Outils logiques et algorithmiques

Florent Hivert d’aprés Thibaut Balabonski @ Université Paris-Saclay
Edition 2026.

Dans ce cours, on étudie des algorithmes et des structures de données, ainsi que les techniques
qui permettent de raisonner sur les algorithmes.

Du code et des preuves. Chaque semaine, nous étudierons au moins un nouvel algo-
rithme, c’est-a-dire une méthode permettant de résoudre automatiquement un probléme
donné. On présentera tous les algorithmes étudiés sous la forme de programmes, écrits le
plus souvent en java, et dans certains chapitres en caml. Il sera ainsi possible de les tester,
de suivre pas a pas leur exécution, et de raisonner avec précision.

Nous verrons également chaque semaine des outils mathématiques qui permettent de
décrire un probléme a résoudre pour ensuite concevoir un algorithme associé, ou analyser
un algorithme pour justifier que celui-ci résoud correctement le probléme posé ou pour
prédire son temps d’exécution.

Le cours mélange donc des aspects mathématiques et algorithmiques, et vise a la fois a
vous faire découvrir des structures de données et algorithmes fondamentaux en informa-
tique et a afflter vos capacités de raisonnement.

Plan. Le cours est séparé en trois parties, correspondant a trois grandes formes d’organi-
sation des données sur lesquelles nous travaillerons.

I. Tableaux. Techniques de base pour justifier le bon fonctionnement d’un algorithme
et analyser son cott d’exécution. Algorithmes de recherche et de tri. Objectifs : sa-
voir décrire précisément un probléme a résoudre, suivre pas a pas ’exécution d’'un
algorithme, expliquer le fonctionnement d’un algorithme et justifier qu’il répond au
probléme posé, estimer le colit d’un algorithme.

II. Graphes. Modélisation d’un probléme a résoudre sous la forme d’un graphe. Rela-
tions binaires, relations d’ordre, relations d’équivalence. Algorithmes d’affectation de
ressources, d’ordonnancement, d’exploration, de classification. Objectifs : abstraire un
probléme concret et le modéliser par une question sur des graphes, appliquer ou ana-
lyser un algorithme de graphes, déduire de la solution abstraite sur les graphes une
solution concreéte au probléeme d’origine, justifier qu'un algorithme termine, raisonner
rigoureusement sur les propriétés structurelles d’'un graphe.

I1l. Arbres. Structuresde données hiérarchiques ou arborescentes. Arbres de recherche,
files de priorité, manipulation d’objets syntaxiques, récurrence structurelle. Objectifs :
représenter et manipuler des structures de données intrinséquement récursives, pro-
grammer des fonctions récursives, raisonner par récurrence.

Organisation pédagogique. Votre apprentissage nécessite trois choses.

1. Acquérir des informations brutes. C’est facile, il suffit d’avoir les bons documents sous
la main, et de les lire. Ce poly a été écrit justement pour cela.

2. Comprendre ces nouvelles informations et les intégrer a I’ensemble de vos connais-
sances. C’est plus délicat, cela demande un peu de temps, et l'interaction avec les
enseignants peut étre une aide déterminante.

3. Vous entrainer a mettre vos nouvelles connaissances en pratique. C’est en particulier
le role des séances de TD/TP, mais aussi du travail a la maison apres les séances.

Nous allons mettre en place le rituel hebdomadaire suivant, pour tirer le meilleur parti des
séances partagées avec les enseignants et pour que les cours « magistraux » se concentrent
sur le point numéro 2. Chaque semaine, avant le cours, vous lirez un chapitre du poly et
répondrez a un (tout petit) questionnaire en ligne. Toujours avant le cours, j’analyserai vos
réponses au questionnaire pour adapter le contenu de la séance. Pendant le cours lui-méme,
je me concentrerai sur les questions et difficultés révélées par vos réponses au question-
naire. Apreés cela, vous devriez arriver en séance de TD préts a passer directement a 1’étape
suivante : la pratique.

Vos objectifs de lecture hebdomadaire. Nous travaillerons chaque semaine sur un
nouveau chapitre. La partie a lire sera systématiquement « ’ensemble des sections du cha-
pitre dont le titre ne commence pas par “approfondissement” ». Le temps de référence a
consacrer a cette lecture chaque semaine est environ une heure. Le premier objectif de cette
lecture est de vous familiariser avec les concepts de la semaine, et d’intégrer leurs définitions,
ainsi que de voir dans les grandes lignes le fonctionnement et les propriétés de ’algorithme
étudié. Vous n’avez pas besoin de tout comprendre en détail a ce stade.

Notre premier contrat est le suivant : si vous avez effectivement lu les parties demandées
avant la séance, alors vous pourrez suivre l'essentiel du cours sans étre largués. Vous pouvez
lire en plus les parties d’approfondissement ou non, en fonction de votre temps et de votre
intérét.

Le bon usage du questionnaire hebdomadaire. Le questionnaire accompagne votre
lecture, et est inclus dans ’heure a passer avant chaque séance. Il est systématiquement
composé de deux parties.

— Un petit nombre de questions a choix multiples, qui testent une compréhension ba-
sique des définitions du chapitre. Votre performance a ce QCM n’est pas notée : c’est
pour vous 'occasion de vous assurer que vous avez correctement lu, et pour moi un
moyen de détecter quels aspects ont été bien ou mal interprétés.

— Deux questions en texte libre, vous demandant d’expliquer deux aspects de votre choix
du chapitre : un que vous jugez important ou intéressant, et un qui représente une
difficulté. Il n’y a pas de « bonne réponse » a ces questions : ma principale mesure
de qualité est que vous ayez rédigé quelques lignes (par exemple, deux phrases) avec
vos mots a vous. Si vous hésitez entre plusieurs points a évoquer, vous pouvez les
mentionner tous, ou en sélectionner un seul selon les critéres de votre choix.

Important : vous pouvez vous servir du texte libre, et en particulier celui dédié aux diffi-
cultés, pour formuler des questions directes auxquelles je m’efforcerai de répondre pendant
le cours. De maniére générale, je me sers des réponses aux questionnaires pour adapter le
contenu de chaque séance.

Notre deuxiéme contrat est le suivant : chaque semaine, une partie de la séance de cours
sera dédiée aux principales difficultés et demandes exprimées via le questionnaire. Note : il
faut répondre au plus tard la veille de la séance pour me permettre de faire cela. Le temps
d’une séance ne permettant pas toujours de répondre a toutes les questions, je maintiendrai
également a jour une foire aux questions avec quelques réponses additionnelles.

Participation et contréle continu. Une partie de votre note de contrdle continu sera
déterminée par le fait que vous participiez de maniére honnéte et réguliére aux question-
naires hebdomadaires. Interprétation de « réguliére » : répondre a 9 questionnaires sur 10
est parfait. Répondre a seulement la moitié n’est pas régulier. Interprétation de « honnéte » :
vos réponses libres contiennent effectivement une ou deux phrases, qui sont personnelles
et en rapport avec le chapitre.

Bilan sur I'organisation. En vous astreignant a la lecture et au questionnaire hebdoma-
daires, vous vous assurez une bonne répartition du travail sur le semestre, une résolution
précoce d’un certain nombre de difficultés qui pourraient sinon entraver la suite de votre
semestre, et de maniére générale vous profitez de séances de cours plus agréables a suivre
et mieux adaptées a votre progression.

ii

Table des matieres

1

3

Tableaux

Chercher

1.1 Panorama : recherche dichotomique
1.2 Spécification d’un probléme algorithmique
1.3 Invariantsdeboucles L L
1.4 Approfondissement : boite a outils logique
Trier

2.1 Probléme:tri de tableauenplace
2.2 Solution1:triparsélection.
2.3 Complexité : dénombrement d’opérations
24 Solution 2:triinsertion L L
2.5 Complexité : meilleur cas, pire cas, moyenne
2.6 Approfondissement : calculs de complexité
2.7 Approfondissement : trisencaml o Lo Lo L Lo
Accélérer

3.1 Probléme : tri de tableau en place, plus rapidement
3.2 Algorithme :trirapide
3.3 Complexité : équations récursives L oL
3.4 Complexité du tri rapide : casextrémes
3.5 Approfondissement : complexité en moyenne du tri rapide.
3.6 Approfondissement : Master Theorem.

iii

N U1 W -

10
10
12
13
15
15
16

iv

Outils logiques et algorithmiques

Florent Hivert d’aprés Thibaut Balabonski @ Université Paris-Saclay
Edition 2026.

Premiere partie
Tableaux

Cette partie est dédiée aux techniques de bases permettant de justifier le bon fonctionne-
ment d’un algorithme et d’analyser le coit de son exécution. On prendra comme exemples des
algorithmes manipulant des tableaux, qui seront systématiquement exprimés en langage Java.

1 Chercher

1.1 Panorama: recherche dichotomique

Probléme : chercher un élément x dans un tableau tab. On veut renvoyer :
— un indice i tel que tab[i] contient x, si x apparait dans le tableau,

— la valeur spéciale -1, si x n’apparait pas dans le tableau.

Solution simple : recherche séquentielle. On énumére toutes les cases du tableau, on
s’arréte si on trouve I’élément cherché, et on renvoie -1 si on a parcouru tout le tableau sans
trouver I’élément. En java :

static int sequentialSearch(int x, int[] tab) {
for (int i=0; i < tab.length; i++) {
if (tab[i] == x) return i;
}

return -1;

}

Cet algorithme est simple, et répond sans aucun doute au probléeme posé.

Solution alternative, lorsque I'on sait que les éléments du tableau sont triés en
ordre croissant: recherche dichotomique. On définit un intervalle de recherche [Lo, hi [
(indice lo inclus et indice hi exclu). L’intervalle couvre a l'origine tout le tableau et devient
progressivement plus petit. On s’arréte lorsque ’on trouve 1’élément ou lorsque I'intervalle
de recherche devient vide. A chaque étape on considére la case mid du milieu de I'intervalle
(arrondi vers le bas) : si I’élément cherché est plus petit on poursuit la recherche dans la
moitié gauche [Lo,mid [, et s’il est plus grand on poursuit dans la moitié droite [mid + 1, hi [.
Dans tous les cas mid est exclu du nouvel intervalle. En java :

static int binarySearch(int x, int[] tab) {
int lo = 0;
int hi = tab.length;
while (lo < hi) {
int mid = lo + (hi-l0)/2;
if (tab[mid] == x) return mid;
if (x < tab[midl) { hi = mid; }
else { lo = mid+1; }
}
return -1;

3

L’algorithme est nettement plus subtil. Est-on bien certain qu’il fonctionne ? En quoi est-il
mieux que le précédent?

Comparaison empirique. On peut tester les deux fonctions sur des tableaux aléatoires
et constater qu’elles donnent les mémes résultats : elles sont vraisemblablement correctes.
Pour aller plus loin : comparaison des temps d’exécution sur des tableaux de différentes

En supposant que vous étes siir
de vous, comment convaincre un
camarade sceptique ?

tailles. Temps moyens pour 100 recherches aléatoires dans des tableaux d’une taille donnée,
en micro-secondes :

Taille | sequentialSearch | binarySearch

10 0,9 1,0

20 1,2 1,1

50 2,2 1,4

100 4.8 1,8

1000 38 2,5
10000 352 2,9
1000 000 21000 7,1
100000 000 2100000 18

Les performances des deux fonctions sont radicalement différentes. On doit pouvoir expli-
quer ce phénomene.

Analyse de complexité de sequentialSearch. Deux scénarios.

1. Six est dans tab, on énumeére tous les éléments jusqu’a la premiére occurrence de x. Si
toutes les positions sont équiprobables pour cette occurrence on consulte en moyenne
la moitié des éléments du tableau.

2. Six n’est pas dans tab, on consulte tous les éléments du tableau.

Dans tous les cas on s’attend a consulter un nombre d’éléments proportionnel a la taille du
tableau.

Analyse de complexité de binarySearch. La boucle while rend le comportement plus
difficile a prédire.

Premiére étape : vérifier que I’algorithme progresse et finit toujours par s’arréter. Argu-
ment : I'intervalle de recherche [1o, hi [devient strictement plus petit & chaque étape, tot ou
tard il devient donc vide et ’algorithme s’arréte.

Deuxiéme étape : mesurer I’évolution de [Lo, hi [pour prédire le nombre d’étapes maxi-
mal avant arrét. Observation : la longueur de l'intervalle est environ divisée par deux a
chaque étape. Propriété plus précise : si 0 < hi — lo < 2F, alors I’algorithme s’arréte aprés k
tours de boucle au maximum. Démonstration par récurrence sur k.

— Si0 < hi —lo < 2° = 1, alors hi = lo. La condition de la boucle est invalide, le

programme s’arréte.

— Soit k tel que si 0 < hi — lo < 2¥, alors I'algorithme s’arréte aprés k tours de boucle
au maximum (hypothése de récurrence).
Supposons 0 < hi— Lo < 2K1.Si hi — Lo < 2 on conclut par hypothése de récurrence.
Sinon, en particulier lo < hi. On fait un premier tour de boucle et on calcule un indice
mid tel que 0 < mid — Lo < 2K et 0 < hi — (mid + 1) < 2K, Puis :
— soit le programme renvoie mid, d’ou arrét,
— soit le programme poursuit aprés avoir modifié hi en mid : par hypothese de ré-
currence le programme réalise au maximum k tours de boucle supplémentaires,
— soit le programme poursuit aprés avoir modifié lo en mid + 1 : de méme, par

hypothese de récurrence le programme réalise au maximum k tours de boucle
supplémentaires.

Dans tous les cas : au maximum k + 1 tours de boucle au total.

Conclusion : pour tout tableau de taille strictement inférieure a 2k larecherche d’un élément
utilise au maximum k tours de boucle. Autrement dit, la recherche dichotomique teste la
présence ou I’absence d’un élément dans un tableau trié de taille N en consultant seulement
log,(N) éléments du tableau environ. Cela explique la différence de comportement observée
avec la recherche séquentielle.

Correction de la recherche dichotomique. Justifions que la recherche dichotomique
fonctionne a coup siir, quand bien méme elle ne consulte que tres peu d’éléments du tableau.
Cas simple : lorsque I’on renvoie un indice de tableau avec la ligne

if (tab[mid] == x) return mid;

on vient bien de tester que la case d’indice mid du tableau tab contient précisément 1’élé-
ment x cherché. La réponse est correcte a coup sir.

Cas compliqué : lorsque 'on renvoie -1 il faut justifier que 'on n’a pas pu rater I’élément
cherché. Fait clé : I’élément cherché x ne peut jamais se trouver en dehors de I'intervalle de
recherche [lo, hi [, car tous les éléments de tab [0, Lo [sont strictement inférieurs a x, et tous
les éléments de tab [hi, n[lui sont strictement supérieurs. Autrement dit : au cas ou I’élé-
ment serait dans le tableau, il ne pourrait étre qu’a 'intérieur de I'intervalle de recherche.
Or, cet intervalle est vide lorsque ’on renvoie -1 : I’élément ne peut pas s’y trouver. On peut
résumer cet argument par le schéma suivant, qui détaille la signification de chaque variable,
et les propriétés connues du tableau.

0 lo hi n
4 ! y i

tab — | < x | zone de recherche | > x |

Reste a démontrer que le « fait clé » est bien toujours valide. Le procédé est similaire a celui
d’une récurrence.

— A Tinitialisation I'intervalle [lo, hi [couvre tous les indices du tableau : x ne peut
assurément pas se trouver en dehors.

— Supposons qu’au début d’un tour de boucle, Lo soit tel que tout élément tab[i] du
tableau d’indice i < lo soit strictement inférieur a x, et que hi soit a 'inverse tel que
tout élément tab[i] du tableau d’indice i > hi soit strictement supérieur a x. On a trois
cas possibles.

1. Sile programme s’arréte en renvoyant mid, il n’y a rien a vérifier.
2. Six < tab[mid], alors hi devient mid. Les mémes éléments restent a gauche de
Lo : ils sont toujours strictement inférieurs a x. Les éléments a droite du nouveau
hi sont les éléments a droite de mid. Le tableau étant trié, tout tel élément tab[i]
vérifie tab[mid] < tab[i]. Comme x < tab[mid], ces éléments sont bien tous
strictement supérieurs a x.
3. Si x > tab[mid], alors lo devient mid + 1 et on conclut avec un raisonnement
symétrique au précédent.
Ainsi, notre fait clé est vrai a linitialisation, puis préservé par chaque nouveau tour de
boucle : il reste vrai jusqu’a la fin de Pexécution du programme. En particulier, si la boucle
s’arréte du fait de 'invalidation du test lo < hi, c’est-a-dire si on arrive a une situation ou
lo > hi, alors les segments tab [0, lo[et tab[hi, n[couvrent tout le tableau, qui ne peut
contenir x.

Preuve de siireté de binarySearch. On a justifié que binarySearch :
— finit toujours par s’arréter,
— consulte un nombre d’éléments au plus logarithmique en la taille du tableau,
— ne renvoie que des résultats corrects.

Il reste un angle mort dans cette analyse : le scénario ou le programme s’interromprait a
cause d’une erreur. En I'occurrence le programme manipule un tableau : on a un risque
d’échec par une tentative d’accés en dehors des bornes du tableau.

Dans binarySearch, les seuls accés au tableau se font dans la boucle avec tab[mid] : il
faut justifier que mid est toujours tel que 0 < mid < tab.length. Pour cela on démontre d’une
part que lo et hi sont toujours tels que 0 < lo < hi < tab.length, et d’autre part que si
Lo < hi, alors le calcul définissant mid assure que lo < mid < hi.

Avec cette derniére étape on garantit donc que notre programme binarySearch s’exécute
toujours sans erreur et produit en un temps fini (et méme en un temps trés court) un résultat
correct. Autrement dit, binarySearch est une solution garantie stire et efficace au probléme
de la recherche d’un élément dans un tableau trié.

Dans ce cours nous allons découvrir de nombreux algorithmes ou structures de données
répondant a des problémes variés, ainsi que les outils qui permettent de raisonner sur ces algo-
rithmes pour assurer qu’ils répondent bien au probléme posé et évaluer leur efficacité.

1.2 Spécification d’un probleme algorithmique

Un algorithme répond a un probleme : étant données certaines entrées, produire un cer-
tain résultat ou effet. Avant méme la conception d’un algorithme, il faut énoncer clairement
le probléme posé.

La spécification d’un probléme comporte deux parties :
— description des contraintes que doivent vérifier les entrées (préconditions),

— description du résultat attendu.

Exemple pour I’exponentiation. On veut calculer la n-éme puissance d’un nombre a.
— Condition : n doit étre un entier positif ou nul.
— Le résultat de power(a, n) doit étre a”.

La spécification du résultat se raméne a un unique prédicat : power(a,n) = a", de méme
que pour la précondition : n > 0 (s’il est déja convenu qu’on ne manipule que des nombres
entiers).

Exemple pour la recherche dans un tableau trié. On veut chercher un élément x dans
un tableau ¢ trié.
— Condition : t doit étre trié en ordre croissant.
— Le résultat de binarySearch(x, t) doit étre un entier i tel que ¢[i] = x s’il en existe,
et -1 sinon,
Cette spécification est plus subtile. Voici son articulation logique explicitée.

— Condition : « étre trié » est une propriété complexe. Sa définition contient une quan-
tification sur les indices du tableau t, que 'on suppose de taille n.

vi,jefo,n[, i< j=t[i] <t[/]

— Spécification du résultat r de binarySearch(x, t), en notant n la longueur de ¢ : on
distingue deux cas, chacun impliquant encore une quantification sur les indices du
tableau.

— Si x est présent dans t, c’est-a-dire si 3i € [0,n[, t[i] = x, alors le résultat doit
étre un indice o x apparait: r € [0, n[A t[r] = x.

— Si x n’est pas présent dans ¢, c’est-a-dire si Vi € [0, n [, t[i] # x, alors le résultat
doit vérifier r = -1.

Le tout résumé en une liste de (deux) formules :

{ @ielo,n[,tlil=x)=re[o,n[At[r] =x
ielo,n[,ti] #x)=r=-1

Une telle liste exprime une conjonction : toutes les formules doivent étre valides.

Exemple pour la recherche d’une séquence. On se donne un texte ¢, et on y cherche
une séquence de lettres s.

— Condition : aucune, tous les textes et toutes les séquences cherchées sont a priori
admissibles.

— Le résultat de stringSearch(s, t) doit étre un entier i tel que le texte ¢ contient une
occurrence de la séquence s commencant au caractere d’indice i, s’il existe une telle
occurrence, et -1 sinon,

La spécification du résultat ressemble a celle vue pour la recherche dichotomique, mais fait
un usage plus riche des quantificateurs puisque ’occurrence d’une séquence est déterminée
par une suite de plusieurs lettres. Ainsi, « s est présente dans ¢ » s’énonce « il existe un
indice i a partir duquel tous les indices suivants correspondent aux lettres de s ». En notant
n; la longueur du texte t, et n, la longueur de la séquence s :

3ie|0,n, —ng], Vje[0,ns[, s[j]=tli+]

Au contraire, « s est absente de t » s’énonce « quelque soit 'indice i de départ que 'on
considére, on trouve au moins une des lettres suivantes qui différe de la lettre correspondante
de s ».

vi € [0,n; —ng], 3j €[0,n,[, s[j] = t[i+j]

Préconditions. Elles décrivent les contraintes que doivent vérifier les données prises en
entrée par un algorithme. Dit autrement, les préconditions définissent les entrées valides,
et délimitent ainsi les contours du probléme que ’on cherche a résoudre. Voici les maniéres
dont il faut considérer les préconditions, selon le point de vue pris.

— Conception : on peut tenir les préconditions pour acquises. On cherche a résoudre le
probléme uniquement pour les entrées valides.

— Raisonnement : les préconditions deviennent des hypothéses. On suppose qu’elles
sont valides et on peut en déduire d’autres choses.

— Utilisation : il faut s’assurer que les entrées que I'on fournit a un algorithme sont bien
valides.

— Programmation : on peut interrompre le programme et produire un message d’erreur
lorsque les préconditions ne sont pas réalisées, pour indiquer a 'utilisateur qu’il n’a
pas suivi les régles. On peut aussi ne rien faire, et laisser le programme faire n’importe
quoi lorsque les entrées sont invalides.

Ainsi dans la conception d’un algorithme de recherche d’un élément dans un tableau trié,
toute considération sur les tableaux non triés est hors sujet : la recherche dans un tableau
non trié est un autre probleme. Si un utilisateur utilise binarySearch sur un tableau non trié,
il a toutes les chances de recevoir en retour un résultat faux, mais c’est son probleme. Le
concepteur et le programmeur d’un algorithme ne sont pas responsables des utilisateurs qui
ne lisent pas le mode d’emploi.

1.3 Invariants de boucles

Pour montrer qu’un algorithme est correct, c’est-a-dire résoud le probléme posé :
— on suppose qu’avant exécution les préconditions sont valides,

— a Daide de ces hypothéses on justifie qu’aprés exécution, le résultat correspond a la
spécification.

Suivi de ’exécution d’'un programme. Naturellement, le raisonnement suit I'exécution
de I'algorithme et I’évolution progressive des différentes variables ou données. Par exemple,
avec les trois instructions suivantes :

a=ab
b = atb
a = b-a

On note n, la valeur initiale de la variable a et n, la valeur initiale de la variable b. Aprés la
premiére instruction, a contient n, — n,. Aprés la deuxiéme, b contient (n, — ny) + n, = n,.
Aprés la derniére, a contient n, — (n, — np) = n,. Finalement, les valeurs de a et b ont été
échangées. On peut présenter ce suivi dans un tableau donnant le contenu des variables
apres chaque instruction.

a b
Initialement ng, np
a=ab Nng—np | np
b = atb Ng—Np | Ng
a = b-a ny ng

Ce suivi précis pas-a-pas ne fonctionne pas pour les algorithmes plus complexes. Par exemple
pour cette fonction d’exponentiation rapide :

static int power(int a, int n) {
int r = 1;
while (n > 0) {
if (n % 2 ==1) r = rxa;

a = a*a;
n =n/2;
}
return r;

}

On a un nombre de tours dépendant de 'entrée, et une affectation conditionnelle qui, se-
lon I'entrée, est effectuée a certains tours de boucle et pas a d’autres. On ne peut suivre
I'exécution de cet algorithme que pour un n concret donné.

Note GL : le concepteur et le
programmeur sont en revanche
responsables du fait que le mode
d’emploi soit simple et clair.

Autre programme avec le méme
effet:a = atb; b = a-b; a = a-b

Invariant de boucle. Pour raisonner sur un tel algorithme on cherche a établir un inva-
riant de boucle, c’est-a-dire une propriété logique a propos des variables, qui est valide du
début a la fin de Pexécution (« invariablement valide »). Plus précisément, I'invariant doit :

— étre vrai avant le premier tour de boucle,
— étre préservé par chaque tour de boucle.
Exemple pour 'exponentiation rapide. On note a et ng les valeurs initiales des deux argu-

ments a et n, et a, n et r les valeurs des trois variables du programme a un instant donné. La
formule

n
rxa® = aq

est un invariant de la boucle. En effet :

— Avant le premier tour, r = 1, a = ay et n = ng et ’équation est immédiate.
— u e = g;° vraie au début d’un tour de boucle e ed,n e e
On suppose r x a" = g;° vraie au début d’un tour de boucle et on note a’, n’ et r’ les

valeurs des variables telles que mises a jour a la fin du tour. Deux cas en fonction de

la parité de n :

; -
Décomp.n || @’ | n’ | r || Calcul ¥ x a™

n =2k a |k r rx (@) =rxa* =q"
n=2k+1 1 a | k|axr| rxax(a)f=rxa* =q"

’ ’ . s
Dans tous les cas ' x @’ = a° : I’équation reste valide.
0

A noter : I'invariant peut étre temporairement invalide pendant 'exécution d’un tour de
boucle (les variables ne sont pas toutes mises a jour en méme temps). Ce qui compte est que
I'invariant soit vrai a nouveau a la fin du tour : il est alors également vrai au début du tour
suivant, puis a la fin du suivant, et ainsi de suite jusqu’a la fin des tours.

Exemple : recherche dichotomique. Au début du cours, on a justifié la correction de la
recherche dichotomique dans un tableau trié a ’aide d’un « fait clé » : I’élément x cherché
ne peut pas se trouver en dehors de 'intervalle Lo, hi [, car tous les éléments de tab [0, Lo [
sont strictement inférieurs a la cible, et tous les éléments de tab [hi, n[lui sont strictement
supérieurs. Ce « fait clé » est un invariant de la boucle while. On énonce également le fait
que lo et hi définissent toujours intervalle du tableau et on obtient les invariants suivants :

0<lo<hi<n
Vi € [0,1o], tab[i] < x
Vi € [hi,n[,tabli] > x

(on note nla taille du tableau tab). Ces propriétés sont vraies avant le premier tour de boucle,
puis préservées par chaque tour : elles sont donc bien des « invariants » et restent vraies
jusqu’a la fin de 'exécution. En particulier, quand la boucle s’arréte car lo = hi ces inva-
riants assurent que I’élément x cherché n’apparait pas dans le tableau : -1 est bien le résultat
attendu.

Exemple : recherche d’une séquence. On se donne le code java simple suivant, pour
chercher une séquence s dans un texte t. Cet algorithme énumeére toutes les positions de
départ i possibles dans t, en omettant seulement celles qui ne laissent pas assez de place
pour une occcurrence de la séquence s, puis on teste ensuite chaque caractére suivant la
position i, en s’interrompant lorsque 'on observe une différence entre la séquence s et le
segment observé de t.

static int stringSearch(String s, String t) {
int Us = s.length();
int 1t = t.lengthQ);
mainLoop:
for (int i=0; i+ls <= lt; i++) {
for (int j=0; j<ls; j++) {
if (s.charAt(j) != t.charAt(i+j)) continue mainlLoop;

}

return i;
}
return -1;

Le schéma suivant illustre ce descriptif : on a commencé a comparer la séquence s au seg-
ment t[i,i+|s|[, les j premiers caractéres correspondaient et 'on s’intéresse maintenant
au caractére d’indice j de s, c’est-a-dire au j + 1-éme.

0 i i+3 i+]s] |t]

| 1 | |
— I I |

L’algorithme parcourt ainsi tous les indices j de s tant qu’il n’observe pas de différence,
puis recommence en incrémentant i jusqu’a avoir trouvé une occurrence compléte de s. On
détecte que I'on a trouvé une occurrence complete lorsque la boucle interne a mené 'indice
j jusqu’a la longueur |s| de s.

Les invariants des boucles de notre programme stringSearch formalisent ce schéma.

— Invariant de la boucle interne : les segments s [0, [et t [i,1 + j [coincident.
vk € [0,5[, s[k] = t[i + k]

— Invariant de la boucle externe : on n’a trouvé aucune occurrence compléte de s com-
mengant avant l'indice i. Autrement dit, tout segment t [k, k + |s|[démarrant a un
indice k < i a au moins une différence avec la séquence s.

vk e[0,i[, 3K’ € [0,|s|[, tlk + k'] = s[K]

1.4 Approfondissement : boite a outils logique

Objectif : répertorier des éléments de langage que 'on peut utiliser pour s’exprimer
sans ambiguité, pour permettre des descriptions précises et des argumentations claires. Les
phrases construites avec ces éléments sont des formules, qui peuvent étre vraies ou fausses
en fonction de leur forme et/ou du contexte. Deux formules sont équivalentes si elles sont
vraies dans les mémes contextes.

Prédicats. Propriétés de base des objets dont on parle. Par exemple :

Prédicats Contexte

a=b,a+b a, b objets quelconques
ni < ny, hy < ny, 1y > Ny, Ny > Ny | Ny, hy nombres

XCcyY X, Y ensembles
aeX,a¢ X X ensemble, a élément

Connecteurs. Articulations avec lesquelles on combine deux prédicats ou formules.

Connecteur Prononciation Notation Formule vraie quand...

Conjonction AetB ANB A, B toutes deux vraies

Disjonction AouB AV B au moins une parmi A, B vraie

Négation non A -A A fausse

Implication si A alors B A=1B B vraie au moins dans les contextes ou A vraie

On a aussi des notations pour deux formules dégénérées :

Formule Notation Formule vraie...
Tautologie T toujours
Contradiction 1 jamais

Relations d’équivalence entre formes logiques :

Principe Equivalences
Absorption ANl = 1 AVT =T
Neutralité AANT = A Avl = A
Commutativité AANB = BANA AVB = BVA
Associativité | AAN(BAC) = (AAB)AC Av(BvC(C) = (AvB)vC
Distributivité | AAN(BVC) = (AAB)V(AAC) AV(BAC) = (AVB)A(AVO)
Lois de de Morgan -(AAB) = (=A)V (=B) -(AVvB) = (=A)A(—B)
Involutivité —A=A
Négation —A=A=>1
Non-contradiction AN-A =1
Tiers exclu Av-A =T
Implication A= B = (-A)VB
Contraposition A= B = (-B) = (0A)
Quantificateurs. Les phrases logiques font souvent référence a des objets indéterminés.

Par exemple : x # 0 = x = y + 1. On note A(x, y) une telle formule A faisant référence
a deux objets x et y pris dans un certain ensemble (ici : IN). Les quantificateurs indiquent
quels objets concrets peuvent étre désignés par les variables x et y. Par exemple, la formule
A(x, y) précédente est valable pour tout x € IN, mais une fois la valeur de x choisie celle de
y devient tres fortement contrainte.

Quantification Prononciation Notation Formule vraie quand...
Universelle pour tout x ona | Vx € E, A(x) | A est vraie quelque soit I'objet e € E désigné par x
Existentielle il existe x tel que | 3x € E, A(x) | A est vraie pour au moins un objet e € E

Exemple : vx € N,(x # 0 = (3y € N,x = y + 1)). On omet parfois I'ensemble E lorsqu’il
est clair dans le contexte.
Relations d’équivalence entre formules avec quantificateurs :

Principe Equivalences
Indépendance | Vx,Vy, A(x,y) = Vy,V¥x, A(x,y) 3x,3y, A(x,y) = 3y,3x, A(x, y)
Lois de de Morgan —(Vx, A(x)) = 3x,A(x) -(3x, A(x)) = Vx,A(x)

Note : dans la vie courante, on exprime les propriétés manipulées en francais, et pas avec
les notations logiques. Cependant, méme en langue naturelle on se raméne aux articulations
données par les connecteurs logiques, afin de s’exprimer et raisonner avec précision et clarté.
Dans ce cours on alternera entre les deux langues.

Raisonnement.

Pour justifier qu’un fait donné est vrai, on déduit sa véracité a I'aide de

régles de raisonnement en partant de certains faits de base supposés vrais.

On a donc toujours dans ce contexte un ensemble de formules (appelées hypothéses)
dont on suppose qu’elles sont vraies, et a partir desquelles on veut déduire qu'une certaine
formule cible (la conclusion) est vraie également.

Chaque articulation logique est associée a des régles de déduction de base, indiquant

notamment :

— comment justifier une conclusion présentant cette articulation (régle d’introduction)

— comment utiliser une hypothése basée sur cette articulation (régle d’élimination)

On a en plus un certain nombre de grandes techniques : raisonnement par 'absurde, tiers
exclu, contradiction, récurrence...

A noter : on ne cherche jamais justifier que les hypothéses sont elles-mémes vraies. On
veut simplement justifier qu’elles ne peuvent étre vraies sans que la conclusion ne le soit elle
aussi. D’ailleurs, on verra ci-dessous que certaines techniques de raisonnement consistent
au contraire a montrer que les hypothéses ne peuvent pas étre vraies.

Comment justifier une formule cible :

Formule cible Action nécessaire

ANB justifier les deux formules
AV B justifier I'une des deux formules (au choix)
-A supposer ’hypothése A et obtenir une contradiction
A=B supposer ’hypothése A et justifier B
T aucune action requise
1 justifier a la fois A et = A (formule A au choix)
Vx € E, A(x) | justifier A(x) sans rien supposer sur x (a part le fait que x € E)
Ix € E, A(x) trouver un e € E pour lequel on arrive a justifier A(e)

Comment utiliser une hypothése :

Hypothése Action possible

ANAB déduire A, déduire B (une au choix, ou les deux)
AV B déduire C, si on peut justifier a la fois A = C et B = C (raisonnement par cas)
-A déduire une contradiction, si on peut justifier A
A=B déduire B, si on peut justifier A
T aucune déduction possible
1 ex falso quod libet (on peut déduire tout ce qu’on veut)
Vx € E, A(x) | déduire A(e) pour un e € E au choix (méme partiellement indéterminé)
Ix € E, A(x) | introduire un y et 'hypothése A(y) (sans rien supposer d’autre sur y € E)

Comment réfuter une formule :

Formule a réfuter Action nécessaire

ANAB réfuter I'une des deux formules (au choix)
AV B réfuter les deux formules
-A justifier A
A=B trouver un cas dans lequel A est vraie mais pas B
T impossible (a part ex falso)
1 aucune action requise
Vx € E, A(x) trouver un e € E pour lequel on peut réfuter A(e)
Ix € E, A(x) réfuter A(x) sans rien supposer sur x (a part x € E)

Techniques supplémentaires :

— Ex falso. L’hypothése L permet de justifier n’importe quelle conclusion. Autrement
dit, un ensemble d’hypothéses permettant de déduire une contradiction permet de
justifier n’importe quelle formule.

— Raisonnement par I’absurde. Pour justifier une conclusion A, on peut prendre comme
hypothése —A et chercher une contradiction.

— Tiers exclu. Pour justifier une conclusion C, on peut raisonner par cas sur la disjonction
AV —A pour une formule A au choix. D’ou : choisir une formule A puis :

— sous ’hypothese A, justifier C,
— sous ’hypothese —A, justifier C.

Raisonnement par récurrence. Principe additionnel, pour justifier qu’une formule A(n)
est vraie pour tous les entiers n € IN. Deux actions nécessaires :

1. initialisation : justifier A(0),
2. hérédité : prendre un n € IN arbitraire, supposer A(n) et justifier A(n + 1).
On en déduit : Vn € N, A(n).

Variante : récurrence forte. Deux actions nécessaires :
1. initialisation : justifier A(0),
2. hérédité forte : pour un n € N arbitraire non nul, supposer A(k) pour tous les k < n,
et justifier A(n).
On déduit de méme : Vn € N, A(n). Note : ’hérédité forte avec n = 0 correspond a l'initiali-
sation.

Note : o est une fonction qui
représente les fleches du schéma
précédent. Ainsi, 'image o(i) est
I'indice de ¢’ ol arrive I’élément

qui était a 'indice i dans t.

2 Trier

2.1 Probleme : tri de tableau en place

On se donne un tableau contenant des entiers, et on souhaite réarranger ses éléments de
sorte a ce qu’ils soient classés du plus petit au plus grand. Ce probleme est le tri en place
d’un tableau, ou « en place » signifie que 'on travaille directement sur le tableau fourni et
qu’on le modifie. Exemple d’entrée :

tab - [—6] 8[5[—6]-3] 9] 4[-8] 7] 5] 7] 6]

Etat attendu du tableau tab aprés tri de ses éléments :

tab - [8[-6[-6[-3] 4] 5] 5[6] 7] 7] 8] 9]

Spécification. La spécification du probléme du tri en place comporte deux facettes :

— apres le tri, les éléments du tableau doivent étre rangés en ordre croissant,

— apres le tri, le tableau doit contenir exactement les mémes éléments qu’a Lorigine

(répétitions comprises).

On n’a en revanche aucune précondition : tous les tableaux d’éléments comparables doivent
pouvoir étre traités. Le tri en place modifie le tableau auquel on I’applique. Pour éviter les
ambiguités, dans la suite on note ¢ le tableau tab tel qu’il était avant application du tri, et t’
ce méme tableau une fois le tri effectué.

Pour exprimer que les éléments sont rangés en ordre croissant, on indique que tout
élément ¢'[j] situé & la droite d’un élément #'[i] lui est supérieur ou égal.

i<
= a < b \

Formule associée, en notant n la taille du tableau :
vi,jefo,n], i< j=t"[i] <t'[/]

Pour exprimer que le tableau contient, aprés tri, les mémes éléments qu’avant, on demande
que le passage d’un tableau a ’autre soit obtenu par une permutation des cases.

t> [T T TT1]

l
XISK

On note n la taille du tableau tab (inchangée par le tri lui-méme), et S, ensemble des
permutations de 'intervalle [0, n [, c’est-a-dire des fonctions bijectives de I'intervalle [0, n [
vers lui-méme. On obtient la formule :

A0 €GB, vie[o,n[, '[c@)] = t[i]
Avant de poursuivre. Sauriez-vous résoudre ce probléme ?

2.2 Solution 1: tri par sélection

L’algorithme de tri par sélection procéde ainsi :
— chercher le plus petit élément du tableau, et le mettre dans la premiére case;
— puis, chercher le plus petit élément restant, et le mettre dans la deuxiéme case;
— puis, chercher le plus petit élément restant, et le mettre dans la case suivante;
— et ainsi de suite jusqu’a avoir traité ’ensemble.

Pour ne pas perdre d’éléments, chaque fois qu’il faut en déplacer un on effectue en réalité
un échange des éléments contenus dans deux cases du tableau. Exemple de premiére étape,
ou l'on place le plus petit élément (-5, a I'indice 4) dans la premiére case (a I'indice 0).

FIEIEIEIEINARE

10

Exemple d’exécution. Onpartdu tableau’ 6 \ 3 \ -1 \ 2 \ -5 \ 8 \ 1 ‘.Achaque étape,
la zone encadrée correspond a I’ensemble des cases pour lesquelles on a sélectionné une va-
leur. Notez que 'on s’épargne la sélection du dernier élément, qui est nécessairement déja
en place.

0 1 2 3 4 5 6

8 |1]
I5I3’>\<-V1 [o]8]1]
-
[5]-1]1]2]

A
[sl-tlil2]6]8]3]

[-5
B

1f1f2]3]ef8]

Code java. La fonction principale selectionSort fait appel a une fonction auxiliaire swap
pour échanger deux éléments du tableau d’indices i et j, et une autre indexMin pour chercher
I'indice d’un élément minimal dans un segment tab [i,n][.

static void swap(int[] tab, int i, int j) {
int tmp = tab[il;
tab[i] = tab[jl;
tab[j] = tmp;

}

static int indexMin(int[] tab, int i) {
assert (i < tab.length);
int jMin = i;
for (int j = i+1; j < tab.length; j++) {
if (tab[j] < tab[jMin])
jMin = j;
}
return jMin;

3

static void selectionSort(int[] tab) {
for (int i = 0; i < tab.length; i++) {
int j = indexMin(tab, i);
swap(tab, i, j);

Invariants de I'algorithme. Apreés i étapes de cet algorithme, les i premiéres cases du ta-
bleau contiennent les i plus petits éléments, rangés par ordre croissant, et les cases suivantes
contiennent les autres éléments, dans un ordre arbitraire.

0 i n

I 4 \

| préfixetrié [resteatrier |

IN

11

Ces propriétés sont les invariants de I’algorithme, que 'on peut formaliser ainsi. Apres i
étapes de sélection :

— le segment tab [0, i [est trié
vk, ky € [0,i], ki < ky = tab[k;] < tab[k,]

— et les éléments du segment tab [0, i [sont plus petits que les éléments restants
vk, €[0,i[, Vk; € [i,n[, tab[k;] < tab[k,]

A ces deux invariants s’ajoute celui énoncant qu’a chaque étape, le tableau est bien une
permutation du tableau d’origine.

Spécification et invariants de la fonction auxiliaire. L’algorithme repose sur une
fonction auxiliaire cherchant la position du minimum d’un segment de tableau. Spécifions
la fonction indexMin(tab, i) de recherche du minimum de tab[i, n [(ol on suppose que tab
est un tableau de taille n).

— Précondition : le segment tab [i, n[n’est pas vide. Autrement dit : i < n.

— Le résultat r est 'indice d’un élément de tab [i, n [minimal. Autrementdit:i <r <n
etvk € [i,n[, tab[r] < tab[k].
La fonction indexMin parcourt le segment tab [i, n [, et met a jour une variable jMin conte-
nant 'indice du plus petit élément de la région tab [i, j [déja parcourue. Invariants :

— lindice jMin est dans l'intervalle [i, j [
i < jMin < j
— lindice jMin est 'indice d’un élément minimal du segment tab [i, j [

vk € [i,j[, tab[jMin] < tab|k]

2.3 Complexité : dénombrement d’opérations

Objectif de I’étude de la complexité : prédire le temps d’exécution ou la consommation
mémoire d’'un programme.
Expression de la complexité temporelle. Le temps d’exécution d’'un programme est
déterminé par :

— le temps nécessaire pour réaliser chaque opération de base,

— le nombre de fois que chaque opération est réalisée.

Opération de base : toute opération qu’on juge « atomique ». Par exemple : opérations arith-
métiques, comparaisons, lecture ou écriture d’une case d’un tableau... Ces opérations de base
n’ont pas toutes le méme cotit. Le plus souvent, compter les acces a la mémoire suffit a bien
estimer le temps d’exécution, car cette opération est plutdt coliteuse. Dans le cas du tri en
place d’un tableau, il s’agit des accés aux cases du tableau.

Le temps d’exécution d’'un programme varie en fonction de ses entrées. Traditionnel-
lement, on cherche a exprimer la complexité d’un algorithme en fonction de la taille de
Pentrée. Pour un algorithme opérant sur des tableaux, on pourra par exemple exprimer une
complexité c¢(n) en fonction de la taille n du tableau pris en entrée.

Ordres de grandeur de complexité. En général, on ne s’intéresse pas a un décompte
exact des opérations. On exprime plutdt un ordre de grandeur, en se rapportant a quelques
profils de référence. En voici quelques uns, exprimés en fonction d’une taille n pour les
entrées.

Coiit Nom du profil Cas typique Evolution quand n double
1 constant opération de base pas d’évolution

log(n) logarithmique dichotomie ajout d’'une constante

n linéaire boucle simple multiplication par 2

nlog(n) | linéarithmique | diviser pour régner | multiplication par 2

n? quadratique 2 boucles imbriquées | multiplication par 4

n® cubique 3 boucles imbriquées | multiplication par 8

2" exponentiel backtracking carré

12

Si on considére une complexité c(n) = 3n® + 5n + 17, Uessentiel de la valeur de c(n) est dé-
terminée par le terme dominant 3n?, notamment lorsque I'on considére de grandes valeurs
de n. On dit que c(n) est équivalente 4 3n? et on note c(n) ~ 3n*. En omettant la constante
multiplicative 3, on peut également retenir que cette complexité est quadratique, c’est-a-
dire de Uordre de n”.

Les notations de Landau formalisent ces notions d’équivalence et d’ordre de grandeur.
Ci-dessous, on considere que f et g sont des fonctions de IN a valeurs positives.

3k € R*, Iny € N, Vn > ny, g(n) < kf(n)

3k € RY, 3np € N, Vn > ny, kf(n) < g(n)

Notation Idée Définition

_ g majorée par f,

g(m = O(f(m) a un facteur prés

_ g minorée par f,

g(m) = Q(f(m) a un facteur pres

_ g de l'ordre de f _ _

g(n) = ©(f(n) (3 un facteur prés) g(n) = O(f(n) et g(n) = Q(f(n)

_ g équivalente a f | g(n)\ _

g(n) ~ f(n) (précisément) limy o (f(n) =1

Dans un calcul, O(f(n)) désigne une fonction g arbitraire telle que g(n) = O(f(n)). On dit

de méme « g est un O(f) » pour signifier g(n) = O(f(n)). Les mémes principes s’appliquent En revanche, I’expression

aux autres notations. Exemple : si on pose c¢(n) = 3n% + 5n — 12 on peut écrire : « g est au moins un O(f) »
— ¢(n) = O(n?), mais aussi a fortiori c¢(n) = O(n*) ou méme c(n) = O2"). est une betise. Pourquoi?
— ¢(n) = Q(n?), mais aussi a fortiori c¢(n) = Q(n) ou méme c(n) = Q(1).
— ¢(n) = 0(n?).

— ¢(n) ~ 3n°.

Dénombrement des opérations du tri par sélection. Dans les cas simples, pour une
taille d’entrée donnée on peut calculer précisément le nombre d’opérations. Faisons-le pour
le tri par sélection, en se concentrant sur le nombre de comparaisons de paires d’éléments
du tableau, en fonction de la taille n du tableau tab donné en entrée.

— La fonction indexMin contient une boucle réalisant exactement une comparaison a
chaque tour. La boucle réalise un tour pour chaque valeur de j dansUintervalle [i + 1, n|,
$0it Cingexmin(i, 1) = n — i — 1 comparaisons au total.

— Lafonction selectionSort ne fait pas elle-méme de comparaison, mais appelle indexMin
successivement pour toutes les valeurs de i dans lintervalle [0, n [.

D’ou nombre total de comparaisons :

C(n): Z Cindexmin(i, 1) = Z n—i—1= Z i:M

0<i<n 0<i<n 0<i<n 2

2.4 Solution 2 : tri insertion

L’algorithme de tri par insertion procede ainsi :
— trier en place le segment formé par le premier élément (rien a faire pour cette étape!),
— puis trier en place le segment formé par les deux premiers éléments,
— puis trier en place le segment formé par les trois premiers éléments,
— et ainsi de suite jusqu’a avoir trié 'ensemble.
Une fois un segment ¢ [0, i [trié, pour trier le segment ¢ [0, i] il suffit de :
— chercher la position j & laquelle devrait se trouver I’élément t[i],
— décaler vers la droite tous les éléments de ¢ [j,i],

— puis insérer ’élément dans la case t[j] maintenant libérée.

Exemple d’exécution. Partantdu tableau’ 6 ‘ 3 ‘ -1 ‘ 2 ‘ -5 ‘ 8 ‘ 1 |, onmontre d’abord
le tableau obtenu apreés tri des trois premiers éléments, puis on cherche a insérer I’élément 2
(situé a l'indice 3). On repere qu’il doit étre inséré entre les éléments —1 et 3, c’est-a-dire a
Pindice 1. On décale pour cela les éléments 3 et 6 d’une case vers la droite. On procéde de
méme pour les éléments suivants. Notez que I'insertion de 8 (initialement a I’indice 5), lors

13

de la troisieme étape représentée ici, ne nécessite aucun décalage puisque cet élément est
plus grand que tous ceux situés a sa gauche.

e T3l 2 s e 1]

[1fsle]2]=s]8]1]
1] [sfef-s][s]1]
Lil2]3fef-5[8]1]

R
o
oo
N
oo |
N

—
Do
[0 |
o |
o)

1

[-5

1f1]2]3]6]s]

Code java. Lafonction principale insertionSort fait appel a une fonction auxiliaire insert,
qui insére I’élément d’indice i du tableau tab au bon endroit dans le segment tab [0, i], en
décalant vers la droite les éléments qui doivent I’étre.

static void insert(int[] tab, int i) {
assert (i < tab.length);
int v = tab[i];
int j = i;
while (j > 0 && tab[j-1] > v) {
tab[j] = tab[j-1];
i
}
tab[j] = v;
3

static void insertionSort(int[] tab) {
for (int i=1; i < tab.length; i++) {
insert(tab, i);

}

Invariants de I’algorithme. Invariant principal : 4 I'étape i, le segment tab [0, i [est trié.
Vkl, kz € [O, i [, k1 < kg = tab[kl] < tab[kz]

En outre, a toute étape le tableau est une permutation du tableau d’origine.

Dans la fonction insert, on décale d’un cran vers la droite tous les éléments du segment
tab [0, i [qui sont strictement supérieurs & v, en commengant par I’élément le plus a droite.
Invariants de la fonction d’insertion : le segment tab [0, i] est trié en ordre croissant et tous
les éléments a droite de I'indice j (dans le segment tab [0, i]) sont strictement supérieurs a
la valeur v a insérer.

Vkl, k2 (S [0, 1] 5 kl < kz = tab[kl] < tab[kz]
vk e[j+1,i], v < tab[k]

En outre, a chaque étape, le tableau que I'on obtiendrait en insérant v a I'indice j est une
permutation du tableau d’origine.

14

2.5 Complexité : meilleur cas, pire cas, moyenne

Différentes entrées de méme taille peuvent donner des cotits d’exécution différents. C’est
ce que 'on peut observer avec le tri par insertion. Considérons un tableau tab de taille n et
dénombrons les opérations de comparaison.

— Lafonction principale insertionSort réalise n—1 appels a la fonction auxiliaire insert,

pour toutes les valeurs de i prises dans U'intervalle [1, n [.

— La fonction insert réalise :

1. au minimum une comparaison, si tab[i] > tab[i - 11,
2. au maximum i comparaisons, si tab[i] < tab[@],
3. ou n’importe quel nombre intermédiaire.

Trois nuances de complexité. Pour tenir compte de cette variabilité on calcule trois
complexités pour les entrées de taille n.

— Meilleur cas : complexité pour une entrée donnant un cotit minimal. Indique le mieux
qu’on puisse attendre, sur une entrée particuliérement favorable.

— Pire cas : complexité pour une entrée donnant un colit maximal. Indique un maxi-
mum, garanti jamais dépassé méme sur les entrées les plus défavorables.

— Complexité moyenne sur toutes les entrées de taille n. Indique ce qu’on peut raison-
nablement espérer pour une entrée prise au hasard.

Meilleur cas, pire cas et moyenne pour le tri par insertion. Pour calculer les com-
plexités du tri par insertion, on se concentre sur les différentes complexités possibles de la
partie dont la complexité peut effectivement varier, c’est-a-dire la fonction insert.

— Le cas minimum de insert est réalisé lorsque tab[i] > tab[i — 1]. Ce cas se produit a
chaque appel a insert si tab est dés 'origine trié en ordre croissant. On a donc n — 1
comparaisons au total dans le meilleur cas.

— Le cas maximum de insert est réalisé lorsque tab[i] < tab[j] pour tout j € [0,i[. Ce
cas se produit a chaque appel a insert si tab est a Uorigine trié en ordre décroissant.

. _ n(n-1) . .
On a donc)., i = ®%— comparaisons au total dans le cas le pire.

— Pour un appel & insert sur un tableau quelconque, toutes les complexités entre 1

i

et i sont équiprobables. Chaque appel a cette fonction réalise donc en moyenne %

2
i _ n(n-1)

comparaisons. On a ainsi) ;;., ;3 = ~5— comparaisons en moyenne pour un tri

complet.

D’ou meilleur cas ~ n, pire cas ~ 3 n” et en moyenne ~ ;n’ comparaisons.

2.6 Approfondissement : calculs de complexité

Identités utiles. Quelques identités utiles pour résoudre les sommes ou produits obtenus
dans des calculs de complexité, avec ordres de grandeur.

Expression Résultat Equivalent Ordre
+1 2
1+243+44+...+n = Zk nin+)| o(n?)
2 2
0<k<n
1+2+4+48+..+2" = Y 2 2l 1 | ~ nt! e(2")
0<k<n
1 1
1+-4+-+-+..+—- = — H, ~ In(n) O(log(n))
n 0<k<n k
1 1 1
I+ -+ -+ -+t~ = = 2—— | ~2 o(1)
2 4 8 2 0sken 2 2
1x2x3x4x%x...xn = k n! ~\/2nn(ﬁ) @(\/ﬁ(ﬁ))
1<k<n € ¢
log(1) + log(2) + ... + log(n) = log(k) | log(n!) | ~ nlog(n) O(nlog(n))
1<k<n

Note : H, s’appelle la série harmonique. Traditionnellement log,, est le logarithme en base b,
et In = log, est le logarithme naturel (népérien). Dans ce cours, en plus, on écrit simplement
log sans précision de base pour log,.

15

Modéle des entrées pour le calcul en moyenne. Pour un ensemble fini de valeurs la
notion de moyenne est simple : somme des valeurs divisée par le cardinal de 'ensemble.
Ici le nombre de tableaux différents de taille n est infini. Cependant, pour étudier un algo-
rithme de tri les valeurs exactes de chaque case d’un tableau n’ont pas d’importance : seules
comptent les comparaisons deux a deux. Dans notre étude il n’y a pas de différence entre
’ 2 \ 0 \ 1 ‘et’ 19273 \ -374 \ 2178 ‘: seul compte le fait qu’on a d’abord le plus grand
élément, puis le plus petit, puis le médian. En supposant que les tableaux ne contiennent

pas de doublons, on a n! configurations possibles pour un tableau de taille n, et ces n confi-
gurations sont équiprobables.

Pour les calculs de complexité moyenne on utilise ce modele des tableaux ordonnés
aléatoirement sans répétition. Les complexités moyennes obtenues restent valables avec une
quantité modérée de répétitions. Si on veut pouvoir analyser un cas particulier d’application
ou on attend de nombreuses répétitions il faut adopter un autre modeéle spécifique.

2.7 Approfondissement : tris en caml

Les tableaux existent également en caml. L’acces a la case d’indice i du tableau tab se
note tab. (i). L affectation d’une nouvelle valeur se note tab. (i) <- v.Partant de cela, voici
comment on aurait pu écrire les algorithmes de ce chapitre en caml.

Tri par sélection. On définit une variable mutable avec let x = ref v in. On accéde a
la valeur d’une variable mutable x avec !x et on la modifie avec x := v'. On sépare deux
instructions avec un point-virgule ; Dans une boucle for, on donne I'indice de début et
I'indice de fin (inclus), et on délimite le corps de la boucle par do et done.

let swap tab i j =
let tmp = tab.(i) in
tab. (i) <- tab.(j);
tab. (j) <- tmp

let index_min tab i =
assert (i < Array.length tab);
let j_min = ref i in
for j = i+1 to Array.length tab - 1 do
if tab.(j) < tab.(!j_min) then
j_min := j
done;
1j_min

let selection_sort tab =
for i = @ to Array.length tab - 1 do
let j = index_min tab i in
swap tab i j
done

Tri insertion. Le corps d’une boucle while, comme celui d’'une boucle for, est délimité
par do et done.

let insert tab i =

assert (i < Array.length tab);

let v = tab. (i) in

let j = ref i in

while !j > 0 && tab.(!j-1) > v do
tab. (!j) <- tab.(!j-1);
decr j

done;

tab.(!j) <- v

let insertion_sort tab =
for i = @ to Array.length tab - 1 do
insert tab i
done

Essayez également d’écrire a nouveau ces algorithmes dans les autres langages que vous connais-
sez. Par exemple : python.

16

3 Accélérer

3.1 Probleme: tri de tableau en place, plus rapidement

Les deux solutions précédentes au probléme du tri ont pour point commun une com-
plexité quadratique. On veut maintenant réaliser cette méme tache, mais plus rapidement.
Remarquons le point suivant : pour les tris quadratiques que nous connaissons, trier un ta-
bleau de taille § prend quatre fois moins de temps que trier un tableau de taille n. Ainsi,
trier indépendamment I'une de autre deux moitiés d’un tableau de taille n revient a faire
deux tris de tableaux de taille 7, ce qui prend deux fois moins de temps que trier le tableau
complet. Evidemment, on ne peut pas se contenter de cela : il faut encore faire en sorte que
les deux moitiés triées puissent bien étre combinées en un tableau globalement trié. Mais
une partie du temps gagné sur les tris des deux moitiés peut étre utilisée pour cela.

3.2 Algorithme : tri rapide

L’algorithme de tri rapide procéde ainsi :
— placer dans une partie gauche du tableau les élément « petits » et dans une partie
droite les éléments « grands »,
— trier indépendamment chacune des deux parties,

— réaliser le point précédent en utilisant & nouveau le méme algorithme, jusqu’a n’avoir
plus a trier que des tableaux si petits qu’ils n’ont plus a étre découpés.

Le tri séparé des deux parties suffit a obtenir un ensemble trié, puisque ’on a pris soin a la
premiére étape de ne mettre a droite que des éléments plus grands que ceux situés a gauche.
Pour répartir les éléments du tableau en deux groupes, on les compare a un élément pivot
pris dans le tableau :

— les éléments plus petits que le pivot sont déclarés « petits » et placés a gauche,
— les éléments plus grands que le pivot sont déclarés « grands » et placés a droite,

— le pivot lui-méme est placé entre les deux groupes, et 'on peut méme regrouper ainsi
au « centre » toutes les occurrences de I’élément pivot s’il y en a plusieurs.

Le pivot peut étre n’importe quel élément du tableau, par exemple le premier. Notez que les
deux groupes a trier ensuite n’ont pas besoin d’inclure le pivot lui-méme, puisque celui-ci
est déja a sa place définitive : il n’a que des éléments plus petits a sa gauche et que des
éléments plus grands a sa droite.

CoTs[ale[5Ts]1]

Code java. La fonction principale quickSort prend en parametres un tableau tab et deux
indices Lo et hi, et trie le segment tab Lo, hi [. Pour cela, elle combine une boucle réorgani-
sant le tableau autour d’un élément pivot, et des appels récursifs sur les deux sous-tableaux
situés sous le pivot et au-dessus du pivot.

static void swap(int[] tab, int i, int j) {
int tmp = tab[il;
tab[i] = tab[jl;
tab[j] = tmp;

}

static void quickSort(int[] tab, int lo, int hi) {

if (hi <= lo+1) return;

int a=lo, b=lo+1, c=hi;

int pivot = tab[lo];

while (b < ¢) {
if (tab[b] < pivot) { swap(tab, b++, a++); }
else if (tab[b] > pivot) { swap(tab, b, --c); }
else /% tab[b] == pivot */ { b++; }

}

quickSort(tab, lo, a);

quickSort(tab, c, hi);

17

0123456
[o]s3]- 8 |1]
[-1]-5]o0[3]2]8]1]
[sl-t]ofil2]3]8]

static void quickSort(int[] tab) {
quickSort(tab, @, tab.length);

Invariants de la boucle de partition. Pendant’opération de partition, le segment tab [lo, hi [
est découpé en quatre parties :

lo a b C hi
| ! | ! |

\ < pivot \ = pivot \ a traiter \ > pivot \

le segment tab [lo, a [ne contient que des éléments strictement inférieurs au pivot
vk € [lo,a[, tab[k] < pivot

— le segment tab [a, b [ne contient que des éléments égaux au pivot

vk € [a,b[, tab[k] = pivot

— le segment tab [b, c [contient des éléments non encore traités, qui peuvent étre quel-
conques,

le segment tab [c, hi [ne contient que des éléments strictement supérieurs au pivot
vk € [c,hi[, tab[k] > pivot

L’un de ces quatre segments est a coup sir non vide : il s’agit de tab [a,b [, qui contient au
moins une occurrence du pivot. On a donc la chaine de comparaisons lo < a < b < ¢ < hi.
A chaque tour de boucle, le segment des éléments a traiter est réduit d’une case au profit
de I'un des trois autres. La boucle s’arréte lorsque b = ¢, c’est-a-dire lorsque le segment des
éléments a traiter est vide. Le tableau a alors la forme suivante, ol a coup slir a < ¢ (on a au
moins un élément dans le segment des éléments égaux au pivot).

lo a b=c hi

| I I I

‘ < pivot ‘ = pivot ‘ > pivot ‘

En outre, le segment de tableau obtenu aprés partition est bien une permutation du segment
d’origine.

Technique de preuve : récurrence forte. Pour finir de justifier la correction du tri, et
calculer sa complexité, il va nous falloir de nouvelles techniques pour gérer la récurrence.
Le tri d’un tableau de taille n se rameéne, apres partition, au tri de deux tableaux de tailles
strictement inférieures & n. On justifie alors que ’algorithme est correct a I’aide du principe
de récurrence forte. Pour cela, on note P(n) la propriété « quickSort trie correctement tout
segment de tableau de longueur n », et on vérifie les conditions suivantes :

— P(0) : quickSort trie correctement tout segment de tableau de longueur 0. C’est im-
médiat car l'algorithme ne fait rien lorsque lo = hi, et un segment vide tab [Llo, lo[
est bien toujours trié.

— En fixant un n € N et en supposant que P(k) est vraie pour tout k < n, c’est-a-dire
que quickSort trie correctement tout segment de tableau de longueur strictement in-
férieure a n, on cherche a démontrer que I’algorithme trie correctement un tableau de
taille n. Les invariants de la boucle de partition nous assurent déja que cette derniere
réarrange le tableau sous la forme

lo a b=c hi

| { l \
‘ < pivot ‘ = pivot ‘ > pivot ‘

avant d’appliquer récursivement 1’algorithme aux segments tab [Llo,a[et tab[c,hi [.
Comme a < c, on sait que les longueurs a — lo et hi — ¢ de ces deux segments sont
strictement inférieures 4 n = hi — lo. Autrement dit, par hypotheése 'algorithme trie
correctement ces deux segments. A la fin, on obtient donc bien une permutation du
segment d’origine, dont on vérifie qu’elle est bien triée. Soient deux indices i, j €
[Lo,hi[tels que i < j. Vérifions que tab[i] < tab[j] en raisonnant par cas sur les
segments ol se trouvent i et j.

18

— Sii,j€[lo,a[oui,j € [c, hil,onabien tab[i] < tab[j] car on a déja justifié que
ces deux segments étaient triés.
— Dans les autres cas, on fait une comparaison intermédiaire avec le pivot.
— Sii, j €[a,b], alors tab[i] = pivot = tab[J].
— Sii€[lo,a[etje€[ab],alors tab[i] < pivot = tab[J].
— Sii€[a,b[etje€[c hil,alors tab[i] = pivot < tab[J].
— Sii€[lo,a[et j€[c, hil,alors tab[i] < pivot < tab[j].

3.3 Complexité : équations récursives

Dans le cas d’algorithmes récursifs, la complexité peut elle-méme étre calculée par des
équations récursives.

Exemple : factorielle. On veut calculer n! = 1x2x3x...x n.Enjava:

static int fact(int n) {
if (n < 2) { return 1; }
else { return n * fact(n-1); }

}

Le nombre C(n) de multiplications réalisées pour calculer fact(n) suit I'une des deux for-
mules suivantes.

— pour n < 2, zéro,
— pour n > 2, une multiplication en plus du cott du calcul de fact(n - 1).

Autrement dit :

c) = 0
c1) = o0
Cn+1) = 1+C(n) sin>1

Exemple : exponentiation rapide. Principe de I’algorithme : on calcule rapidement de
grandes puissances en remarquant que a*® = (a™)? et a*™*! = a x (a™)%. En java :

static int power(int a, int n) {
if (n < 1) return 1;
int b = power(a, n/2);
if (n%2 == @) { return b*b; }
else { return a*b*b; }

}

Le nombre C(n) de multiplications réalisées pour calculer power (a, n) vérifie les équations
suivantes.

co) =0
C(2m) = 1+ C(m) sim>0
C2m+1) = 24 C(m)

Résolution des suites récursives simples. Soit (u,),>,, une suite définie a partir du
rang ny. Pour tout n > nyona:

U= tn, = Y, (Uer — 1)

np<k<n

(on qualifie cette équation de « télescopage » de la somme). En notant f la fonction telle
que Uy = Uy + f(n) pour tout n > ny on a donc :

Un = un0+ Z f(k)

np<k<n

Cas particulier, la suite arithmétique : suite (u,)nen définie par
Uy = b
Upt1 = a+ Uy
pour deux constantes a et b. Théoréme : pour tout n, u, = an+ b.

19

Pour une version alternative
mais équivalente, on peut aussi
remarquer que a®® = (a?)™ et
a2m+1 =ax (aZ)m'

Exercice : plus précisément on a
llog(n)] + 1 + w(n), ou w(n) est
le nombre de 1 dans I’écriture
binaire de n.

Cas similaire, la suite géométrique : suite (u,),en définie par

Uy = b
Upy1r = aAX Uy
pour deux constantes a et b. Théoréme : pour tout n, u, = b x a".

Application a la factorielle et a 'exponentiation rapide. Les équations de complexité
de la factorielle donnent une suite arithmétique avec a = 0 et b = 1, a partir du rang n = 1.
D’ou: pour toutn > 1, C(n) = n— 1.

Les équations de complexité de I’exponentiation rapide ne définissent pas une suite
arithmétique ni une suite géométrique, puisqu’elles ne lient pas C(n) et C(n + 1). En re-
vanche on trouve une suite arithmétique en s’intéressant aux puissances de 2 :

{ Cc(2%) 2

c@2My = 1+ C(25

D’ot1 : pour tout k > 0, C(2¥) = k + 2.
Pour les autres nombres on obtient un encadrement : pour tous k et n, si 2ok <n<
alors k + 1 < C(n) < 2(k + 1). Démonstration par récurrence sur k :

2k+1

— Casdebase: k =0.Alors 1 = 2° < n < 2! = 2 et nécessairement n = 1. On calcule :
C(1)=2+C(0)=2.0Onadoncbien0+1< C(1) <2(0+1).

— Hérédité. Soit k tel que pour tout n vérifiant 28 < n < 21 onak+1 < C(n) < 2(k+1).
Soit n qui vérifie 21 < n < 2K2. Ona 2F < |2] < 2!, donc par hypothése de
récurrence k + 1 < C([gJ) <2(k+1).0rC(n)=1+ C([gJ) ouC(n)=2+ C([gJ)
Donc k + 2 < C(n) < 2(k + 2).

On en déduit que pour tout n > 0, log(n) < C(n) < 2log(n).

3.4 Complexité du tri rapide : cas extrémes

Meilleur cas : partition dégénérée. Il existe une situation dans laquelle le tri rapide
s’arréte particulierement vite : lorsque tous les éléments sont égaux au pivot. L’étape de
partition termine alors dans la situation

lo=a b=c=hi
| !

‘ = pivot ‘

et les appels récursifs sur les segments vides tab [Llo, a [et tab [c, hi [ne feront aucun travail
supplémentaire.

Dans ce cas, le cofit du tri se limite au cott de 'opération de partition : on a comparé
hi — lo — 1 paires d’éléments, et la complexité est linéaire.

Dans la suite de notre analyse, on éliminera ce cas en supposant que les n éléments du
tableau a trier sont tous différents les uns des autres. En particulier, le pivot est présent en
un seul exemplaire, et les n — 1 autres éléments sont répartis entre les deux segments a trier
récursivement.

Pire cas : partition déséquilibrée. Imaginons que le tableau a trier est déja trié en ordre
croissant (avec des éléments tous différents). En particulier, en choisissant le premier élé-
ment comme pivot, on trouve que les n — 1 autres éléments lui sont strictement supérieurs,
et doivent étre placés du méme coté. Le nombre C,(n) de comparaisons nécessaires au tri
d’un tableau de cette forme ajoute :

— n— 1 comparaisons pour comparer chaque autre élément au pivot,

— Cp(n—1) comparaisons pour trier récursivement le segment des éléments supérieurs
au pivot (ce segment étant également déja trié, il suit la méme formule).

Total: Cp(n) = X 1cjen(k=1) = Yocpan k' = @ On conserve dans ce cas la complexité
quadratique déja observée pour le tri par sélection ou le tri par insertion.
Bilan : lorsque la partition du tableau en deux partie est trés déséquilibrée, notre stratégie

de découpage n’apporte rien.

20

Meilleur cas avec des éléments tous différents : partition équilibrée. A I'inverse,
imaginons qu’a chaque étape, les n—1 éléments autres que le pivot soient répartis de maniére
équilibrée dans deux segments ayant des tailles aussi proches que possibles. Si n—1 est pair,
les deux segments auraient ainsi la méme taille %1 et si n — 1 est impair, I'un des deux
contiendrait un élément de plus que I'autre. Le nombre C,(n) de comparaisons nécessaires

pour trier un tableau de taille n > 1 dans ces conditions est donné par :

— les n — 1 comparaisons du pivot avec chacun des autres éléments,

— les deux appels récursifs, sur des tableaux de tailles [%!] et [2!].

En particulier, les deux appels récursifs concernent des segments dont la taille est inférieure
ou égale a . On en déduit une borne supérieure valable lorsque n > 1.

Co(n) < n+ zco(g)

Réexprimons la formule dans le cas ot n est une puissance de 2, ¢’est-a-dire ou n = 2~.

{ Co(2%) 0

C0(2k+1) S 2C0(2k) + 2k+l

Divisons enfin la deuxiéme équation par 25+!,

Co(2K1) 2C,(25) 29t ¢, (2F)
2k+l < 2k+1 2k+1 - 2k +1

On y reconnait une suite arithmétique, qui nous permet de conclure que, pour tout k € IN,
on a %kzk) < k, et Co(2F) < k2. Autrement dit, si n = 2% on a C,(n) < nlog(n).

Finalement, si lors de I’exécution du tri rapide sur un tableau de taille n, chaque réparti-
tion des éléments d’un segment autour d’un pivot est équilibrée, le nombre de comparaisons
effectué est de 'ordre de nlog(n).

3.5 Approfondissement : complexité en moyenne du tri rapide.

Nous allons voir que la complexité du tri rapide, bien que susceptible de grandement
varier en théorie, est en général excellente.

Notons C(n) le nombre de paires d’éléments comparées en moyenne lors du tri rapide
d’un tableau de taille n, dont on suppose que tous les éléments sont distincts (la présence de
doublons ne fait qu’accélérer la résolution).

On a toujours C(0) = C(1) = 0. Pour n > 2, on a n cas possibles pour les tailles respec-
tives des segments [lo,a[et [c, hi [: le segment [lo, a [peut avoir n’importe quelle longueur
k comprise entre 0 et n— 1 (bornes incluses), et 'autre segment a alors la longueur n—1—k.
En outre, ces n cas sont équiprobables : le pivot peut se trouver a n’importe quelle position
du segment [lo, hi [. Pour obtenir la complexité moyenne des deux appels récursifs il suf-
fit donc de faire la moyenne de ces n cas. En comptant également les n — 1 comparaisons
nécessaires a la répartition préalable, on obtient :

n—1+rll< 3 C(k)+C(n—1—k))

0<k<n

C(n)

2
n—1+= 3 Ck)

0<k<n

Ici, C(n) est exprimé en fonction de tous les C(k) précédents. Pour exprimer C(n) en fonction
de C(n — 1) uniquement il faut, dans la somme, faire disparaitre tous les éléments de C(0) a
C(n — 2). Pour cela on combine (pour n > 3) :

nC(n) = n(n—1)+2 Y C(k)
0<k<n
(n-1DC(n-1) = (n-Dn-2)+2 Y. CKk)
0<k<n—1

On obtient :

nC(n)—(n+1)C(n—1) = 2(n—-1)

21

Pour le « tri fusion » : voir TD.
Son comportement est
comparable au cas du tri rapide
ou la partition est équilibrée.

On obtient une somme télescopique en divisant par n(n + 1) :

Cln) Cn-1) 2(n—-1)
n+1 n n(n+1)

C(n) C(2) C(k) Ck—1)\ _ 2(k—1)
n+1 3 3£n<k+l k >_3§Zk;nk(k+l)
C(n) 1 1 1
R AL VR e e Yy

On reconnait dans cette expression la série harmonique et une série convergeant vers une
constante. D’ou finalement

C(n) ~ 2nln(n) = 1,39nlog(n)
Le nombre moyen de paires d’éléments comparées par le tri rapide est linéarithmique, avec
une constante petite. Le cas idéal cité plus haut, dans lequel la partition du tableau en deux
parties est toujours équilibrée, est en réalité représentatif du cas général !

Bilan sur le tri rapide : complexité excellente en général (linéarithmique en moyenne),
mais mauvaise sur quelques cas particuliers (quadratique sur un tableau trié). Probleme :
dans les applications réelles le cas particulier du tableau presque trié n’est pas toujours aussi
rare que dans le modéle aléatoire (imaginez un tableau qui avait déja été trié, puis qu'on
trie a nouveau aprés quelques modifications, ou un tableau construit a partir de plusieurs
éléments triés). En pratique on gagne donc a ajouter de I’aléatoire dans cet algorithme, soit
en choisissant le pivot au hasard, soit en mélangeant le tableau avant de le trier.

3.6 Approfondissement : Master Theorem.

Le « théoréme maitre » donne directement 'ordre de grandeur du résultat pour des
équations de forme similaire a celles du tri fusion, caractéristique des algorithmes de type «
diviser pour régner ». On considére une équation récursive de la forme

n

Cm = aC)+ f(n)
ou n est la taille du probléme, a le nombre de sous-problémes (entier non nul), f la taille
de chaque sous-probléme (les sous-problémes ont donc tous la méme taille, a un arrondi

arbitraire pres), et f(n) le colit propre a un appel donné (définition des sous-problémes,
combinaison des solutions, etc.). On suppose la fonction f croissante.

Exemples :
Algorithme al|b f(n)
Tri fusion 2|2 O(n)

un arrondi inf. et colit de la fusion
un arrondi sup.
Recherche dichotomique | 1 | 2 1

arrondi inf. ou sup. | comparaison avec

selon coté choisi élément médian

L’ordre de C(n) différe selon que le coiit des appels récursifs domine, est équilibré avec,

ou est dominé par, le cotit de gestion f(n). On appelle cqix = :gg((,f; = log,(a) l'exposant

critique qui permet de discriminer ces trois situations. On compare f(n) a n :

Cas | Complexité de f(n) | Condition | Ordre de C(n)
1. O(n°) c<cgit | O(net)
2. 0(n°) ¢ =cCit | O(n‘log(n))
3. Q(n°) ¢ > cait | O(f(n))

Les deux exemples du tri fusion et de la recherche dichotomique correspondent au cas 2. Ce
cas 2 admet aussi une forme plus générale :

Ordre de C(n)
O(n(log(n))*")

Condition
c=cqiretk>0

Cas | Complexité de f(n)
2. 0(n‘(log(n))*)

22

Outils logiques et algorithmiques

Florent Hivert d’aprés Thibaut Balabonski @ Université Paris-Saclay
Edition 2026.

23

	I Tableaux
	Chercher
	Panorama : recherche dichotomique
	Spécification d'un problème algorithmique
	Invariants de boucles
	Approfondissement : boîte à outils logique

	Trier
	Problème : tri de tableau en place
	Solution 1 : tri par sélection
	Complexité : dénombrement d'opérations
	Solution 2 : tri insertion
	Complexité : meilleur cas, pire cas, moyenne
	Approfondissement : calculs de complexité
	Approfondissement : tris en caml

	Accélérer
	Problème : tri de tableau en place, plus rapidement
	Algorithme : tri rapide
	Complexité : équations récursives
	Complexité du tri rapide : cas extrêmes
	Approfondissement : complexité en moyenne du tri rapide.
	Approfondissement : Master Theorem.

