algorithme que pour un 𝑛 concret donné.
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Invariant de boucle. Pour raisonner sur un tel algorithme on cherche à établir un inva-
riant de boucle, c’est-à-dire une propriété logique à propos des variables, qui est valide du
début à la fin de l’exécution (« invariablement valide »). Plus précisément, l’invariant doit :

— être vrai avant le premier tour de boucle,
— être préservé par chaque tour de boucle.

Exemple pour l’exponentiation rapide. On note 𝑎0 et 𝑛0 les valeurs initiales des deux argu-
ments a et n, et 𝑎, 𝑛 et 𝑟 les valeurs des trois variables du programme à un instant donné. La
formule

𝑟 × 𝑎𝑛 = 𝑎𝑛00

est un invariant de la boucle. En effet :
— Avant le premier tour, 𝑟 = 1, 𝑎 = 𝑎0 et 𝑛 = 𝑛0 et l’équation est immédiate.
— On suppose 𝑟 × 𝑎𝑛 = 𝑎𝑛00 vraie au début d’un tour de boucle et on note 𝑎′, 𝑛′ et 𝑟 ′ les

valeurs des variables telles que mises à jour à la fin du tour. Deux cas en fonction de
la parité de 𝑛 :

Décomp. 𝑛 𝑎′ 𝑛′ 𝑟 ′ Calcul 𝑟 ′ × 𝑎′𝑛′

𝑛 = 2𝑘 𝑎2 𝑘 𝑟 𝑟 × (𝑎2)𝑘 = 𝑟 × 𝑎2𝑘 = 𝑎𝑛
𝑛 = 2𝑘 + 1 𝑎2 𝑘 𝑎 × 𝑟 𝑟 × 𝑎 × (𝑎2)𝑘 = 𝑟 × 𝑎2𝑘+1 = 𝑎𝑛

Dans tous les cas 𝑟 ′ × 𝑎′𝑛′ = 𝑎𝑛00 : l’équation reste valide.
À noter : l’invariant peut être temporairement invalide pendant l’exécution d’un tour de
boucle (les variables ne sont pas toutes mises à jour en même temps). Ce qui compte est que
l’invariant soit vrai à nouveau à la fin du tour : il est alors également vrai au début du tour
suivant, puis à la fin du suivant, et ainsi de suite jusqu’à la fin des tours.

Exemple : recherche dichotomique. Au début du cours, on a justifié la correction de la
recherche dichotomique dans un tableau trié à l’aide d’un « fait clé » : l’élément x cherché
ne peut pas se trouver en dehors de l’intervalle [lo, hi [, car tous les éléments de tab [0, lo [
sont strictement inférieurs à la cible, et tous les éléments de tab [hi, 𝑛 [ lui sont strictement
supérieurs. Ce « fait clé » est un invariant de la boucle while. On énonce également le fait
que lo et hi définissent toujours intervalle du tableau et on obtient les invariants suivants :

⎧⎪⎪
⎨⎪⎪⎩

0 ≤ lo ≤ hi ≤ 𝑛
∀𝑖 ∈ [0, lo [ , tab[𝑖] < x

∀𝑖 ∈ [hi, 𝑛 [ , tab[𝑖] > x

(on note 𝑛 la taille du tableau tab). Ces propriétés sont vraies avant le premier tour de boucle,
puis préservées par chaque tour : elles sont donc bien des « invariants » et restent vraies
jusqu’à la fin de l’exécution. En particulier, quand la boucle s’arrête car lo = hi ces inva-
riants assurent que l’élément x cherché n’apparaît pas dans le tableau : -1 est bien le résultat
attendu.

Exemple : recherche d’une séquence. On se donne le code java simple suivant, pour
chercher une séquence s dans un texte t. Cet algorithme énumère toutes les positions de
départ i possibles dans t, en omettant seulement celles qui ne laissent pas assez de place
pour une occcurrence de la séquence s, puis on teste ensuite chaque caractère suivant la
position i, en s’interrompant lorsque l’on observe une différence entre la séquence s et le
segment observé de t.

static int stringSearch(String s, String t) {
int ls = s.length();
int lt = t.length();
mainLoop:
for (int i=0; i+ls <= lt; i++) {

for (int j=0; j<ls; j++) {
if (s.charAt(j) != t.charAt(i+j)) continue mainLoop;

}
return i;

}
return -1;

}
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Le schéma suivant illustre ce descriptif : on a commencé à comparer la séquence s au seg-
ment t [i, i + |s| [, les j premiers caractères correspondaient et l’on s’intéresse maintenant
au caractère d’indice j de s, c’est-à-dire au j + 1-ème.

t

s

= ?

0 i i + j i + |s| |t|

j0 |s|

L’algorithme parcourt ainsi tous les indices j de s tant qu’il n’observe pas de différence,
puis recommence en incrémentant i jusqu’à avoir trouvé une occurrence complète de s. On
détecte que l’on a trouvé une occurrence complète lorsque la boucle interne a mené l’indice
j jusqu’à la longueur |s| de s.

Les invariants des boucles de notre programme stringSearch formalisent ce schéma.
— Invariant de la boucle interne : les segments s [0, j [ et t [i, i + j [ coïncident.

∀𝑘 ∈ [0, j [ , s[𝑘] = t[i + 𝑘]

— Invariant de la boucle externe : on n’a trouvé aucune occurrence complète de s com-
mençant avant l’indice i. Autrement dit, tout segment t [𝑘, 𝑘 + |s| [ démarrant à un
indice 𝑘 < i a au moins une différence avec la séquence s.

∀𝑘 ∈ [0, i [ , ∃𝑘′ ∈ [0, |s| [ , t[𝑘 + 𝑘′] ≠ s[𝑘′]

1.4 Approfondissement : boîte à outils logique
Objectif : répertorier des éléments de langage que l’on peut utiliser pour s’exprimer

sans ambiguïté, pour permettre des descriptions précises et des argumentations claires. Les
phrases construites avec ces éléments sont des formules, qui peuvent être vraies ou fausses
en fonction de leur forme et/ou du contexte. Deux formules sont équivalentes si elles sont
vraies dans les mêmes contextes.

Prédicats. Propriétés de base des objets dont on parle. Par exemple :

Prédicats Contexte
𝑎 = 𝑏 , 𝑎 ≠ 𝑏 𝑎, 𝑏 objets quelconques
𝑛1 < 𝑛2, 𝑛1 ≤ 𝑛2, 𝑛1 > 𝑛2, 𝑛1 ≥ 𝑛2 𝑛1, 𝑛2 nombres
𝑋 ⊆ 𝑌 𝑋 , 𝑌 ensembles
𝑎 ∈ 𝑋 , 𝑎 ∉ 𝑋 𝑋 ensemble, 𝑎 élément

Connecteurs. Articulations avec lesquelles on combine deux prédicats ou formules.

Connecteur Prononciation Notation Formule vraie quand...
Conjonction 𝐴 et 𝐵 𝐴 ∧ 𝐵 𝐴, 𝐵 toutes deux vraies
Disjonction 𝐴 ou 𝐵 𝐴 ∨ 𝐵 au moins une parmi 𝐴, 𝐵 vraie
Négation non 𝐴 ¬𝐴 𝐴 fausse
Implication si 𝐴 alors 𝐵 𝐴 ⇒ 𝐵 𝐵 vraie au moins dans les contextes où 𝐴 vraie

On a aussi des notations pour deux formules dégénérées :

Formule Notation Formule vraie...
Tautologie ⊤ toujours
Contradiction ⊥ jamais
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Relations d’équivalence entre formes logiques :

Principe Équivalences
Absorption 𝐴 ∧ ⊥ ≡ ⊥ 𝐴 ∨ ⊤ ≡ ⊤
Neutralité 𝐴 ∧ ⊤ ≡ 𝐴 𝐴 ∨ ⊥ ≡ 𝐴

Commutativité 𝐴 ∧ 𝐵 ≡ 𝐵 ∧ 𝐴 𝐴 ∨ 𝐵 ≡ 𝐵 ∨ 𝐴
Associativité 𝐴 ∧ (𝐵 ∧ 𝐶) ≡ (𝐴 ∧ 𝐵) ∧ 𝐶 𝐴 ∨ (𝐵 ∨ 𝐶) ≡ (𝐴 ∨ 𝐵) ∨ 𝐶
Distributivité 𝐴 ∧ (𝐵 ∨ 𝐶) ≡ (𝐴 ∧ 𝐵) ∨ (𝐴 ∧ 𝐶) 𝐴 ∨ (𝐵 ∧ 𝐶) ≡ (𝐴 ∨ 𝐵) ∧ (𝐴 ∨ 𝐶)

Lois de de Morgan ¬(𝐴 ∧ 𝐵) ≡ (¬𝐴) ∨ (¬𝐵) ¬(𝐴 ∨ 𝐵) ≡ (¬𝐴) ∧ (¬𝐵)
Involutivité ¬¬𝐴 ≡ 𝐴

Négation ¬𝐴 ≡ 𝐴 ⇒ ⊥
Non-contradiction 𝐴 ∧ ¬𝐴 ≡ ⊥

Tiers exclu 𝐴 ∨ ¬𝐴 ≡ ⊤
Implication 𝐴 ⇒ 𝐵 ≡ (¬𝐴) ∨ 𝐵

Contraposition 𝐴 ⇒ 𝐵 ≡ (¬𝐵) ⇒ (¬𝐴)

Quantificateurs. Les phrases logiques font souvent référence à des objets indéterminés.
Par exemple : 𝑥 ≠ 0 ⇒ 𝑥 = 𝑦 + 1. On note 𝐴(𝑥, 𝑦) une telle formule 𝐴 faisant référence
à deux objets 𝑥 et 𝑦 pris dans un certain ensemble (ici : ℕ). Les quantificateurs indiquent
quels objets concrets peuvent être désignés par les variables 𝑥 et 𝑦. Par exemple, la formule
𝐴(𝑥, 𝑦) précédente est valable pour tout 𝑥 ∈ ℕ, mais une fois la valeur de 𝑥 choisie celle de
𝑦 devient très fortement contrainte.

Quantification Prononciation Notation Formule vraie quand...
Universelle pour tout 𝑥 on a ∀𝑥 ∈ 𝐸, 𝐴(𝑥) 𝐴 est vraie quelque soit l’objet 𝑒 ∈ 𝐸 désigné par 𝑥
Existentielle il existe 𝑥 tel que ∃𝑥 ∈ 𝐸, 𝐴(𝑥) 𝐴 est vraie pour au moins un objet 𝑒 ∈ 𝐸

Exemple : ∀𝑥 ∈ ℕ, (𝑥 ≠ 0 ⇒ (∃𝑦 ∈ ℕ, 𝑥 = 𝑦 + 1)). On omet parfois l’ensemble 𝐸 lorsqu’il
est clair dans le contexte.

Relations d’équivalence entre formules avec quantificateurs :

Principe Équivalences
Indépendance ∀𝑥, ∀𝑦, 𝐴(𝑥, 𝑦) ≡ ∀𝑦, ∀𝑥, 𝐴(𝑥, 𝑦) ∃𝑥, ∃𝑦, 𝐴(𝑥, 𝑦) ≡ ∃𝑦, ∃𝑥, 𝐴(𝑥, 𝑦)

Lois de de Morgan ¬(∀𝑥, 𝐴(𝑥)) ≡ ∃𝑥, ¬𝐴(𝑥) ¬(∃𝑥, 𝐴(𝑥)) ≡ ∀𝑥, ¬𝐴(𝑥)

Note : dans la vie courante, on exprime les propriétés manipulées en français, et pas avec
les notations logiques. Cependant, même en langue naturelle on se ramène aux articulations
données par les connecteurs logiques, afin de s’exprimer et raisonner avec précision et clarté.
Dans ce cours on alternera entre les deux langues.

Raisonnement. Pour justifier qu’un fait donné est vrai, on déduit sa véracité à l’aide de
règles de raisonnement en partant de certains faits de base supposés vrais.

On a donc toujours dans ce contexte un ensemble de formules (appelées hypothèses)
dont on suppose qu’elles sont vraies, et à partir desquelles on veut déduire qu’une certaine
formule cible (la conclusion) est vraie également.

Chaque articulation logique est associée à des règles de déduction de base, indiquant
notamment :

— comment justifier une conclusion présentant cette articulation (règle d’introduction)
— comment utiliser une hypothèse basée sur cette articulation (règle d’élimination)

On a en plus un certain nombre de grandes techniques : raisonnement par l’absurde, tiers
exclu, contradiction, récurrence...

À noter : on ne cherche jamais à justifier que les hypothèses sont elles-mêmes vraies. On
veut simplement justifier qu’elles ne peuvent être vraies sans que la conclusion ne le soit elle
aussi. D’ailleurs, on verra ci-dessous que certaines techniques de raisonnement consistent
au contraire à montrer que les hypothèses ne peuvent pas être vraies.
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Comment justifier une formule cible :

Formule cible Action nécessaire
𝐴 ∧ 𝐵 justifier les deux formules
𝐴 ∨ 𝐵 justifier l’une des deux formules (au choix)
¬𝐴 supposer l’hypothèse 𝐴 et obtenir une contradiction

𝐴 ⇒ 𝐵 supposer l’hypothèse 𝐴 et justifier 𝐵
⊤ aucune action requise
⊥ justifier à la fois 𝐴 et ¬𝐴 (formule 𝐴 au choix)

∀𝑥 ∈ 𝐸, 𝐴(𝑥) justifier 𝐴(𝑥) sans rien supposer sur 𝑥 (à part le fait que 𝑥 ∈ 𝐸)
∃𝑥 ∈ 𝐸, 𝐴(𝑥) trouver un 𝑒 ∈ 𝐸 pour lequel on arrive à justifier 𝐴(𝑒)

Comment utiliser une hypothèse :

Hypothèse Action possible
𝐴 ∧ 𝐵 déduire 𝐴, déduire 𝐵 (une au choix, ou les deux)
𝐴 ∨ 𝐵 déduire 𝐶, si on peut justifier à la fois 𝐴 ⇒ 𝐶 et 𝐵 ⇒ 𝐶 (raisonnement par cas)
¬𝐴 déduire une contradiction, si on peut justifier 𝐴

𝐴 ⇒ 𝐵 déduire 𝐵, si on peut justifier 𝐴
⊤ aucune déduction possible
⊥ ex falso quod libet (on peut déduire tout ce qu’on veut)

∀𝑥 ∈ 𝐸, 𝐴(𝑥) déduire 𝐴(𝑒) pour un 𝑒 ∈ 𝐸 au choix (même partiellement indéterminé)
∃𝑥 ∈ 𝐸, 𝐴(𝑥) introduire un 𝑦 et l’hypothèse 𝐴(𝑦) (sans rien supposer d’autre sur 𝑦 ∈ 𝐸)

Comment réfuter une formule :

Formule à réfuter Action nécessaire
𝐴 ∧ 𝐵 réfuter l’une des deux formules (au choix)
𝐴 ∨ 𝐵 réfuter les deux formules
¬𝐴 justifier 𝐴

𝐴 ⇒ 𝐵 trouver un cas dans lequel 𝐴 est vraie mais pas 𝐵
⊤ impossible (à part ex falso)
⊥ aucune action requise

∀𝑥 ∈ 𝐸, 𝐴(𝑥) trouver un 𝑒 ∈ 𝐸 pour lequel on peut réfuter 𝐴(𝑒)
∃𝑥 ∈ 𝐸, 𝐴(𝑥) réfuter 𝐴(𝑥) sans rien supposer sur 𝑥 (à part 𝑥 ∈ 𝐸)

Techniques supplémentaires :
— Ex falso. L’hypothèse ⊥ permet de justifier n’importe quelle conclusion. Autrement

dit, un ensemble d’hypothèses permettant de déduire une contradiction permet de
justifier n’importe quelle formule.

— Raisonnement par l’absurde. Pour justifier une conclusion 𝐴, on peut prendre comme
hypothèse ¬𝐴 et chercher une contradiction.

— Tiers exclu. Pour justifier une conclusion𝐶, on peut raisonner par cas sur la disjonction
𝐴 ∨ ¬𝐴 pour une formule 𝐴 au choix. D’où : choisir une formule 𝐴 puis :

— sous l’hypothèse 𝐴, justifier 𝐶,
— sous l’hypothèse ¬𝐴, justifier 𝐶.

Raisonnement par récurrence. Principe additionnel, pour justifier qu’une formule𝐴(𝑛)
est vraie pour tous les entiers 𝑛 ∈ ℕ. Deux actions nécessaires :

1. initialisation : justifier 𝐴(0),
2. hérédité : prendre un 𝑛 ∈ ℕ arbitraire, supposer 𝐴(𝑛) et justifier 𝐴(𝑛 + 1).

On en déduit : ∀𝑛 ∈ ℕ,𝐴(𝑛).

Variante : récurrence forte. Deux actions nécessaires :
1. initialisation : justifier 𝐴(0),
2. hérédité forte : pour un 𝑛 ∈ ℕ arbitraire non nul, supposer 𝐴(𝑘) pour tous les 𝑘 < 𝑛,

et justifier 𝐴(𝑛).
On déduit de même : ∀𝑛 ∈ ℕ,𝐴(𝑛). Note : l’hérédité forte avec 𝑛 = 0 correspond à l’initiali-
sation.

9



2 Trier

2.1 Problème : tri de tableau en place
On se donne un tableau contenant des entiers, et on souhaite réarranger ses éléments de

sorte à ce qu’ils soient classés du plus petit au plus grand. Ce problème est le tri en place
d’un tableau, où « en place » signifie que l’on travaille directement sur le tableau fourni et
qu’on le modifie. Exemple d’entrée :

tab → −6 8 5 −6 −3 9 4 −8 7 5 7 6

État attendu du tableau tab après tri de ses éléments :

tab → −8 −6 −6 −3 4 5 5 6 7 7 8 9

Spécification. La spécification du problème du tri en place comporte deux facettes :
— après le tri, les éléments du tableau doivent être rangés en ordre croissant,
— après le tri, le tableau doit contenir exactement les mêmes éléments qu’à l’origine

(répétitions comprises).
On n’a en revanche aucune précondition : tous les tableaux d’éléments comparables doivent
pouvoir être traités. Le tri en place modifie le tableau auquel on l’applique. Pour éviter les
ambiguïtés, dans la suite on note 𝑡 le tableau tab tel qu’il était avant application du tri, et 𝑡′
ce même tableau une fois le tri effectué.

Pour exprimer que les éléments sont rangés en ordre croissant, on indique que tout
élément 𝑡′[𝑗] situé à la droite d’un élément 𝑡′[𝑖] lui est supérieur ou égal.

𝑖 < 𝑗
𝑡′ → 𝑎 ≤ 𝑏

Formule associée, en notant 𝑛 la taille du tableau :

∀𝑖, 𝑗 ∈ [0, 𝑛 [ , 𝑖 < 𝑗 ⇒ 𝑡′[𝑖] ≤ 𝑡′[𝑗]

Pour exprimer que le tableau contient, après tri, les mêmes éléments qu’avant, on demande
que le passage d’un tableau à l’autre soit obtenu par une permutation des cases.

𝑡 →

𝑡′ →

On note 𝑛 la taille du tableau tab (inchangée par le tri lui-même), et S𝑛 l’ensemble des
permutations de l’intervalle [0, 𝑛 [, c’est-à-dire des fonctions bijectives deNote : 𝜎 est une fonction qui

représente les flèches du schéma
précédent. Ainsi, l’image 𝜎(𝑖) est
l’indice de 𝑡′ où arrive l’élément

qui était à l’indice 𝑖 dans 𝑡.

l’intervalle [0, 𝑛 [
vers lui-même. On obtient la formule :

∃𝜎 ∈ S𝑛, ∀𝑖 ∈ [0, 𝑛 [ , 𝑡′[𝜎(𝑖)] = 𝑡[𝑖]

Avant de poursuivre. Sauriez-vous résoudre ce problème?

2.2 Solution 1 : tri par sélection
L’algorithme de tri par sélection procède ainsi :

— chercher le plus petit élément du tableau, et le mettre dans la première case ;
— puis, chercher le plus petit élément restant, et le mettre dans la deuxième case ;
— puis, chercher le plus petit élément restant, et le mettre dans la case suivante ;
— et ainsi de suite jusqu’à avoir traité l’ensemble.

Pour ne pas perdre d’éléments, chaque fois qu’il faut en déplacer un on effectue en réalité
un échange des éléments contenus dans deux cases du tableau. Exemple de première étape,
où l’on place le plus petit élément (−5, à l’indice 4) dans la première case (à l’indice 0).

6 3 -1 2 -5 8 1
0 1 2 3 4 5 6

-5 3 -1 2 6 8 1
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Exemple d’exécution. On part du tableau 6 3 -1 2 -5 8 1 . À chaque étape,
la zone encadrée correspond à l’ensemble des cases pour lesquelles on a sélectionné une va-
leur. Notez que l’on s’épargne la sélection du dernier élément, qui est nécessairement déjà
en place.

6 3 -1 2 -5 8 1
0 1 2 3 4 5 6

-5 3 -1 2 6 8 1

-5 -1 3 2 6 8 1

-5 -1 1 2 6 8 3

-5 -1 1 2 6 8 3

-5 -1 1 2 3 8 6

-5 -1 1 2 3 6 8

-5 -1 1 2 3 6 8

Code java. La fonction principale selectionSort fait appel à une fonction auxiliaire swap

pour échanger deux éléments du tableau d’indices i et j, et une autre indexMin pour chercher
l’indice d’un élément minimal dans un segment tab [i, 𝑛 [.

static void swap(int[] tab, int i, int j) {
int tmp = tab[i];
tab[i] = tab[j];
tab[j] = tmp;

}

static int indexMin(int[] tab, int i) {
assert (i < tab.length);
int jMin = i;
for (int j = i+1; j < tab.length; j++) {

if (tab[j] < tab[jMin])
jMin = j;

}
return jMin;

}

static void selectionSort(int[] tab) {
for (int i = 0; i < tab.length; i++) {

int j = indexMin(tab, i);
swap(tab, i, j);

}
}

Invariants de l’algorithme. Après 𝑖 étapes de cet algorithme, les 𝑖 premières cases du ta-
bleau contiennent les 𝑖 plus petits éléments, rangés par ordre croissant, et les cases suivantes
contiennent les autres éléments, dans un ordre arbitraire.

0 𝑖 𝑛
↓ ↓ ↓

préfixe trié reste à trier
≤
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Ces propriétés sont les invariants de l’algorithme, que l’on peut formaliser ainsi. Après i

étapes de sélection :
— le segment tab [0, i [ est trié

∀𝑘1, 𝑘2 ∈ [0, i [ , 𝑘1 < 𝑘2 ⇒ tab[𝑘1] ≤ tab[𝑘2]

— et les éléments du segment tab [0, i [ sont plus petits que les éléments restants

∀𝑘1 ∈ [0, i [ , ∀𝑘2 ∈ [i, 𝑛 [ , tab[𝑘1] ≤ tab[𝑘2]

À ces deux invariants s’ajoute celui énonçant qu’à chaque étape, le tableau est bien une
permutation du tableau d’origine.

Spécification et invariants de la fonction auxiliaire. L’algorithme repose sur une
fonction auxiliaire cherchant la position du minimum d’un segment de tableau. Spécifions
la fonction indexMin(tab, i) de recherche du minimum de tab [i, 𝑛 [ (où on suppose que tab

est un tableau de taille 𝑛).
— Précondition : le segment tab [i, 𝑛 [ n’est pas vide. Autrement dit : i < 𝑛.
— Le résultat 𝑟 est l’indice d’un élément de tab [i, 𝑛 [ minimal. Autrement dit : i ≤ 𝑟 < 𝑛

et ∀𝑘 ∈ [i, 𝑛 [ , tab[𝑟] ≤ tab[𝑘].
La fonction indexMin parcourt le segment tab [i, 𝑛 [, et met à jour une variable jMin conte-
nant l’indice du plus petit élément de la région tab [i, j [ déjà parcourue. Invariants :

— l’indice jMin est dans l’intervalle [i, j [

i ≤ jMin < j

— l’indice jMin est l’indice d’un élément minimal du segment tab [i, j [

∀𝑘 ∈ [i, j [ , tab[jMin] ≤ tab[𝑘]

2.3 Complexité : dénombrement d’opérations
Objectif de l’étude de la complexité : prédire le temps d’exécution ou la consommation

mémoire d’un programme.

Expression de la complexité temporelle. Le temps d’exécution d’un programme est
déterminé par :

— le temps nécessaire pour réaliser chaque opération de base,
— le nombre de fois que chaque opération est réalisée.

Opération de base : toute opération qu’on juge « atomique ». Par exemple : opérations arith-
métiques, comparaisons, lecture ou écriture d’une case d’un tableau... Ces opérations de base
n’ont pas toutes le même coût. Le plus souvent, compter les accès à la mémoire suffit à bien
estimer le temps d’exécution, car cette opération est plutôt coûteuse. Dans le cas du tri en
place d’un tableau, il s’agit des accès aux cases du tableau.

Le temps d’exécution d’un programme varie en fonction de ses entrées. Traditionnel-
lement, on cherche à exprimer la complexité d’un algorithme en fonction de la taille de
l’entrée. Pour un algorithme opérant sur des tableaux, on pourra par exemple exprimer une
complexité 𝑐(𝑛) en fonction de la taille 𝑛 du tableau pris en entrée.

Ordres de grandeur de complexité. En général, on ne s’intéresse pas à un décompte
exact des opérations. On exprime plutôt un ordre de grandeur , en se rapportant à quelques
profils de référence. En voici quelques uns, exprimés en fonction d’une taille 𝑛 pour les
entrées.

Coût Nom du profil Cas typique Évolution quand 𝑛 double
1 constant opération de base pas d’évolution
log(𝑛) logarithmique dichotomie ajout d’une constante
𝑛 linéaire boucle simple multiplication par 2
𝑛 log(𝑛) linéarithmique diviser pour régner multiplication par 2
𝑛2 quadratique 2 boucles imbriquées multiplication par 4
𝑛3 cubique 3 boucles imbriquées multiplication par 8
2𝑛 exponentiel backtracking carré
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Si on considère une complexité 𝑐(𝑛) = 3𝑛2 + 5𝑛 + 17, l’essentiel de la valeur de 𝑐(𝑛) est dé-
terminée par le terme dominant 3𝑛2, notamment lorsque l’on considère de grandes valeurs
de 𝑛. On dit que 𝑐(𝑛) est équivalente à 3𝑛2 et on note 𝑐(𝑛) ∼ 3𝑛2. En omettant la constante
multiplicative 3, on peut également retenir que cette complexité est quadratique, c’est-à-
dire de l’ordre de 𝑛2.

Les notations de Landau formalisent ces notions d’équivalence et d’ordre de grandeur.
Ci-dessous, on considère que 𝑓 et 𝑔 sont des fonctions de ℕ à valeurs positives.

Notation Idée Définition

𝑔(𝑛) = (𝑓 (𝑛)) 𝑔 majorée par 𝑓 , ∃𝑘 ∈ ℝ+, ∃𝑛0 ∈ ℕ, ∀𝑛 ≥ 𝑛0, 𝑔(𝑛) ≤ 𝑘𝑓 (𝑛)à un facteur près

𝑔(𝑛) = Ω(𝑓 (𝑛)) 𝑔 minorée par 𝑓 , ∃𝑘 ∈ ℝ+, ∃𝑛0 ∈ ℕ, ∀𝑛 ≥ 𝑛0, 𝑘𝑓 (𝑛) ≤ 𝑔(𝑛)à un facteur près

𝑔(𝑛) = Θ(𝑓 (𝑛)) 𝑔 de l’ordre de 𝑓 𝑔(𝑛) = (𝑓 (𝑛)) et 𝑔(𝑛) = Ω(𝑓 (𝑛))(à un facteur près)

𝑔(𝑛) ∼ 𝑓 (𝑛) 𝑔 équivalente à 𝑓
lim𝑛→∞ (

𝑔(𝑛)
𝑓 (𝑛))

= 1(précisément)

Dans un calcul, (𝑓 (𝑛)) désigne une fonction 𝑔 arbitraire telle que 𝑔(𝑛) = (𝑓 (𝑛)). On dit
de même « 𝑔 est un (𝑓 ) » pour signifier 𝑔(𝑛) = (𝑓 (𝑛)). En revanche, l’expression

« 𝑔 est au moins un (𝑓 ) »
est une bêtise. Pourquoi ?

Les mêmes principes s’appliquent
aux autres notations. Exemple : si on pose 𝑐(𝑛) = 3𝑛2 + 5𝑛 − 12 on peut écrire :

— 𝑐(𝑛) = (𝑛2), mais aussi a fortiori 𝑐(𝑛) = (𝑛3) ou même 𝑐(𝑛) = (2𝑛).
— 𝑐(𝑛) = Ω(𝑛2), mais aussi a fortiori 𝑐(𝑛) = Ω(𝑛) ou même 𝑐(𝑛) = Ω(1).
— 𝑐(𝑛) = Θ(𝑛2).
— 𝑐(𝑛) ∼ 3𝑛2.

Dénombrement des opérations du tri par sélection. Dans les cas simples, pour une
taille d’entrée donnée on peut calculer précisément le nombre d’opérations. Faisons-le pour
le tri par sélection, en se concentrant sur le nombre de comparaisons de paires d’éléments
du tableau, en fonction de la taille 𝑛 du tableau tab donné en entrée.

— La fonction indexMin contient une boucle réalisant exactement une comparaison à
chaque tour. La boucle réalise un tour pour chaque valeur de 𝑗 dans l’intervalle [𝑖 + 1, 𝑛 [,
soit 𝑐indexMin(𝑖, 𝑛) = 𝑛 − 𝑖 − 1 comparaisons au total.

— La fonction selectionSort ne fait pas elle-même de comparaison, mais appelle indexMin
successivement pour toutes les valeurs de 𝑖 dans l’intervalle [0, 𝑛 [.

D’où nombre total de comparaisons :

𝑐(𝑛) = ∑
0≤𝑖<𝑛

𝑐indexMin(𝑖, 𝑛) = ∑
0≤𝑖<𝑛

𝑛 − 𝑖 − 1 = ∑
0≤𝑖<𝑛

𝑖 =
𝑛(𝑛 − 1)

2

2.4 Solution 2 : tri insertion
L’algorithme de tri par insertion procède ainsi :

— trier en place le segment formé par le premier élément (rien à faire pour cette étape !),
— puis trier en place le segment formé par les deux premiers éléments,
— puis trier en place le segment formé par les trois premiers éléments,
— et ainsi de suite jusqu’à avoir trié l’ensemble.

Une fois un segment 𝑡 [0, 𝑖 [ trié, pour trier le segment 𝑡 [0, 𝑖] il suffit de :
— chercher la position 𝑗 à laquelle devrait se trouver l’élément 𝑡[𝑖],
— décaler vers la droite tous les éléments de 𝑡 [𝑗 , 𝑖 [,
— puis insérer l’élément dans la case 𝑡[𝑗] maintenant libérée.

Exemple d’exécution. Partant du tableau 6 3 -1 2 -5 8 1 , on montre d’abord
le tableau obtenu après tri des trois premiers éléments, puis on cherche à insérer l’élément 2
(situé à l’indice 3). On repère qu’il doit être inséré entre les éléments −1 et 3, c’est-à-dire à
l’indice 1. On décale pour cela les éléments 3 et 6 d’une case vers la droite. On procède de
même pour les éléments suivants. Notez que l’insertion de 8 (initialement à l’indice 5), lors
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de la troisième étape représentée ici, ne nécessite aucun décalage puisque cet élément est
plus grand que tous ceux situés à sa gauche.

6 3 -1 2 -5 8 1
0 1 2 3 4 5 6

-1 3 6 2 -5 8 1

-1 3 6 -5 8 1

-1 2 3 6 -5 8 1

-1 2 3 6 8 1

-5 -1 2 3 6 8 1

-5 -1 2 3 6 8 1

-5 -1 2 3 6 8

-5 -1 1 2 3 6 8

Code java. La fonction principale insertionSort fait appel à une fonction auxiliaire insert,
qui insère l’élément d’indice 𝑖 du tableau tab au bon endroit dans le segment tab [0, 𝑖], en
décalant vers la droite les éléments qui doivent l’être.

static void insert(int[] tab, int i) {
assert (i < tab.length);
int v = tab[i];
int j = i;
while (j > 0 && tab[j-1] > v) {

tab[j] = tab[j-1];
j--;

}
tab[j] = v;

}

static void insertionSort(int[] tab) {
for (int i=1; i < tab.length; i++) {

insert(tab, i);
}

}

Invariants de l’algorithme. Invariant principal : à l’étape i, le segment tab [0, i [ est trié.

∀𝑘1, 𝑘2 ∈ [0, i [ , 𝑘1 < 𝑘2 ⇒ tab[𝑘1] ≤ tab[𝑘2]

En outre, à toute étape le tableau est une permutation du tableau d’origine.
Dans la fonction insert, on décale d’un cran vers la droite tous les éléments du segment

tab [0, i [ qui sont strictement supérieurs à v, en commençant par l’élément le plus à droite.
Invariants de la fonction d’insertion : le segment tab [0, i] est trié en ordre croissant et tous
les éléments à droite de l’indice j (dans le segment tab [0, i]) sont strictement supérieurs à
la valeur v à insérer.

{
∀𝑘1, 𝑘2 ∈ [0, i] , 𝑘1 < 𝑘2 ⇒ tab[𝑘1] ≤ tab[𝑘2]
∀𝑘 ∈ [j + 1, i] , v < tab[𝑘]

En outre, à chaque étape, le tableau que l’on obtiendrait en insérant v à l’indice j est une
permutation du tableau d’origine.
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2.5 Complexité : meilleur cas, pire cas, moyenne
Différentes entrées de même taille peuvent donner des coûts d’exécution différents. C’est

ce que l’on peut observer avec le tri par insertion. Considérons un tableau tab de taille 𝑛 et
dénombrons les opérations de comparaison.

— La fonction principale insertionSort réalise 𝑛−1 appels à la fonction auxiliaire insert,
pour toutes les valeurs de 𝑖 prises dans l’intervalle [1, 𝑛 [.

— La fonction insert réalise :
1. au minimum une comparaison, si tab[𝑖] ≥ tab[𝑖 − 1],
2. au maximum 𝑖 comparaisons, si tab[𝑖] < tab[0],
3. ou n’importe quel nombre intermédiaire.

Trois nuances de complexité. Pour tenir compte de cette variabilité on calcule trois
complexités pour les entrées de taille 𝑛.

— Meilleur cas : complexité pour une entrée donnant un coût minimal. Indique le mieux
qu’on puisse attendre, sur une entrée particulièrement favorable.

— Pire cas : complexité pour une entrée donnant un coût maximal. Indique un maxi-
mum, garanti jamais dépassé même sur les entrées les plus défavorables.

— Complexité moyenne sur toutes les entrées de taille 𝑛. Indique ce qu’on peut raison-
nablement espérer pour une entrée prise au hasard.

Meilleur cas, pire cas et moyenne pour le tri par insertion. Pour calculer les com-
plexités du tri par insertion, on se concentre sur les différentes complexités possibles de la
partie dont la complexité peut effectivement varier, c’est-à-dire la fonction insert.

— Le cas minimum de insert est réalisé lorsque tab[𝑖] ≥ tab[𝑖 − 1]. Ce cas se produit à
chaque appel à insert si tab est dès l’origine trié en ordre croissant. On a donc 𝑛 − 1
comparaisons au total dans le meilleur cas.

— Le cas maximum de insert est réalisé lorsque tab[𝑖] < tab[𝑗] pour tout 𝑗 ∈ [0, 𝑖 [. Ce
cas se produit à chaque appel à insert si tab est à l’origine trié en ordre décroissant.
On a donc ∑1≤𝑖<𝑛 𝑖 =

𝑛(𝑛−1)
2 comparaisons au total dans le cas le pire.

— Pour un appel à insert sur un tableau quelconque, toutes les complexités entre 1
et 𝑖 sont équiprobables. Chaque appel à cette fonction réalise donc en moyenne 𝑖

2
comparaisons. On a ainsi ∑1≤𝑖<𝑛

𝑖
2 = 𝑛(𝑛−1)

4 comparaisons en moyenne pour un tri
complet.

D’où meilleur cas ∼ 𝑛, pire cas ∼ 1
2𝑛

2 et en moyenne ∼ 1
4𝑛

2 comparaisons.

2.6 Approfondissement : calculs de complexité
Identités utiles. Quelques identités utiles pour résoudre les sommes ou produits obtenus
dans des calculs de complexité, avec ordres de grandeur.

Expression Résultat Équivalent Ordre

1 + 2 + 3 + 4 + … + 𝑛 = ∑
0≤𝑘≤𝑛

𝑘
𝑛(𝑛 + 1)

2
∼

𝑛2

2
Θ(𝑛2)

1 + 2 + 4 + 8 + … + 2𝑛 = ∑
0≤𝑘≤𝑛

2𝑘 2𝑛+1 − 1 ∼ 2𝑛+1 Θ(2𝑛)

1 +
1
2
+
1
3
+
1
4
+ … +

1
𝑛

= ∑
0≤𝑘≤𝑛

1
𝑘

𝐻𝑛 ∼ ln(𝑛) Θ(log(𝑛))

1 +
1
2
+
1
4
+
1
8
+ … +

1
2𝑛

= ∑
0≤𝑘≤𝑛

1
2𝑘

2 −
1
2𝑛

∼ 2 Θ(1)

1 × 2 × 3 × 4 × … × 𝑛 = ∏
1≤𝑘≤𝑛

𝑘 𝑛! ∼
√
2𝜋𝑛(

𝑛
𝑒 )

𝑛
Θ(

√
𝑛(

𝑛
𝑒 )

𝑛
)

log(1) + log(2) + … + log(𝑛) = ∑
1≤𝑘≤𝑛

log(𝑘) log(𝑛!) ∼ 𝑛log(𝑛) Θ(𝑛log(n))

Note : 𝐻𝑛 s’appelle la série harmonique. Traditionnellement log𝑏 est le logarithme en base 𝑏 ,
et ln = log𝑒 est le logarithme naturel (népérien). Dans ce cours, en plus, on écrit simplement
log sans précision de base pour log2.
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Modèle des entrées pour le calcul en moyenne. Pour un ensemble fini de valeurs la
notion de moyenne est simple : somme des valeurs divisée par le cardinal de l’ensemble.
Ici le nombre de tableaux différents de taille 𝑛 est infini. Cependant, pour étudier un algo-
rithme de tri les valeurs exactes de chaque case d’un tableau n’ont pas d’importance : seules
comptent les comparaisons deux à deux. Dans notre étude il n’y a pas de différence entre

2 0 1 et 19273 -374 2178 : seul compte le fait qu’on a d’abord le plus grand
élément, puis le plus petit, puis le médian. En supposant que les tableaux ne contiennent
pas de doublons, on a 𝑛! configurations possibles pour un tableau de taille 𝑛, et ces 𝑛 confi-
gurations sont équiprobables.

Pour les calculs de complexité moyenne on utilise ce modèle des tableaux ordonnés
aléatoirement sans répétition. Les complexités moyennes obtenues restent valables avec une
quantité modérée de répétitions. Si on veut pouvoir analyser un cas particulier d’application
où on attend de nombreuses répétitions il faut adopter un autre modèle spécifique.

2.7 Approfondissement : tris en caml
Les tableaux existent également en caml. L’accès à la case d’indice i du tableau tab se

note tab.(i). L’affectation d’une nouvelle valeur se note tab.(i) <- v. Partant de cela, voici
comment on aurait pu écrire les algorithmes de ce chapitre en caml.

Tri par sélection. On définit une variable mutable avec let x = ref v in. On accède à
la valeur d’une variable mutable x avec !x et on la modifie avec x := v'. On sépare deux
instructions avec un point-virgule ; Dans une boucle for, on donne l’indice de début et
l’indice de fin (inclus), et on délimite le corps de la boucle par do et done.

let swap tab i j =
let tmp = tab.(i) in
tab.(i) <- tab.(j);
tab.(j) <- tmp

let index_min tab i =
assert (i < Array.length tab);
let j_min = ref i in
for j = i+1 to Array.length tab - 1 do
if tab.(j) < tab.(!j_min) then
j_min := j

done;
!j_min

let selection_sort tab =
for i = 0 to Array.length tab - 1 do
let j = index_min tab i in
swap tab i j

done

Tri insertion. Le corps d’une boucle while, comme celui d’une boucle for, est délimité
par do et done.

let insert tab i =
assert (i < Array.length tab);
let v = tab.(i) in
let j = ref i in
while !j > 0 && tab.(!j-1) > v do
tab.(!j) <- tab.(!j-1);
decr j

done;
tab.(!j) <- v

let insertion_sort tab =
for i = 0 to Array.length tab - 1 do
insert tab i

done

Essayez également d’écrire à nouveau ces algorithmes dans les autres langages que vous connais-
sez. Par exemple : python.
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3 Accélérer

3.1 Problème : tri de tableau en place, plus rapidement
Les deux solutions précédentes au problème du tri ont pour point commun une com-

plexité quadratique. On veut maintenant réaliser cette même tâche, mais plus rapidement.
Remarquons le point suivant : pour les tris quadratiques que nous connaissons, trier un ta-
bleau de taille 𝑛

2 prend quatre fois moins de temps que trier un tableau de taille 𝑛. Ainsi,
trier indépendamment l’une de l’autre deux moitiés d’un tableau de taille 𝑛 revient à faire
deux tris de tableaux de taille 𝑛

2 , ce qui prend deux fois moins de temps que trier le tableau
complet. Évidemment, on ne peut pas se contenter de cela : il faut encore faire en sorte que
les deux moitiés triées puissent bien être combinées en un tableau globalement trié. Mais
une partie du temps gagné sur les tris des deux moitiés peut être utilisée pour cela.

3.2 Algorithme : tri rapide
L’algorithme de tri rapide procède ainsi :

— placer dans une partie gauche du tableau les élément « petits » et dans une partie
droite les éléments « grands »,

— trier indépendamment chacune des deux parties,
— réaliser le point précédent en utilisant à nouveau le même algorithme, jusqu’à n’avoir

plus à trier que des tableaux si petits qu’ils n’ont plus à être découpés.

0 3 -1 2 -5 8 1
0 1 2 3 4 5 6

-1 -5 0 3 2 8 1

-5 -1 0 1 2 3 8

Le tri séparé des deux parties suffit à obtenir un ensemble trié, puisque l’on a pris soin à la
première étape de ne mettre à droite que des éléments plus grands que ceux situés à gauche.
Pour répartir les éléments du tableau en deux groupes, on les compare à un élément pivot
pris dans le tableau :

— les éléments plus petits que le pivot sont déclarés « petits » et placés à gauche,
— les éléments plus grands que le pivot sont déclarés « grands » et placés à droite,
— le pivot lui-même est placé entre les deux groupes, et l’on peut même regrouper ainsi

au « centre » toutes les occurrences de l’élément pivot s’il y en a plusieurs.
Le pivot peut être n’importe quel élément du tableau, par exemple le premier. Notez que les
deux groupes à trier ensuite n’ont pas besoin d’inclure le pivot lui-même, puisque celui-ci
est déjà à sa place définitive : il n’a que des éléments plus petits à sa gauche et que des
éléments plus grands à sa droite.

0 3 -1 2 -5 8 1
0 1 2 3 4 5 6

Code java. La fonction principale quickSort prend en paramètres un tableau tab et deux
indices lo et hi, et trie le segment tab [lo, hi [. Pour cela, elle combine une boucle réorgani-
sant le tableau autour d’un élément pivot, et des appels récursifs sur les deux sous-tableaux
situés sous le pivot et au-dessus du pivot.

static void swap(int[] tab, int i, int j) {
int tmp = tab[i];
tab[i] = tab[j];
tab[j] = tmp;

}

static void quickSort(int[] tab, int lo, int hi) {
if (hi <= lo+1) return;
int a=lo, b=lo+1, c=hi;
int pivot = tab[lo];
while (b < c) {

if (tab[b] < pivot) { swap(tab, b++, a++); }
else if (tab[b] > pivot) { swap(tab, b, --c); }
else /* tab[b] == pivot */ { b++; }

}
quickSort(tab, lo, a);
quickSort(tab, c, hi);

}
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static void quickSort(int[] tab) {
quickSort(tab, 0, tab.length);

}

Invariants de la boucle de partition. Pendant l’opération de partition, le segment tab [lo, hi [
est découpé en quatre parties :

lo a b c hi

↓ ↓ ↓ ↓ ↓
… < pivot = pivot à traiter > pivot …

— le segment tab [lo, a [ ne contient que des éléments strictement inférieurs au pivot

∀𝑘 ∈ [lo, a [ , tab[𝑘] < pivot

— le segment tab [a, b [ ne contient que des éléments égaux au pivot

∀𝑘 ∈ [a, b [ , tab[𝑘] = pivot

— le segment tab [b, c [ contient des éléments non encore traités, qui peuvent être quel-
conques,

— le segment tab [c, hi [ ne contient que des éléments strictement supérieurs au pivot

∀𝑘 ∈ [c, hi [ , tab[𝑘] > pivot

L’un de ces quatre segments est à coup sûr non vide : il s’agit de tab [a, b [, qui contient au
moins une occurrence du pivot. On a donc la chaîne de comparaisons lo ≤ a < b ≤ c ≤ hi.
À chaque tour de boucle, le segment des éléments à traiter est réduit d’une case au profit
de l’un des trois autres. La boucle s’arrête lorsque b = c, c’est-à-dire lorsque le segment des
éléments à traiter est vide. Le tableau a alors la forme suivante, où à coup sûr a < c (on a au
moins un élément dans le segment des éléments égaux au pivot).

lo a b = c hi

↓ ↓ ↓ ↓
… < pivot = pivot > pivot …

En outre, le segment de tableau obtenu après partition est bien une permutation du segment
d’origine.

Technique de preuve : récurrence forte. Pour finir de justifier la correction du tri, et
calculer sa complexité, il va nous falloir de nouvelles techniques pour gérer la récurrence.
Le tri d’un tableau de taille 𝑛 se ramène, après partition, au tri de deux tableaux de tailles
strictement inférieures à 𝑛. On justifie alors que l’algorithme est correct à l’aide du principe
de récurrence forte. Pour cela, on note 𝑃(𝑛) la propriété « quickSort trie correctement tout
segment de tableau de longueur 𝑛 », et on vérifie les conditions suivantes :

— 𝑃(0) : quickSort trie correctement tout segment de tableau de longueur 0. C’est im-
médiat car l’algorithme ne fait rien lorsque lo = hi, et un segment vide tab [lo, lo [
est bien toujours trié.

— En fixant un 𝑛 ∈ ℕ et en supposant que 𝑃(𝑘) est vraie pour tout 𝑘 < 𝑛, c’est-à-dire
que quickSort trie correctement tout segment de tableau de longueur strictement in-
férieure à 𝑛, on cherche à démontrer que l’algorithme trie correctement un tableau de
taille 𝑛. Les invariants de la boucle de partition nous assurent déjà que cette dernière
réarrange le tableau sous la forme

lo a b = c hi

↓ ↓ ↓ ↓
… < pivot = pivot > pivot …

avant d’appliquer récursivement l’algorithme aux segments tab [lo, a [ et tab [c, hi [.
Comme a < c, on sait que les longueurs a − lo et hi − c de ces deux segments sont
strictement inférieures à 𝑛 = hi − lo. Autrement dit, par hypothèse l’algorithme trie
correctement ces deux segments. À la fin, on obtient donc bien une permutation du
segment d’origine, dont on vérifie qu’elle est bien triée. Soient deux indices 𝑖, 𝑗 ∈
[lo, hi [ tels que 𝑖 < 𝑗 . Vérifions que tab[𝑖] ≤ tab[𝑗] en raisonnant par cas sur les
segments où se trouvent 𝑖 et 𝑗 .
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— Si 𝑖, 𝑗 ∈ [lo, a [ ou 𝑖, 𝑗 ∈ [c, hi [, on a bien tab[𝑖] ≤ tab[𝑗] car on a déjà justifié que
ces deux segments étaient triés.

— Dans les autres cas, on fait une comparaison intermédiaire avec le pivot.
— Si 𝑖, 𝑗 ∈ [a, b [, alors tab[𝑖] = pivot = tab[𝑗].
— Si 𝑖 ∈ [lo, a [ et 𝑗 ∈ [a, b [, alors tab[𝑖] < pivot = tab[𝑗].
— Si 𝑖 ∈ [a, b [ et 𝑗 ∈ [c, hi [, alors tab[𝑖] = pivot < tab[𝑗].
— Si 𝑖 ∈ [lo, a [ et 𝑗 ∈ [c, hi [, alors tab[𝑖] < pivot < tab[𝑗].

3.3 Complexité : équations récursives
Dans le cas d’algorithmes récursifs, la complexité peut elle-même être calculée par des

équations récursives.

Exemple : factorielle. On veut calculer 𝑛! = 1 × 2 × 3 × … × 𝑛. En java :

static int fact(int n) {
if (n < 2) { return 1; }
else { return n * fact(n-1); }

}

Le nombre 𝐶(𝑛) de multiplications réalisées pour calculer fact(𝑛) suit l’une des deux for-
mules suivantes.

— pour 𝑛 < 2, zéro,
— pour 𝑛 ≥ 2, une multiplication en plus du coût du calcul de fact(𝑛 − 1).

Autrement dit :
⎧⎪⎪
⎨⎪⎪⎩

𝐶(0) = 0
𝐶(1) = 0

𝐶(𝑛 + 1) = 1 + 𝐶(𝑛) si 𝑛 ≥ 1

Exemple : exponentiation rapide. Principe de l’algorithme : on calcule rapidement de
grandes puissances en remarquant que 𝑎2𝑚 = (𝑎𝑚)2 et 𝑎2𝑚+1 = 𝑎 × (𝑎𝑚)2. En java :

static int power(int a, int n) {
if (n < 1) return 1;
int b = power(a, n/2);
if (n%2 == 0) { return b*b; }
else { return a*b*b; }

}

Pour une version alternative
mais équivalente, on peut aussi
remarquer que 𝑎2𝑚 = (𝑎2)𝑚 et
𝑎2𝑚+1 = 𝑎 × (𝑎2)𝑚.

Le nombre 𝐶(𝑛) de multiplications réalisées pour calculer power(𝑎, 𝑛) vérifie les équations
suivantes.

⎧⎪⎪
⎨⎪⎪⎩

𝐶(0) = 0
𝐶(2𝑚) = 1 + 𝐶(𝑚) si 𝑚 > 0

𝐶(2𝑚 + 1) = 2 + 𝐶(𝑚)

Résolution des suites récursives simples. Soit (𝑢𝑛)𝑛≥𝑛0 une suite définie à partir du
rang 𝑛0. Pour tout 𝑛 ≥ 𝑛0 on a :

𝑢𝑛 − 𝑢𝑛0 = ∑
𝑛0≤𝑘<𝑛

(𝑢𝑘+1 − 𝑢𝑘)

(on qualifie cette équation de « télescopage » de la somme). En notant 𝑓 la fonction telle
que 𝑢𝑛+1 = 𝑢𝑛 + 𝑓 (𝑛) pour tout 𝑛 ≥ 𝑛0 on a donc :

𝑢𝑛 = 𝑢𝑛0 + ∑
𝑛0≤𝑘<𝑛

𝑓 (𝑘)

Cas particulier, la suite arithmétique : suite (𝑢𝑛)𝑛∈ℕ définie par
{

𝑢0 = 𝑏
𝑢𝑛+1 = 𝑎 + 𝑢𝑛

pour deux constantes 𝑎 et 𝑏 . Théorème : pour tout 𝑛, 𝑢𝑛 = 𝑎𝑛 + 𝑏 .
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Cas similaire, la suite géométrique : suite (𝑢𝑛)𝑛∈ℕ définie par
{

𝑢0 = 𝑏
𝑢𝑛+1 = 𝑎 × 𝑢𝑛

pour deux constantes 𝑎 et 𝑏 . Théorème : pour tout 𝑛, 𝑢𝑛 = 𝑏 × 𝑎𝑛.

Application à la factorielle et à l’exponentiation rapide. Les équations de complexité
de la factorielle donnent une suite arithmétique avec 𝑎 = 0 et 𝑏 = 1, à partir du rang 𝑛 = 1.
D’où : pour tout 𝑛 ≥ 1, 𝐶(𝑛) = 𝑛 − 1.

Les équations de complexité de l’exponentiation rapide ne définissent pas une suite
arithmétique ni une suite géométrique, puisqu’elles ne lient pas 𝐶(𝑛) et 𝐶(𝑛 + 1). En re-
vanche on trouve une suite arithmétique en s’intéressant aux puissances de 2 :

{
𝐶(20) = 2

𝐶(2𝑘+1) = 1 + 𝐶(2𝑘)

D’où : pour tout 𝑘 ≥ 0, 𝐶(2𝑘) = 𝑘 + 2.
Pour les autres nombres on obtient un encadrement : pour tous 𝑘 et 𝑛, si 2𝑘 ≤ 𝑛 < 2𝑘+1

alors 𝑘 + 1 ≤ 𝐶(𝑛) ≤ 2(𝑘 + 1). Démonstration par récurrence sur 𝑘 :
— Cas de base : 𝑘 = 0. Alors 1 = 20 ≤ 𝑛 < 21 = 2 et nécessairement 𝑛 = 1. On calcule :

𝐶(1) = 2 + 𝐶(0) = 2. On a donc bien 0 + 1 ≤ 𝐶(1) ≤ 2(0 + 1).
— Hérédité. Soit 𝑘 tel que pour tout 𝑛 vérifiant 2𝑘 ≤ 𝑛 < 2𝑘+1 on a 𝑘+1 ≤ 𝐶(𝑛) ≤ 2(𝑘+1).

Soit 𝑛 qui vérifie 2𝑘+1 ≤ 𝑛 < 2𝑘+2. On a 2𝑘 ≤ ⌊ 𝑛
2 ⌋ < 2𝑘+1, donc par hypothèse de

récurrence 𝑘 + 1 ≤ 𝐶(⌊ 𝑛
2 ⌋) ≤ 2(𝑘 + 1). Or 𝐶(𝑛) = 1 + 𝐶(⌊ 𝑛

2 ⌋) ou 𝐶(𝑛) = 2 + 𝐶(⌊ 𝑛
2 ⌋).

Donc 𝑘 + 2 ≤ 𝐶(𝑛) ≤ 2(𝑘 + 2).
On en déduit que pour tout 𝑛 ≥ 0, log(𝑛) ≤ 𝐶(𝑛) ≤ 2log(𝑛).Exercice : plus précisément on a

⌊log(𝑛)⌋ + 1 + w(𝑛), où w(𝑛) est
le nombre de 1 dans l’écriture

binaire de 𝑛.
3.4 Complexité du tri rapide : cas extrêmes
Meilleur cas : partition dégénérée. Il existe une situation dans laquelle le tri rapide
s’arrête particulièrement vite : lorsque tous les éléments sont égaux au pivot. L’étape de
partition termine alors dans la situation

lo = a b = c = hi

↓ ↓
… = pivot …

et les appels récursifs sur les segments vides tab [lo, a [ et tab [c, hi [ ne feront aucun travail
supplémentaire.

Dans ce cas, le coût du tri se limite au coût de l’opération de partition : on a comparé
hi − lo − 1 paires d’éléments, et la complexité est linéaire.

Dans la suite de notre analyse, on éliminera ce cas en supposant que les 𝑛 éléments du
tableau à trier sont tous différents les uns des autres. En particulier, le pivot est présent en
un seul exemplaire, et les 𝑛− 1 autres éléments sont répartis entre les deux segments à trier
récursivement.

Pire cas : partition déséquilibrée. Imaginons que le tableau à trier est déjà trié en ordre
croissant (avec des éléments tous différents). En particulier, en choisissant le premier élé-
ment comme pivot, on trouve que les 𝑛 − 1 autres éléments lui sont strictement supérieurs,
et doivent être placés du même côté. Le nombre 𝐶𝑝(𝑛) de comparaisons nécessaires au tri
d’un tableau de cette forme ajoute :

— 𝑛 − 1 comparaisons pour comparer chaque autre élément au pivot,
— 𝐶𝑝(𝑛 − 1) comparaisons pour trier récursivement le segment des éléments supérieurs

au pivot (ce segment étant également déjà trié, il suit la même formule).
Total : 𝐶𝑝(𝑛) = ∑1≤𝑘≤𝑛(𝑘−1) = ∑0≤𝑘′≤𝑛−1 𝑘′ =

𝑛(𝑛−1)
2 . On conserve dans ce cas la complexité

quadratique déjà observée pour le tri par sélection ou le tri par insertion.
Bilan : lorsque la partition du tableau en deux partie est très déséquilibrée, notre stratégie

de découpage n’apporte rien.

20



Meilleur cas avec des éléments tous différents : partition équilibrée. À l’inverse,
imaginons qu’à chaque étape, les 𝑛−1 éléments autres que le pivot soient répartis de manière
équilibrée dans deux segments ayant des tailles aussi proches que possibles. Si 𝑛−1 est pair,
les deux segments auraient ainsi la même taille 𝑛−1

2 , et si 𝑛 − 1 est impair, l’un des deux
contiendrait un élément de plus que l’autre. Le nombre 𝐶𝑜(𝑛) de comparaisons nécessaires
pour trier un tableau de taille 𝑛 > 1 dans ces conditions est donné par :

— les 𝑛 − 1 comparaisons du pivot avec chacun des autres éléments,
— les deux appels récursifs, sur des tableaux de tailles ⌈ 𝑛−1

2 ⌉ et ⌊ 𝑛−1
2 ⌋.

En particulier, les deux appels récursifs concernent des segments dont la taille est inférieure
ou égale à 𝑛

2 . On en déduit une borne supérieure valable lorsque 𝑛 > 1.

𝐶𝑜(𝑛) ≤ 𝑛 + 2𝐶𝑜(
𝑛
2
)

Réexprimons la formule dans le cas où 𝑛 est une puissance de 2, c’est-à-dire où 𝑛 = 2𝑘 .
{

𝐶𝑜(20) = 0
𝐶𝑜(2𝑘+1) ≤ 2𝐶𝑜(2𝑘) + 2𝑘+1

Divisons enfin la deuxième équation par 2𝑘+1.

𝐶𝑜(2𝑘+1)
2𝑘+1

≤
2𝐶𝑜(2𝑘)
2𝑘+1

+
2𝑘+1

2𝑘+1
=

𝐶𝑜(2𝑘)
2𝑘

+ 1

On y reconnaît une suite arithmétique, qui nous permet de conclure que, pour tout 𝑘 ∈ ℕ,
on a 𝐶𝑜 (2𝑘)

2𝑘 ≤ 𝑘, et 𝐶𝑜(2𝑘) ≤ 𝑘2𝑘 . Autrement dit, si 𝑛 = 2𝑘 on a 𝐶𝑜(𝑛) ≤ 𝑛log(𝑛).
Finalement, si lors de l’exécution du tri rapide sur un tableau de taille 𝑛, chaque réparti-

tion des éléments d’un segment autour d’un pivot est équilibrée, le nombre de comparaisons
effectué est de l’ordre de 𝑛log(𝑛).

3.5 Approfondissement : complexité en moyenne du tri rapide.
Nous allons voir que la complexité du tri rapide, bien que susceptible de grandement

varier en théorie, est en général excellente.
Notons 𝐶(𝑛) le nombre de paires d’éléments comparées en moyenne lors du tri rapide

d’un tableau de taille 𝑛, dont on suppose que tous les éléments sont distincts (la présence de
doublons ne fait qu’accélérer la résolution).

On a toujours 𝐶(0) = 𝐶(1) = 0. Pour 𝑛 ≥ 2, on a 𝑛 cas possibles pour les tailles respec-
tives des segments [lo, a [ et [c, hi [ : le segment [lo, a [ peut avoir n’importe quelle longueur
𝑘 comprise entre 0 et 𝑛−1 (bornes incluses), et l’autre segment a alors la longueur 𝑛−1−𝑘.
En outre, ces 𝑛 cas sont équiprobables : le pivot peut se trouver à n’importe quelle position
du segment [lo, hi [. Pour obtenir la complexité moyenne des deux appels récursifs il suf-
fit donc de faire la moyenne de ces 𝑛 cas. En comptant également les 𝑛 − 1 comparaisons
nécessaires à la répartition préalable, on obtient :

𝐶(𝑛) = 𝑛 − 1 +
1
𝑛 (

∑
0≤𝑘<𝑛

𝐶(𝑘) + 𝐶(𝑛 − 1 − 𝑘)
)

= 𝑛 − 1 +
2
𝑛

∑
0≤𝑘<𝑛

𝐶(𝑘)

Ici,𝐶(𝑛) est exprimé en fonction de tous les𝐶(𝑘) précédents. Pour exprimer𝐶(𝑛) en fonction
de 𝐶(𝑛 − 1) uniquement il faut, dans la somme, faire disparaître tous les éléments de 𝐶(0) à
𝐶(𝑛 − 2). Pour cela on combine (pour 𝑛 ≥ 3) :

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

𝑛𝐶(𝑛) = 𝑛(𝑛 − 1) + 2 ∑
0≤𝑘<𝑛

𝐶(𝑘)

(𝑛 − 1)𝐶(𝑛 − 1) = (𝑛 − 1)(𝑛 − 2) + 2 ∑
0≤𝑘<𝑛−1

𝐶(𝑘)

On obtient :

𝑛𝐶(𝑛) − (𝑛 + 1)𝐶(𝑛 − 1) = 2(𝑛 − 1)
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On obtient une somme télescopique en divisant par 𝑛(𝑛 + 1) :

𝐶(𝑛)
𝑛 + 1

−
𝐶(𝑛 − 1)

𝑛
=

2(𝑛 − 1)
𝑛(𝑛 + 1)

𝐶(𝑛)
𝑛 + 1

−
𝐶(2)
3

= ∑
3≤𝑘≤𝑛

(
𝐶(𝑘)
𝑘 + 1

−
𝐶(𝑘 − 1)

𝑘 ) = ∑
3≤𝑘≤𝑛

2(𝑘 − 1)
𝑘(𝑘 + 1)

𝐶(𝑛)
𝑛 + 1

=
1
3
+ 2 ∑

3≤𝑘≤𝑛

1
𝑘 + 1

− 2 ∑
3≤𝑘≤𝑛

1
𝑘(𝑘 + 1)

On reconnaît dans cette expression la série harmonique et une série convergeant vers une
constante. D’où finalement

𝐶(𝑛) ∼ 2𝑛ln(𝑛) ≈ 1, 39𝑛log(𝑛)

Le nombre moyen de paires d’éléments comparées par le tri rapide est linéarithmique, avec
une constante petite. Le cas idéal cité plus haut, dans lequel la partition du tableau en deux
parties est toujours équilibrée, est en réalité représentatif du cas général !

Bilan sur le tri rapide : complexité excellente en général (linéarithmique en moyenne),
mais mauvaise sur quelques cas particuliers (quadratique sur un tableau trié). Problème :
dans les applications réelles le cas particulier du tableau presque trié n’est pas toujours aussi
rare que dans le modèle aléatoire (imaginez un tableau qui avait déjà été trié, puis qu’on
trie à nouveau après quelques modifications, ou un tableau construit à partir de plusieurs
éléments triés). En pratique on gagne donc à ajouter de l’aléatoire dans cet algorithme, soit
en choisissant le pivot au hasard, soit en mélangeant le tableau avant de le trier.

3.6 Approfondissement : Master Theorem.
Le « théorème maître » donne directement l’ordre de grandeur du résultat pour des

équations de forme similaire à celles du tri fusion, caractéristique des algorithmes de type «
diviser pour régner ».Pour le « tri fusion » : voir TD.

Son comportement est
comparable au cas du tri rapide

où la partition est équilibrée.

On considère une équation récursive de la forme

𝐶(𝑛) = 𝑎𝐶(
𝑛
𝑏
) + 𝑓 (𝑛)

où 𝑛 est la taille du problème, 𝑎 le nombre de sous-problèmes (entier non nul), 𝑛
𝑏 la taille

de chaque sous-problème (les sous-problèmes ont donc tous la même taille, à un arrondi
arbitraire près), et 𝑓 (𝑛) le coût propre à un appel donné (définition des sous-problèmes,
combinaison des solutions, etc.). On suppose la fonction 𝑓 croissante.

Exemples :

Algorithme 𝑎 𝑏 𝑓 (𝑛)
Tri fusion 2 2 (𝑛)

un arrondi inf. et coût de la fusion
un arrondi sup.

Recherche dichotomique 1 2 1
arrondi inf. ou sup. comparaison avec
selon côté choisi élément médian

L’ordre de 𝐶(𝑛) diffère selon que le coût des appels récursifs domine, est équilibré avec,
ou est dominé par, le coût de gestion 𝑓 (𝑛). On appelle 𝑐crit = log(𝑎)

log(𝑏) = log𝑏(𝑎) l’exposant
critique qui permet de discriminer ces trois situations. On compare 𝑓 (𝑛) à 𝑛𝑐crit :

Cas Complexité de 𝑓 (𝑛) Condition Ordre de 𝐶(𝑛)
1. (𝑛𝑐) 𝑐 < 𝑐crit Θ(𝑛𝑐crit)
2. Θ(𝑛𝑐) 𝑐 = 𝑐crit Θ(𝑛𝑐log(𝑛))
3. Ω(𝑛𝑐) 𝑐 > 𝑐crit Θ(𝑓 (𝑛))

Les deux exemples du tri fusion et de la recherche dichotomique correspondent au cas 2. Ce
cas 2 admet aussi une forme plus générale :

Cas Complexité de 𝑓 (𝑛) Condition Ordre de 𝐶(𝑛)
2′. Θ(𝑛𝑐(log(𝑛))𝑘) 𝑐 = 𝑐crit et 𝑘 ≥ 0 Θ(𝑛𝑐(log(𝑛))𝑘+1)
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