Outils logiques et algorithmiques

Florent Hivert d’aprés Thibaut Balabonski @ Université Paris-Saclay
Edition 2026.

Deuxieme partie

Graphes

4 Geérer des conflits

4.1 Probléeme : allocation de ressources

Panique a l'université Saris-Paclay. Chaque filiere a, chacune dans son coin, fixé son
emploi du temps. Il y a chaque semaine des milliers de cours prévus, et il faut maintenant
trouver une salle a chacun. Comme vous pouvez vous en douter, il y a nettement moins de
salles disponibles que de cours a y loger quotidiennement : plusieurs devront certainement
se succéder dans une méme salle le méme jour. Mais, évidemment, deux cours ne peuvent
avoir lieu dans la méme salle que si leurs horaires ne se recouvrent pas'. Nous avons donc :

— un ensemble de cours, dont certains peuvent se tenir dans une méme salle (car leurs
horaires sont disjoints) mais d’autres ne le peuvent pas (car leurs horaires se re-
couvrent),

— et un certain nombre de salles ou loger nos cours.

L’objectif est d’affecter une salle a chaque cours en respectant ces contraintes.

Echauffement. Voici un extrait des cours du lundi matin :
— Algebre linéaire : 8h15-10h15
— Analyse de Fourier pour la physique : 8h15-10h45
— Outils logiques et algorithmiques : 8h45-10h15
— Transformations et propriétés de la matiére : 10h30-12h00
— Programmation modulaire : 10h30-12h30
— Electromagnétique : 11h-12h45

De combien d’amphithéatres avez-vous besoin au minimum pour organiser ces six cours ?

4.2 Modélisation : graphes non orientés

Points et traits. La structure centrale de notre probléme est un ensemble d’éléments (ici :
des cours), dont certains sont en relation I'un avec autre (ici : compatibles ou incompa-
tibles). On peut résumer cette structure par un schéma dans lequel chaque cours occupe un
point de I’espace, et ou certains cours sont reliés par des traits, en fonction de leur relation.
Voici notre exemple précédent, ou on a dessiné un lien entre les cours qui sont incompa-
tibles.

[OLA]—(Analyse de Fourier]—(Prop. matiére]

[Algébre linéaire] [Prog. modulaire]—(Electromagnétique]

On appelle une telle structure un graphe.

1. Pour les besoins du scénario, on néglige les questions de capacité et de nature des salles : on suppose que
toute salle peut accueillir n’importe quel cours.

23

Définitions. Un graphe est formé par une paire (S, A) ou :
— S est un ensemble d’éléments appelés sommets (ou neeuds),
— A est un ensemble d’éléments appelés arétes (ou arcs, ou fléches),
— chaque aréte a € A a deux extrémités s, t € S.

On peut « dessiner » un graphe en représentant chaque sommet par un point du plan et
chaque aréte par un trait liant ses deux extrémités. Ci-dessous, un graphe a six sommets et
huit arétes. Il y a une aréte entre les sommets sy et s;, mais pas entre les sommets s, et s;.

Dans un tel dessin, les positions exactes des différents sommets n’ont aucune importance,

seules comptent les relations qu’entretiennent entre eux les sommets. Les dessins ci-dessous
représentent tous le méme graphe.

Deux sommets liés par une aréte sont adjacents (ou voisins). Une aréte a ayant un sommet s
parmi ses extrémités est incidente a s.

On appelle boucle une aréte dont les deux extrémités sont identiques (aréte a ci-dessous).
On parle d’arétes multiples (ou paralléles) lorsque plusieurs arétes ont les mémes deux ex-
trémités (arétes b et c ci-dessous).

“N b

(ol

c

Un graphe simple est un graphe qui n’a ni boucles, ni arétes multiples.

Le degré d'un sommet s d’'un graphe simple, noté J(s), est le nombre de voisins de ce
sommet, équivalent au nombre d’arétes ayant s pour extrémité. On généralise la notion aux
graphes quelconques en comptant le nombre d’extrémités d’arétes touchant s : des arétes
paralléles comptent chacune pour 1, et une boucle compte pour 2.

© @y" S = 1) = 3
3(s1) 0 3(sq) =
® & oy - 3

|
8

Probleme du coloriage. Le probléme du coloriage d’un graphe consiste a donner a
chaque sommet une couleur, de sorte que les sommets adjacents aient toujours des couleurs
différentes.

orange
violet
orange
turquoise
turquoise
violet

Ul W N = O

Notre probléme d’allocation d’amphithéatres peut se ramener au coloriage d’un graphe :

1. créer un graphe dont les sommets sont les cours auxquels affecter des salles, avec une
aréte entre deux sommets lorsque les cours correspondants sont incompatibles,

2. colorier le graphe en donnant des couleurs différentes aux sommets adjacents,
3. chaque couleur représente un amphithéatre!

Remarquez que d’autres Sion reprend notre sélection de cours, son graphe, et le coloriage exemple précédent, il suffit
solutions sont possibles. donc de trois amphithéatres :

— un pour OLA et Propriétés de la matiere,
— un pour Analyse de Fourier et Electromagnétisme,

— un pour Algebre linéaire et Prog. modulaire.

24

Apparté : graphes planaires. Lorsque I'on peut dessiner un graphe de maniére a ce que
ses arétes ne se croisent pas, on dit que ce graphe est planaire. Le graphe dessiné ci-dessous
a gauche est planaire : méme si deux arétes se croisent sur le dessin, il est possible d’éviter
le croisement en placant différemment un sommet, ou en tordant une aréte. Celui de droite
en revanche, n’est pas planaire.

Oy OGP
Pals @%@se

Un théoréme célebre, le théoréme des quatre couleurs, affirme que quatre couleurs suffisent
toujours pour colorier un graphe planaire.

Apparté : graphes orientés. Dans un graphe orienté, chaque aréte a une « direction ».
On distingue ainsi pour chacune une extrémité de départ (ou source) et une extrémité
d’arrivée (ou cible). Dans le dessin d’un tel graphe, on représente une aréte par une fleche
allant du sommet de départ au sommet d’arrivée.

Pour un sommet s d’un tel graphe, le degré 5(s) se décompose en :
— un degré entrant : nombre d’arétes dont s est l'arrivée,

— un degré sortant : nombre d’arétes dont s est le départ.

Nous reviendrons sur la notion de graphe orienté au prochain chapitre.

4.3 Structure de données : graphe

Pour travailler avec des graphes simples non orientés, on utilisera principalement les
opérations suivantes :

— énumérer les sommets,

— étant donné un sommet s, énumérer les voisins de s.

On peut par exemple imaginer le procédé suivant pour connaitre le nombre total d’arétes
d’un graphe : pour chaque sommet s, compter les voisins de s, et a la fin diviser le total par 2.

Interface. Pour simplifier le code, on suppose toujours manipuler un graphe dont les som-
mets sont numérotés a partir de zéro. Ainsi, pour un graphe a n sommets, on désignera
chaque sommet par un nombre pris dans l'intervalle [0, n[. Enumérer les sommets d'un
graphe ou les voisins d’'un sommet consiste donc a énumérer une liste d’entiers. Pour repré-

Question : pourquoi divise-t-on la
somme obtenue par 2?

senter un graphe, on veut donc essentiellement réaliser I'interface suivante, ou Iterable<Integer>

est le type des énumérations d’entiers pouvant étre parcourues a’aide d’une boucle for each.

interface Graphe {
Iterable<Integer> sommets();
Iterable<Integer> voisins(int s);

}

Notre fonction comptant le nombre d’arétes d’un graphe réalisant cette interface s’écrirait
ainsi.

static int nombreAretes(Graphe g) {
int d = 9;
for (int s : g.sommets()) {
for (int v : g.voisins(s))
d += 1;
}
return d/2;
}

Ces deux opérations d’énumération des sommets et des voisins permettent également faci-
lement de réaliser des fonctions renvoyant le nombre de sommets d’un graphe, ou le degré
d’un sommet. On supposera par la suite que ces méthodes existent bien.

25

Faites-le.

Question : dans quel ordre sont
renvoyés les voisins ici ?

Réalisation 1 : matrice d’adjacence. Un graphe G a n sommets {so, ..., s,—1} et sans
arétes paralléles peut étre représenté par une matrice M, carrée, d’ordre n, telle que :

— M[i, j] = vrai s’il existe une aréte entre s; et s;,
— M(i, j] = faux sinon.

On appelle M la matrice d’adjacence de G. Remarque : dans les graphes non orientés que
nous considérons ici, une aréte entre s; et s; est aussi une aréte entre s; et s;. Ainsi, chaque
aréte qui n’est pas une boucle donne deux cases a vrai dans la matrice, qui est symétrique.

O—E—Eo
liil!l 1|V v/ SV
2 I/ v/
® &
4 v/ 4
5 IV v/

En java, on peut représenter une telle matrice par un simple tableau a deux dimensions.
Voici le début du code. Pour créer un graphe, on se donne un constructeur prenant en pa-
rameétre le nombre de sommets et initialisant la matrice, et une méthode ajoutant un lien
entre deux sommets.

class GrapheMat implements Graphe {
public final int taille;
private boolean[][] adj;

public GrapheMat(int taille) {

this.taille = taille;

this.adj = new boolean[taille][taille];
3

public void ajouteArete(int s, int t) {
adjls][t] = true;
adj[t]l[s] = true;

3

Pour énumérer les voisins d’un sommet s;, on construit et on renvoie la liste des j tels que
M(i, j] vaut vrai.

public Iterable<Integer> voisins(int s) {
ArraylList<Integer> voisins = new ArraylList<>();
for (int v=0; v<taille; v++) {
if (adjls][v]) voisins.add(v);
3
return voisins;

3

Pour énumérer les sommets, c’est-a-dire les entiers de 0 a n — 1, on pourrait de méme
construire une liste a la main et la renvoyer. Voici une variante dans laquelle on se passe
de construire la liste. A la place, on concrétise la classe abstraite AbstractList en indiquant
que I’élément d’indice i dans cette énumération est précisément i lui-méme.

public Iterable<Integer> sommets() {
return new AbstractlList<Integer>() {
public Integer get(int index) { return index; }
public int size() { return taille; }

3

26

Réalisation 2 : listes d’adjacence. Un graphe G a n sommets {so, ..., s,—1} et sans arétes
paralléles peut également étre représenté par un tableau A de taille n tel que Ali] contient
la liste des [numéros des] voisins du sommet s;.

@@"’ (1)(1)245\

o &b D
415
501]2[4]

Voici un code java pour cette seconde réalisation. Chaque liste de voisins est du type

ArraylList<Integer>. Pour le tableau A, on utilise un nouveau ArraylList contenant ces listes

de voisins?.

class GrapheAdj implements Graphe {
public final int taille;
private ArraylList<ArraylList<Integer>> adj;

public GrapheAdj(int taille) {
this.taille = taille;
this.adj = new ArraylList<>(taille);
for (int s=0; s<taille; s++) adj.add(new ArrayList<>());

}

public void ajouteArete(int s, int t) {
adj.get(s).add(t);
adj.get(t).add(s);

}

public Iterable<Integer> voisins(int s) {
return adj.get(s);

}

public Iterable<Integer> sommets() { /* identique a GrapheMat.sommets() %/ }

Cout des graphes. Les deux propositions de réalisation des graphes ont des coiits diffé-
rents. Sil'on considére un graphe a n sommets et k arétes, voici les ordres de grandeur.
— Une matrice d’adjacence nécessite en mémoire un tableau de n? booléens. L’énumé-
ration des voisins d’'un sommet a une complexité proportionnelle a n.

— Un tableau de listes d’adjacence nécessite en mémoire un tableau de n références,
plus n listes contenant chacune n entiers au maximum. Plus précisément, ces listes
réunies contiennent environ 2k éléments. L’énumération des voisins d’'un sommet a
une complexité proportionnelle au nombre de voisins.

Bilan : le plus souvent, la représentation par listes d’adjacence est plus efficace, autant pour
I'utilisation de mémoire (car n + k < n?) que pour le cofit de I'énumération des voisins (car
le nombre de voisins d’'un sommet est toujours inférieur a n).

La représentation par matrice d’adjacence reste cependant a privilégier dans le cas d’'un

graphe dense, c’est-a-dire dans lequel la majorité des arétes possibles sont présentes : la

structure, plus simple, est alors plus efficace en pratique. Regardons précisément les constantes

associées aux ordres de grandeur @(n?) et @(n + k) pour la représentation en mémoire.

— Chagque booléen de la matrice d’adjacence occupe un octet, d’ott un nombre d’octets
~ n? pour une matrice d’adjacence.

— Les listes d’adjacence contiennent des références vers des objets Integer. Chaque ré-
férence occupe huit octets, et chaque objet en java occupe en mémoire au moins 12
octets de plus que la place utilisée pour la donnée elle-méme (pour Integer, contenant
des entiers int de 4 octets, on a donc 12 + 4 = 16 octets). En outre, chaque tableau
redimensionnable ArrayList peut avoir une taille double du nombre d’éléments effec-
tivement contenus. Le nombre d’octets pour un tableau de listes d’adjacence est donc
compris entre ~ 24(k + n) et ~ 32(k + n).

Bilan : pour un graphe non orienté contenant un nombre d’arétes proche du maximum
~ n?/2, 1a matrice d’adjacence est plus compacte.

2. On pourrait vouloir utiliser un tableau primitif pour A au lieu d’un ArrayList, mais on ne le fait pas ici
pour des raisons techniques liées au systéme de types de java : les tableaux primitifs ne peuvent pas, du moins en
théorie, contenir des types génériques comme ArrayList<T>.

27

En outre, une matrice
d’adjacence dense a un meilleur
comportement vis-a-vis du cache,
d’ou un possible gain de vitesse.

4.4 Algorithme : coloriage glouton

On va numéroter nos « couleurs » par des nombres entiers a partir de zéro. On consideére
donc 'ensemble infini de couleurs {cy, ci, ¢z, ...}. Produire une coloration pour un graphe
de sommets {sy, ..., s,—1}, c’est donc produire un tableau C de n entiers, tel que C[i] est le
numéro de la couleur affectée au sommet s;.

On cherche a produire un coloriage utilisant un nombre de couleurs aussi petit que
possible. Un algorithme de coloriage glouton consiste a considérer les sommets un a un, et a
choisir pour chacun a son tour la couleur qui parait la plus adaptée pour lui. On considérera
comme « couleur la plus adaptée » pour un sommet s, la plus petite des couleurs qui n’a pas
encore été utilisée pour un des voisins de s.

Reprenons notre exemple, et considérons les sommets dans 'ordre donné par leurs nu-
méros.

Sommet Couleurs voisines Couleur choisie

So | aucune Co
sy | co(so) C1
sy | c1(s1) Co
s3 | co(s0), c1(s1) C2
sy | co(s2), €1(s1) C2
s5 | co(s2), ca(s4) C1

En définissant ¢y comme orange, ¢; comme violet et ¢; comme turquoise, on obtient exacte-
ment le coloriage proposé plus tot.

Code java. Dans le code, on initialise un tableau de couleurs avec le numéro -1 pour les
sommets pas encore coloriés. Lors du traitement d’un sommet, on enregistre les couleurs des
sommets voisins dans un tableau de booléens. Il ne reste ensuite plus qu’a considérer chaque
nombre entier a partir de @ jusqu’a en trouver un qui n’a pas été coché dans ce tableau de
booléens.

static int[] colorie(Graphe g) {
// initialisation du tableau des couleurs
int[] couleurs = new int[g.taille()];
for (int s : g.sommets()) couleurs[s] = -1;
// coloriage de chaque sommet
for (int s : g.sommets()) {
// énumération des couleurs des voisins
int d = g.degre(s);
boolean[] couleursVoisines = new boolean[d+1];
for (int v : g.voisins(s)) {
int ¢ = couleurs[v];
if (0 <= c & c <= d) couleursVoisines[c] = true;
}
// recherche de la premiére couleur disponible
for (int c=0;; c++) {
if (!couleursVoisines[c]) {
couleurs[s] = c;
break;

3

return couleurs;

3

Note : Pensemble des couleurs voisines contient également la « fausse » couleur -1 sil’un des
voisins n’a pas encore été colorié. Cela n’a aucun impact sur le déroulement de I’algorithme.
Note : on suppose également que I'interface des graphes contient des méthodes int taille()
etint degre(int s) renvoyant respectivement le nombre de sommets du graphe et le degré
d’un sommet.

Remarque : dans ce code, on définit la taille du tableau de booléens des couleurs voisines en
fonction du degré du sommet. Pourquoi ?

28

4.5 Approfondissement : analyse du coloriage glouton.

Evaluons la complexité de notre algorithme de coloriage, et la qualité du coloriage produit.

Complexité temporelle. La fonction colorie est la succession de deux boucles.

— La premiere boucle, initialisant le tableau couleurs, a une complexité proportionnelle
au nombre n de sommets du graphe.

— La deuxieme boucle, qui est la principale, réalise les opérations suivantes pour chaque
sommet s.

1. Enumération des voisins de s, pour remplir couleursVoisines : complexité pro-
portionnelle au degré §(s) de s.

2. Recherche d’une couleur disponible : complexité encore proportionnelle & §(s).

D’ou complexité totale de la deuxieme boucle proportionnelle & la somme des degrés
des sommets, c’est-a-dire proportionnelle au nombre k d’arétes du graphe.

D’out complexité totale ©(n + k).

Qualité du coloriage. L’algorithme glouton ne trouve pas systématiquement le plus pe-
tit nombre de couleurs possible pour le graphe auquel on 'applique. On peut cependant
démontrer que le nombre y de couleurs utilisées est borné par les degrés des sommets du
graphe. Plus précisément, si on note A, = 6(Smax) le degré d’un sommet s, ayant le plus
grand degré dans notre graphe, alors on a y < Apqx + 1.

Démonstration. Considérons le choix d’une couleur pour un sommet s quelconque du
graphe. Par définition, ce sommet a §(s) voisins. Ces voisins utilisent donc au maximum 5(s)

couleurs différentes. Ainsi, il existe au moins un nombre non utilisé dans 'intervalle [0, 5(s)] :

la couleur choisie pour s sera nécessairement dans cette intervalle, et en particulier infé-
rieure ou égale a A,y Finalement, I’algorithme glouton ne choisit que des couleurs appar-
tenant a l'intervalle [0, Apqyx], et leur nombre est donc inférieur ou égal & Ayyqr + 1.

4.6 Approfondissement : relations binaires

Une relation binaire entre les éléments de deux ensembles A et B est un ensemble d’as-
sociations entre un élément de A et un élément de B, caractérisant des éléments qui sont
« en relation » 'un avec 'autre. La nature de cette « relation » peut couvrir des situations
extrémement variées. Par exemple :

— similarité entre objets, comme I’égalité =,

— hiérarchie entre un tout et ses parties, comme 'appartenance €,
— comparaison de grandeurs, comme la comparaison <,

— antécédents et images d’une fonction,

— dépendance entre deux événements,

— incompatibilité ou interférence entre deux faits,

— accessibilité d’'un point d’arrivée depuis un point de départ...

Certains de ces exemples correspondent a des types de relations importantes en mathéma-
tiques, a savoir les relations fonctionnelles, les relations d’ordre et les relations d’équiva-
lence, que nous aborderons progressivement. Certains aussi correspondent directement a
des problémes que I'on peut modéliser et résoudre a l’aide de graphes.

Relations binaires. Une relation binaire R entre deux ensembles A et B est un sous-
ensemble du produit cartésien Ax B. Dans ce contexte, on note couramment aR b ou R(a, b)
pour (g, b) € R. On parle de relation binaire homogeéne lorsque les ensembles A et B sont
égaux.

Relations fonctionnelles. Une relation fonctionnelle est une relation binaire décrivant
le lien entre les entrées et les sorties d’une fonction. Une telle relation R ; pour une fonction
f : A — B contient donc les paires (a, b) telles que f(a) = b.

La caractéristique principale d’une telle relation, qui définit le concept de fonction, est
que la sortie f(a) est uniquement déterminée par 'entrée a. Autrement dit, il ne peut pas y

29

Savez-vous trouver un
contre-exemple ?

Que se passe-t-il si le graphe
contient des boucles?
Et des arétes paralleles ?

avoir deux images associées au méme antécédent. Une relation Ry C AxB est fonctionnelle
si pour tout a € A il existe au plus un b € B tel que R¢(a, b).

Va € A, Vbl, bz € B, aRb1 N asz = bl = bg

Notez qu’avec cette définition, une fonction f : A — B peut n’étre que partielle, c’est-a-dire
ne pas avoir de valeur f(a) définie pour certaines entrées a € A.
Une fonction f : A — B, définie par une relation fonctionnelle Ry C A x B, est :

— totale si tout élément de A a une image

Ya€ A, 3b € B, aRyb

— surjective si tout élément de B a au moins un antécédent
Vb € B, da€ A, aRsb

— injective si aucun élément de B n’a plus d’un antécédent
Vb € B, Vaj,a; € A, aiRfb AayRyb = a; = a,

— bijective si elle est totale, surjective et injective.

Exemple :1a fonction f : N — N définie par f(n) = n® est donnée par la relation binaire
R ={(n,n*) | n € N}. Cette fonction est totale et injective. La méme fonction étendue au
domaine Z — IN serait toujours totale mais plus injective, puisque f(1) = f(-1) = 1.

Relations binaires homogénes et graphes. Une relation binaire homogéne R C E x E
est:

— symétrique si le fait pour deux éléments ey, e; € E d’étre en relation est indépendant
de I'ordre dans lequel on les considere

Ve, e, €E, eiRey; = esRey
— réflexive si tout élément est en relation avec lui-méme

Ve € E,eRe

— irréflexive si un élément n’est jamais en relation avec lui-méme

Ve € E,—eRe

Un graphe simple (S, A) définit une relation binaire homogéne R sur S x S par la condition
« s1R sy 8’1l existe une aréte a € A entre s; et s; ». Cette relation est symétrique et irréflexive.
Réciproquement, toute relation binaire homogene R sur un ensemble E qui est symétrique
et irréflexive définit un graphe simple ayant E pour ensemble de sommets et ayant une aréte
entre e; et e, si et seulement si e;Re,.

30

5 Mettre de 'ordre

5.1 Probleme : ordonnancement de taches interdépendantes

L’université Saris-Paclay a encore besoin d’aide. L’enseignant d’un cours connu sous
le nom de code « OLA » a fait la liste des outils et algorithmes qu’il allait présenter au
cours du semestre, et s’est rendu compte que les dépendances entre ces différents points
étaient sournoisement emmeélées. Il faut maintenant trouver un ordre dans lequel organiser
les séances, de sorte que chacune ne dépende que de ce qui a déja été vu avant.

Voici un résumé de la liste, et des dépendances :

Sujet Dépendances (doivent étre traitées d’abord)
Graphes Complexité

Chemins Graphes

Récurrence Logique, complexité

Complexité

Labyrinthes Graphes, arbres, chemins, complexité
Exploration Chemins

Logique

Arbres Récurrence, complexité, logique

Plus court chemin | Exploration, arbres

Optimisation Exploration

Satisfiabilité Logique, arbres

Tables associatives | Arbres

Pouvez-vous trouver un ordre de présentation des sujets qui fasse en sorte qu’aucun ne soit
abordé avant que toutes ses dépendances aient été elles-mémes traitées?

5.2 Modélisation : graphes orientés

On peut reprendre I'idée d’'une modélisation du probléme par un graphe : chaque sujet
a traiter devient un sommet, et les arétes matérialisent la relation de dépendance entre deux
sujets. Différence par rapport aux graphes déja vus : la relation de dépendance est orientée.
Lorsque 'on dit qu'un cours A dépend d’un cours B, cela signifie que B doit étre programmé
avant A : on fixe un ordre entre les éléments. On utilise des fleches pour représenter cela

graphiquement.
’ Récurrence H Logique

[|
’ Graphes H Complexité H Arbres
LN | 7 |

Chemins H Labyrinthes ‘ ’ Chemin court ‘ ’ Tables assoc. ‘

N e

’ Exploration H Optimisation ‘

1/

Satisfiabilité \

Graphe orienté. La notion de graphe orienté permet d’exprimer ceci en donnant une
direction a chaque aréte. Au lieu de deux extrémités équivalentes, on a maintenant un som-
met de départ (ou source) et un sommet d’arrivée (ou cible). On dessine une telle aréte sous
la forme d’une fléche.

Pour un sommet s d’un tel graphe, le degré d(s) se décompose en :

— un degré entrant : nombre d’arétes dont s est l'arrivée,
— un degré sortant : nombre d’arétes dont s est le départ.

Le degré sortant d’'un sommet s correspond également au nombre d’éléments renvoyés par
voisins(s).

Chemins et cycles. Un chemin dans un graphe est une séquence C de sommets liés par
des arétes. C’est-a-dire : une séquence C[0] — C[1] — C[2] — ... —» C[k] ou les C[i] sont
des sommets du graphe tels que pour tout i € [0, k[, on a dans le graphe une aréte de Cl[i]
vers C[i+ 1]. Dans un tel chemin, C[0] est le départ, et C[k] I’arrivée. Le nombre k d’arétes

31

Question : a quoi ressemble un
chemin de longueur zéro?

empruntées est la longueur du chemin. Note : dans un graphe orienté, les chemins doivent
respecter 'orientation de chaque aréte empruntée. Un cycle est un chemin dont le sommet
d’arrivée est égal au sommet de départ. Un graphe acyclique est un graphe ne possédant
aucun cycle.

Dans notre graphe des sujets, on a par exemple un chemin

Logique — Récurrence — Arbres — Labyrinthes

mais on n’a en revanche aucun cycle. En revanche, si 'aréte entre « Complexité » et « La-
byrinthes » était dans l’autre sens, c’est-a-dire de « Labyrinthes » vers « Complexité », alors
on aurait un cycle.

Structure de données. Les structures de données que nous avons déja vues pour les
graphes sont tout a fait adaptées aux graphes orientés. Aussi bien dans une matrice d’ad-
jacence que dans un tableau de listes d’adjacence, chaque aréte non orientée entre deux
sommets s et t est représentée par deux éléments : I'indication que t est un voisin de s, et
celle que s est un voisin de ¢. Pour une aréte orientée il suffit de ne garder qu’un de ces deux
éléments, choisi selon la direction de I’aréte. Les seules adaptations sont donc les suivantes.
— Dans l'interface Graphe, on précise la signification de la méthode voisins : un appel
a voisins(s) énumeére les sommets t pour lesquels il existe une aréte orientée de s

vers t.

— Dansla classe GrapheMat, on ajoute la méthode suivante, version simplifiée de ajouteArete.

public void ajouteAreteOrientee(int s, int t) { adj[s][t] = true; }

— Dans la classe GrapheAdj, on ajoute de méme la méthode suivante.

public void ajouteAreteOrientee(int s, int t) { adj.get(s).add(t); }

5.3 Algorithme : tri topologique

Le probléme du tri topologique, ou ordonnancement séquentiel, d’'un graphe orienté
consiste a déterminer une séquence T contenant tous les sommets, dans un ordre tel que
s’il existe une aréte de s; vers s;, alors s; apparait apres s; dans T. Autrement dit, on cherche
une permutation o € &, telle que s’il existe une aréte de s; vers s;, alors o(i) < o(j).

Principe de I’algorithme. Considérons un sommet s de degré entrant zéro, c’est-a-dire
tel qu’il n’existe aucun t avec une aréte t — s. Il n'y a donc aucun sommet qui doive né-
cessairement apparaitre avant s : on peut choisir de sélectionner s en premier dans notre
tri topologique. Une fois s sélectionné en premier, on peut sélectionner en deuxiéme tout
autre sommet de degré entrant nul, ou tout sommet dont la seule aréte entrante vient de s.
Autrement dit, on peut sélectionner en deuxiéme tout sommet de degré entrant nul dans le
graphe qu’on obtiendrait en supprimant s (et les arétes incidentes a s).

On continue ainsi a sélectionner les sommets de degré entrant nul dans des graphes de
plus en plus réduits, car on ne tient plus compte des sommets qui ont déja été sélectionnés.
Dans I'exemple ci-dessous, on appelle sommets disponibles ces sommets qui sont préts a étre
sélectionnés, car il n’ont aucune aréte entrante venant d’'un sommet qui n’aurait pas déja
été sélectionné. Etape Disponibles Sélectionné

1] 83,8 S

@ @ 2 S3, 82 S3

3 S0, S2 S2

@ @ @ 4 | 0,87 So
5 S$1, 87 $1

et @ 6 6| .
7 | S7, 59 S7

8 | 84, 88, S9, 10, S11 | S10

@ 9 | 4, S8, 9, S11 S11

10 S4, S8, Sg S8

11 | sS4, So So

12 S4 S4

Note : a chaque étape, le choix parmi les sommets disponibles est arbitraire. L’ordre donné
ici en exemple correspond au plan réel du semestre.

32

Code java. Dans le code java suivant, on ne modifie pas le graphe lui-méme pour sup-
primer les sommets sélectionnés (ce serait potentiellement cofiteux). A la place, on crée un
tableau degreEntrant qui renseigne le degré entrant de chaque sommet, et on décrémente
les valeurs de ce tableau pour qu’elles ne comptent plus les sommets déja sélectionnés. La
boucle principale (boucle while) parcourt le tableau des sommets sélectionnés et réalise deux
choses :

— pour chaque sommet s trouvé dans ce tableau, décrémenter le degré entrant des som-
mets v voisins de s,

— lorsque cette opération annule le degré entrant d’'un sommet v, sélection de celui-ci.

On déclare que le tri topologique a réussi lorsque ce processus permet bien de sélectionner
tous les sommets.

static int[] triTopologique(Graphe g) {
int n = g.taille();
// calcul du degré entrant de chaque sommet
int[] degreEntrant = new int[n];
for (int s : g.sommets())
for (int v : g.voisins(s))
degreEntrant[v] += 1;
// initialisation avec les sommets de degré entrant nul
int[] ordre = new int[n];
int j = 0;
for (int s : g.sommets())
if (degreEntrant[s] == @) ordre[j++] = s;
// énumération des sommets sélectionnés
int i = Q;
while (i < j) {
// degré entrant des voisins décroit, sélection si devient nul
for (int v : g.voisins(ordre[il])) {
degreEntrant[v] -= 1;
if (degreEntrant[v] == @) ordre[j++] = v;
}

i++;

’

}

// échec si on n'a pas sélectionné tous les sommets
if (j < n) return null;
return ordre;

3

Suivi de exécution de la boucle principale, sur notre graphe exemple.

degreEntrant
ils|0 1 2 3 4 5 6 7 8 9 10 11 ordre [0, 3
1(1(2(0|4(1]0|3|2|1]|2]|1] s35
0 S3 0|1 1/0(3(1(0|2]|2|1|2]|1 83, S¢, S0
1 Se 0O(1{0(0|3|1|0|1|2]|1 1 1 $3, S, S0, S2
218 [0[0]0|O0O(2|1]0|1(2|1]|1]|1] s;3S,S0,S2 51
318 [0[0]0|0O[2(1]0]02|1]1]|1] s3S:S0,S2 51,57
415 [0]010|0[1]0|0|0]2]1|1]|1] s3,5S6,50,S25S1,57, S5
5({s[0[0[0|0O[0O|0]|O0O|O0O|1|1]0]O0] ss3S,S0,S2, 51,57, S5, S4, S10, S11
6 N3 0 0|0 01010 00 00 00 S3, S¢5 S0, S2, S1, S7, S5, S4, S10, S11, 58> S9

Note : les cinq derniéres étapes ne font plus décroitre les degrés, car les sommets restants
S4, S10, S11, Ss et so n’ont aucune aréte sortante.

Cas ou le tri topologique est impossible. Pour certains graphes, il n’est pas possible
de trouver un tri topologique. C’est le cas notamment dés qu’'un graphe contient un cycle.

33

En plus, si j devenait trop grand
on échouerait a cause d’accés
hors des limites du tableau ordre.
On aimerait aussi éviter cela.

Ne pas confondre !
Invariant : propriété préservée
Variant : quantité décroissante

5.4 Terminaison : technique du variant

La boucle principale de notre algorithme de tri topologique est une boucle while, com-
parant deux indices i et j. Pour que la boucle s’arréte, il faut que 'indice i devienne égal
(ou supérieur) a I'indice j. Il n’est pas évident que cela arrive un jour :

— achaque tour, i est incrémenté de 1,
— achaque tour, j peut rester tel quel ou étre incrémenté, de 1 ou plus.

Silindice j est non nul a lorigine, et est incrémenté au moins de 1 a chaque tour, il ne sera
jamais rattrapé par I'indice i! Nous avons besoin d’un argument plus élaboré que la simple
croissance de i pour assurer que notre algorithme produit bien toujours un résultat en un
temps fini.

Argument intuitif: on s’attend a ce que chaque sommet du graphe ne soit ajouté quune
fois a la liste ordre. La longueur de cette liste ne doit donc pas dépasser la taille n du graphe,
et la boucle n’est pas censée effectuer plus de n étapes.

Argument de décroissance. Pour garantir qu'un algorithme avec une boucle s’arréte,
on identifie un variant de la boucle, c’est-a-dire un nombre entier calculé en fonction des
variables du programme et qui a les deux propriétés suivantes :

— il est positif ou nul,
— il décroit strictement a chaque tour.

Comme un nombre entier donné ne peut décroitre qu'un nombre fini de fois avant de de-
venir négatif ou nul, on s’assure qu'une boucle dotée d’un variant ne peut pas « boucler
infiniment ».

Pour notre tri topologique, on peut prendre comme variant le nombre suivant :

j—i+ Z degreEntrant[k]
0<k<n

Vérifions les deux propriétés demandées.

— Ce nombre est bien positif pendant toute la durée de la boucle : d’'une part la somme
Y o<ken degreEntrant[k] est une somme de nombres positifs ou nuls, et d’autre part
j — i > 0 car la boucle teste elle-méme i < j.

— D’un tour de boucle au suivant, la somme j + Y., degreEntrant[k] ne croit jamais,
car chaque augmentation de j est associée a la baisse de I'un des degreEntrant[k]. A
I'inverse, a chaque tour i augmente de 1. La valeur totale décroit donc au moins de 1.

Avec ce variant, on garantit la terminaison de la boucle sans justifier rigoureusement que
chaque sommet est ajouté au plus une fois a ordre. On se contente ici de garantir que le
nombre d’insertions dans ordre ne dépasse par le nombre d’arétes du graphe. On n’a donc
pas encore assuré que la taille n donnée au tableau ordre était suffisante.

Argument de décroissance, version plus précise. Pour comparer plus précisément j
et n, on introduit une propriété liant j au nombre d’entrées inférieures ou égales a zéro dans
degreEntrant.

j = card({k € [0, n[| degreEntrant[k] < 0})

Cette propriété est préservée par la boucle for (int v : g.voisins(ordre[il)). En effet,
considérons un tour de cette boucle pour un sommet v.

— Si au début, degreEntrant[v] > 1, alors a la fin degreEntrant[v] > 1 et aucune des
valeurs j et card({k € [0, n[| degreEntrant[k] < 0}) n’a changé.

— Si au début, degreEntrant[v] = 1, alors a la fin degreEntrant[v] = 0 et les deux va-
leurs j et card({k € [0, n[| degreEntrant[k] < 0}) ont augmenté de 1.

— Si au début, degreEntrant[v] < 0, alors a la fin degreEntrant[v] < 0 et aucune des
valeurs j et card({k € [0,n[| degreEntrant[k] < 0}) n’a changé (ce dernier cas ne
doit pas arriver si degreEntrant a été correctement initialisé, mais il ne poserait pas
de probléme a cette propriété).

34

Pour assurer que notre propriété d’égalité est un invariant, il ne reste plus qu’a justifier
qu’elle est vraie avant le début de la boucle. Pour cela, on remarque d’abord que 1’égalité est
également préservée par la boucle while (i < j), puisque cette derniére n’a aucune action
sur j ou degreEntrant autre que celles contenues dans la boucle for. Enfin, I’égalité est vraie
avant le début de la boucle while, car la boucle précédente (for (int s : g.sommets()))
initialise j précisément a la valeur demandée.

Notre invariant sur j en implique un autre : j < n. Comme en outre d’un bout a 'autre
de I'algorithme i < j, on déduit un invariant sur i :

i<n

Avec cette propriété, on assure que la valeur n — i est un variant de notre boucle while
principale, et donc que celle-ci termine. On assure méme que cette boucle termine apres n
tours au maximum.

5.5 Relations d’ordre

Une notion d’ordre est une maniere de comparer et classer les éléments d’un ensemble.

Définition. Etant donné un ensemble E, une relation d’ordre sur E est une relation bi-
naire homogeéne Rsur E qui est :

— réflexive : tout élément est comparable a lui-méme

Ve € E, eRe

— anti-symétrique : deux éléments distincts ne peuvent pas étre comparables a la fois
dans un sens et dans 'autre

Ve, e, €E, (e;Rey NesRey) = e = ey
— transitive : la comparabilité se propage de proche en proche
Vei, ey, e3 €E, (e;Re; N eyRes) = e Res

Un ordre total est un ordre pour lequel tous deux éléments sont comparables (dans un sens
ou dans l'autre).

Ve, ey € E, €1R€2 \Y €2R€1

Exemples
— Relation d’ordre usuelle < sur un ensemble de nombres.
— Relation d’inclusion C sur les parties d’'un ensemble A.

— Relation de divisibilité | sur les nombres entiers.

Ordre strict. Un ordre < sur un ensemble E définit un ordre strict < par la condition
e; < ey < (e; < ey A e # e). Cette relation est transitive, anti-symétrique et irréflexive.

Plus petit élément, élément minimal. On considére un ensemble E et un ordre < sur E.
FEtant donnés un sous-ensemble A C E et un élément x € A, on dit que :

— x est le plus petit élément de A si x est plus petit que tous les éléments de A
Vae A x<a
— x estle plus grand élément de A si x est plus grand que tous les éléments de A

Va€e A a<x

Note : une partie A n’admet pas nécessairement de plus petit élément, mais dans le cas ou
un tel élément existe il est unique (de méme pour le plus grand élément).
Ftant donnés un sous-ensemble A C E et un élément x € A, on dit que :

— x est un élément minimal de A s’il n’existe pas dans A d’élément plus petit que x

VaeA a<x=a=x

35

— x est un élément maximal de A s’il n’existe pas dans A d’élément plus grand que x
VaeA x<a=>a=x

Note : minimal n’est pas la méme chose que plus petit, et un élément minimal de A n’est pas
nécessairement unique (de méme pour maximal/plus grand).

Quelques propriétés.

— Le plus petit élément, s’il existe, est unique.

— Le plus petit élément, s’il existe, est 'unique élément minimal.

— Silordre < est total, les conditions « étre le plus petit élément de A » et « étre un
élément minimal de A » deviennent équivalentes.

Majorants/minorants, bornes. On considére un ensemble E, un ordre < sur E et une
partie AC E.

— Un élément x € E est un minorant de A s’il est plus petit que tous les éléments de A
VaeA x<a

— Un élément x € E est un majorant de A s’il est plus grand que tous les éléments de A
VaeA a<x

— La borne inférieure de A est, s’il existe, le plus grand élément des minorants de A.
— La borne supérieure de A est, s’il existe, le plus petit élément des majorants de A.

Note : les majorants, minorants et bornes de A n’existent pas forcément, et dans le cas ou ils
existent n’appartiennent pas nécessairement a A.

5.6 Approfondissement : ordres bien fondés

La notion d’ordre permet de donner du sens a la notion de « progression » évoquée dans
notre probléme de justification de I’arrét d’un algorithme : on considérera avoir progressé
des lors que I'on obtiendra quelque chose de strictement plus petit vis-a-vis de 'ordre choisi.
En revanche, tous les ordres n’empéchent pas une telle progression de se poursuivre indé-
finiment. Cette derniére propriété caractérise les ordres dits « bien fondés ».

Ordre bien fondé : définition. Un ordre < sur un ensemble E est bien fondé s’il n’existe
pas de suite infinie strictement décroissante pour <. Autrement dit, en notant < ordre strict
associé a <, il ne peut pas exister de suite (xi)ren telle que Vk € N, xpiq < x%.

Cette propriété traduit directement la notion d’arrét cherchée.

Caractérisation alternative Un ordre < sur un ensemble E est bien fondé si et seulement
toute partie non vide de E admet un élément minimal. Autrement écrit :

VACE, A+#®=(Ha€cA Vx€A x<a=x=aq)

Preuve

— Supposons (E, <) bien fondé. Soit A une partie non vide de E.

Raisonnement par I’absurde. Supposons que A n’admette pas d’élément minimal. Au-
trement dit, Va € A, 3a’ € A, @’ < a. Comme A est non vide, il existe au moins un
élément ay € A. Comme < est bien fondé, il n’existe pas de suite infinie strictement
décroissante a partir de ao. Soit (ax)ke[o.N] Une suite strictement décroissante d’élé-
ments de A a partir de ao, qui soit la plus longue possible. Comme ay € A et An’ad-
met pas d’élément minimal, il existe an,; € A avec ani1 < an. Donc (ai)kefon+1] est
une suite strictement décroissante dans A strictement plus longue que la précédente.
Contradiction, donc A doit admettre un élément minimal.

— Supposons que toute partie non vide A de E admette un élément minimal.
Raisonnement par I'absurde. Soit (xi)renw une suite infinie strictement décroissante
dans E. On note A ’ensemble des valeurs de cette suite. Cet ensemble A est non vide
(il contient par exemple xp), et admet donc un élément minimal xj. Or x441 < x; avec
Xk+1 € A, ce qui contredit la minimalité de xx. Donc il ne peut pas exister de suite
infinie strictement décroissante dans E, et I’ordre < est bien fondé.

36

Exemples
— Ordre usuel < sur IN.
— Divisibilité | sur Z.
— Inclusion C sur les parties d'un ensemble fini.
Contre-exemples
— Ordre usuel < sur Z : on peut descendre indéfiniment dans les négatifs.
— Ordre usuel < sur R* : on peut s’approcher indéfiniment de 0 sans jamais I'atteindre.

— Inclusion C sur les parties d’un ensemble infini : on peut définir une suite infinie
d’ensembles qui ont toujours moins d’éléments mais restent infinis, comme la suite

([k, o0 Dkenv-

Récurrence bien fondée On considere un ensemble E, avec un ordre bien fondé <. En
notant < 'ordre strict associé a < (par définition, x < y si et seulement si x < y A x # y),
on a le nouveau principe de récurrence suivant.

Pour tout prédicat P sur les éléments de E, si
1. pour tout e € E, (Vx € E, x < e = P(x)) implique P(e),

alors pour tout élément e € E on a P(e).

Autrement dit, si 'on peut déduire P(e) dés lors que 'on suppose la propriété vraie pour
tout les élément strictement inférieurs a e, et ceci pour chaque e, alors la propriété P est
vraie pour tous les éléments de E. C’est la méme idée que le principe de récurrence forte sur
les entiers.

Justification du principe de récurrence bien fondée Supposons que pour tout e € E,
(Vx € E, x < e = P(x)) implique P(e), notons A I'ensemble des éléments de a € E tels
que P(a) ne soit pas vraie et montrons que cet ensemble est vide en raisonnant par I’absurde.

Supposons cet ensemble A non vide. Comme < est bien fondé et A non vide, il existe
un élément minimal a de A. Soit x € E tel que x < a. Comme a est minimal dans A, nous
savons que x ¢ A, et donc que P(x) est vraie. Ceci étant vrai pour pour tous les x < a, on
déduit P(a). Contradiction avec I’appartenance de a 4 A. Donc ’ensemble A doit étre vide,
et tous les éléments de E vérifient P.

5.7 Approfondissement : combinaison d’ordres

Comment jugeons-nous les propositions suivantes ?
—(1,2)<(3,4)?
- (1,3)< (2,9
— (1,5)<(2,3)?
—(2,3)<(1,5)?

De manieére plus générale, étant donnés deux ensembles A et B, chacun avec un ordre (on
pourra les noter respectivement <, et <g), on cherche a ordonner les paires de A x B.

Ordre produit cartésien L’ordre produit sur Ax B est défini par (a;, b;) < (az, by) siet
seulement si (ay, b;) est plus petit sur les deux composantes a la fois : a; <4 a; A by <p b,.

Par exemple :

- (1,2)<(3.49)

- (1,3)<(2.9

— (1,5) et (2,3) sont incomparables
Note : ordre produit n’est donc pas total.

Si <4 et <p sont deux ordres bien fondés, alors leur produit est lui aussi bien fondé.

Justification. Si on prend une suite infinie (ay,, b,)nen strictement décroissante pour ordre
produit, alors on obtient deux suites infinies décroissantes (a,)nen €t (b)nenw pour les ordres
<4 et <p. On a plus précisément, pour tout n € N, d’une part a, >4 a,4+; et b, >p byyq, et
d’autre part au moins 'une des deux conditions a, # a,4+; ou b, # b,y;. Ainsi, au moins
I'une des deux suites (a,) ou (b,) décroit strictement infiniment souvent. Cela contredit
I'hypothése selon laquelle 'ordre correspondant (<4 ou <g) est bien fondé.

37

Ordre produit lexicographique Le produit lexicographique des deux ordres <, et <p
consiste & comparer d’abord la premiére composante, puis a ne tenir compte de la deuxiéme
composante qu’en cas d’égalité sur la premiére : on a (a, b;) < (ay, bs) si et seulement si
a; <4 ap V(a1 =ax N bl SB bz)

C’est selon ce principe que 'on compare deux mots dans le dictionnaire (’ordre lexico-
graphique est aussi appelé ordre du dictionnaire).

- (1,2)<(3.4)
—(1,3)<(2,9)
- (1,5)<(2,3)

Note : ordre lexicographique est total.

Si <4 et <p sont des ordres bien fondés, alors leur produit lexicographique est bien fondé
également.

Justification. On va utiliser la caractérisation alternative des ordres bien fondés : toute
partie non vide contient au moins un élément minimal. Soit donc C € A x B un ensemble
non vide arbitraire de paires d’un élément de A et d’un élément de B. On note C4 l'en-
semble des éléments de A apparaissant dans une paire de C. Formellement : C4 = {a €
A|3b € B, (a,b) € C}. Comme C n’est pas vide, C4 contient également au moins un élé-
ment. L’ordre <, étant bien fondé on en déduit qu’il existe un élément minimal a, pour <4
dans C4. Notons maintenant Cy I’ensemble des éléments de B apparaissant associés a ag
dans I’ensemble C. Formellement : Cg = {b € B | (ay, b) € C}. Cet ensemble Cy est a nou-
veau non vide, puisque ay € C4 et par définition de Cj, il existe au moins un b € B tel que
(ap, b) € C. L’ordre <p étant bien fondé on en déduit qu’il existe un élément minimal b
pour <p dans Cg. Il ne reste plus qu’a montrer que la paire (ao, by) est un élément mini-
mal de C pour l'ordre lexicographique. Soit donc (a, b) € C, telle que (a, b) < (ay, by). Par
définition de l'ordre lexicographique <, on a deux cas.

— Soit a < ag, ce qui contredirait la minimalité de a, car a € Cy.
— Soit a = ag et b <p by. Alors b € Cg, et par minimalité de b, on a donc b = b,.

On a donc nécessairement (a, b) = (ay, by), et la paire (ao, by) est bien minimale. Donc C
admet un élément minimal, et ainsi I'ordre lexicographique est bien fondé.

5.8 Approfondissement : critére d’existence d’un tri topologique

On constate que la présence d’un cycle dans le graphe empéche tout tri topologique.
Raisonnons par 'absurde : prenons un graphe contenant un cycle

th >t >bh—>...>—h

et supposons que ce graphe admet un tri topologique. Nécessairement, le tri topologique
fait intervenir tous les sommets de ce cycle. Notons ¢; celui qui apparait en premier. En
particulier, il apparait avant t;_;, ce qui contredit I'existence d’une aréte t;_; — t; (dans le
cas ou i = 0, on remplace dans ce raisonnement i — 1 par k).

Critére d’existence d’un tri topologique. Inversement, on peut démontrer le fait sui-
vant.

Tout graphe sans cycle admet un tri topologique.

On commence par démontrer le lemme suivant : tout graphe acyclique non vide admet au
moins un sommet de degré entrant 0.

Preuve par I’absurde. Soit G un graphe acyclique non vide tel que tous les sommets de
G ont un degré entrant strictement positif. On va démontrer par récurrence que Vn € IN, le
graphe G admet un chemin de longueur n :

— Cas de base : G étant non vide il contient un sommet s, et un chemin de longueur 0
desas.

— Itération : Soit n € N tel que G admette un chemin de longueur n, et soit t, — #; —
.. = t, un tel chemin de longueur n dans G. Le sommet de départ ¢, de ce chemin a
un degré entrant non nul, il existe donc une aréte s — f, ayant f, pour arrivée. On
peut donc construire un chemin s — t) = t; — ... = t, de longueur n + 1 dans G.

38

Donc vn € N, le graphe G admet un chemin de longueur n. En particulier, en notant N le
nombre de sommets de G, on sait que G admet un chemin de longueur N + 1. Par le principe
des tiroirs il existe un sommet s de G par lequel ce chemin passe deux fois. On extrait du
chemin la séquence comprise entre les deux premiéres occurrences de s pour obtenir un
chemin de s a s, c’est-a-dire un cycle. Contradiction avec I’hypothése selon laquelle G est
acyclique. Donc G admet nécessairement un sommet de degré entrant 0.

Retour au théoréme : tout graphe orienté acyclique admet un tri topologique.
Preuve par récurrence sur le nombre de sommets du graphe. On note P(n) la propriété :
« tous les graphes acycliques a n sommets admettent un tri topologique ».

— Initialisation (preuve de P(0)) : un graphe vide est trié topologiquement par la sé-
quence vide.

— Hérédité (preuve de Vn € N, P(n) = P(n+ 1)). Soit n tel que P(n) soit vraie, et soit G
un graphe acyclique a n+ 1 sommets {so, ..., s,}. Par notre lemme, G admet un sommet
s; de degré entrant 0. Le sous-graphe G’ obtenu en retirant de G ce sommet s; et ses
arétes incidentes a n sommets, et est de plus acyclique (supposons qu’il existe un cycle
dans G/, alors ce cycle existerait également dans G; or G est acyclique : contradiction).
On peut donc appliquer ’hypothése de récurrence & G’ pour obtenir un tri topologique
de G/, c’est-a-dire une séquence t, ty, ..., t,—; des sommets {sy, ..., s,} \{s;} compatible
avec l'orientation des arétes. Alors la séquence s;, ty, 1, ..., t,—1 Obtenue en ajoutant le
sommet s; en téte de la précédente est un tri topologique du graphe G complet.

En effet, soit une aréte s — t quelconque de G, montrons que s apparait bien avant ¢
dans la séquence s;, ty, t1, ..., tp_1.

— Sini s ni ¢ n’est égal & s;, alors l'aréte s — ¢ apparait dans le sous-graphe G/,
et par hypothése les sommets s et ¢ apparaissent dans le bon ordre dans le tri
topologique ty, t1, ..., t,—1 de G'.

— Si s = s;,alors s = s; apparait bien avant t = t;, dans la séquence s;, t, t1, ..., tp_1.

— Il n’est pas possible que t = s;, car l'existence de 'aréte s — s; contredirait
I'hypothése selon laquelle le sommet s; a un degré entrant 0.

39

6 Trouver la voie

6.1 Probleme : recherche de chemin

On se donne un graphe, un sommet de départ, et un sommet cible. Question : le som-
met cible est-il accessible a partir du sommet de départ? C’est-a-dire : existe-t-il un chemin
allant du sommet de départ ou sommet cible, en suivant les arétes du graphe ? Si oui, peut-
on indiquer un tel chemin? Et si plusieurs chemins sont possibles, peut-on privilégier les
chemins les plus courts ? Dans ce chapitre, nous cherchons donc a explorer un graphe.

6.2 Algorithme : parcours en profondeur

Pour parcourir un graphe, on peut suivre une stratégie trés simple : avancer dans une
direction quelconque jusqu’a aboutir & un cul-de-sac, puis revenir sur ses pas jusqu’au der-
nier embranchement et choisir une nouvelle direction (c’est-a-dire une direction qui n’a pas
encore été explorée).

On peut voir ceci comme une stratégie récursive : pour explorer un graphe a partir d’un
sommet s, on considére tour a tour toutes les arétes s — t;, et on explore récursivement
a partir de chacune des cibles #; prises a tour de rdle. Attention cependant : il est possible
lors de cette exploration récursive de retourner a un sommet a partir duquel ’exploration
a déja été faite, voire de retourner au point de départ. Dans ce cas, on ne veut pas refaire
Iexploration déja faite, et encore moins tourner en rond. On mémorise donc les sommets
déja vus, afin de ne pas les explorer & nouveau.

Exemple d’exploration. On prend pour point de départ le sommet s;.
1. Explorer sq, puis s;, puis s;.

2. Le seul successeur possible est ss, déja exploré, revenir au sommet précédent s, et
choisir une autre voie. Explorer s;.

3. Aucun successeur, revenir au précédent s;. Aucune voie inexplorée restante, revenir
au précédent s; et choisir une autre voie.

4. Explorer s; puis s (note : le successeur s; de s; a déja été exploré), puis sp.

5. Les seuls successeurs possibles sont s; et s5, déja explorés, revenir au sommet précé-
dent s, et choisir une autre voie. Explorer ss.

6. Unique successeur s; déja exploré, revenir au sommet précédent s4. Aucune voie in-
explorée restante, revenir encore au précédent ss. Aucune voie inexplorée restante,
revenir encore au précédent sq et choisir une autre voie. Explorer s, puis s;.

7. Aucun successeur non exploré, revenir au précédent s,. Aucune voie inexplorée res-
tante, revenir au précédent puis s;. Aucune voie inexplorée non plus, et pas non plus
de précédent restant. Arrét.

Code java. Pour marquer les sommets déja explorés, on peut utiliser un tableau vu conte-
nant un booléen par sommet du graphe, et tel que vuli] vaut true si et seulement si s; a
effectivement été rencontré. Alors, avant tout appel récursif on peut vérifier si le sommet
considéré n’a pas déja été visité. La fonction principale dfs initialise ce tableau de booléens,
puis appelle la fonction récursive explore réalisant notre stratégie d’exploration. A la fin le
tableau vu indique, pour chaque numéro i, si le sommet s; est accessible par un chemin a
partir de la source s.

private static boolean[] vu;

private static void explore(Graphe g, int s) {
vu[s] = true;
for (int v : g.voisins(s)) {
if (!vulvl) explore(g, Vv);

static boolean[] dfs(Graphe g, int s) {
vu = new boolean[g.taille()];
explore(g, s);
return vu;

40

Voici le détail de ’exécution de dfs sur I’exemple précédent. On note explore k pour
un appel récursif sur le sommet s, et ignore k lorsque le sommet s; est examiné dans une
énumération de voisins, mais ignoré car déja marqué.

Sommets vus
Action o 1 2 3 4 5 6 7 8 9
explore 6 v
+-- explore 2 / v
| +-- explore 1 VA v/
| | +-- ignore 6 o/ v/
| +-- explore 3 o/ Y v/
+-- explore 5 SO/ 7 oo/
| +-- ignore 1 o/ Y S/
| +-- explore 4 A A A A A
| | +-- explore 0 A A A A A A 4
| | | +-- ignore 1 |v Vv Vv V V V V
| [| +-- ignore 5 |v Vv Vv V JV V V
| | +-- explore 8 A A A A A A 4 /
| | +-- ignore 5 |v v v Vv Vv JV V v/
| +-- ignore 6 A A A A A A /
+-- explore 9 A A A A A A 4 S/
+-- explore 7 VA A A A A A A A A
+-- ignore 2 v v v v /S
+-- ignore 3 A A A A A A A A

Ce mode d’exploration est appelé parcours en profondeur, et est caractérisé comme suit :
on s’avance aussi loin que possible sur un chemin donné, pour ne revenir sur nos pas qu’une
fois un cul-de-sac atteint. Ceci est lié a 'emboitement des appels récursifs : un appel donné
a explore(g, s) ne se termine qu’une fois que toute 'exploration a partir de s est faite.

6.3 Algorithme : parcours en largeur

Partant d’'un sommet s donné, le parcours en profondeur consiste a choisir une voie et
a la suivre jusqu’au bout avant de considérer les autres voies qui étaient possibles. Alter-
nativement, on peut vouloir suivre toutes les voies en paralléle, en progressant en cercles
concentriques autour de s : d’abord tous les voisins immédiats, puis les sommets accessibles
depuis 'ensemble de ces voisins, puis les sommets accessibles depuis ’ensemble de ces sui-
vants, etc. On parle ici de parcours en largeur.

Exemple d’exploration. On part du sommet s;.
1. On regarde la source ss. Ses voisins immédiats sont s, s5 et so.

2. On regarde a tour de réle s;, s5 et s9, et on découvre les nouveaux sommets si, $3, Ss,
sy et sg.

3. On regarde a tour de rdle les cinq précédents, et on découvre encore un nouveau
sommet s.

4. Apreés sy, on ne trouve plus de sommets non encore découverts : arrét.

Code java. 1l n’est plus question ici d’exploration récursive. L’analyse d’un sommet s
du k-éme cercle consiste a observer ses voisins v, et a les enregistrer comme devant étre
analysés a I’étape k + 1 (du moins, ceux des voisins qui n’ont pas déja été vus). En pratique,
il n’est pas nécessaire de matérialiser la transition entre les différents « cercles » : on stocke
les sommets du k-éme et du k + 1-éme cercle dans une méme file de sommets en attente, et
on traite un par un les sommets pris dans cette file. La discipline de file, dite fifo (« first in,
first out »), assure que les premiers sommets analysés sont ceux qui ont été enregistrés en
premier. Alors, tous les sommets du k-éme cercle seront analysés avant tous les sommets
du k + 1-éme cercle, eux-mémes analysés avant tous les sommets du k + 2-éme cercle, etc.
A nouveau, la fonction renvoie le tableau de booléens identifiant les sommets accessibles
depuis la source s.

Dans le code proposé ici, on remplace le tableau de booléens vu par un tableau d’entiers
dist, tel que dist[s] vaut -1 pour un sommet s non visité, et k, pour un sommet visité du
k-éme cercle. On obtient donc une information plus précise : pas seulement d’accessibilité,
mais de distance par rapport a la source.

41

Question : que se passerait-il si
Uinstruction vuls] = true; était
placée a la fin de I'exploration
plutét qu’au début ?

static int[] bfs(Graphe g, int s) {
int[] dist = new int[g.taille()];
for (int t : g.sommets()) dist[t] = -1;
Queue<Integer> enAttente = new ArrayDeque<>();
dist[s] = 0;
enAttente.add(s);
while (!enAttente.isEmpty()) {
int t = enAttente.remove();
for (int v : g.voisins(t)) {
if (dist[v] < @) {
dist[v] = dist[t] + 1;
enAttente.add(v);

b
3

return dist;

Voici le détail de 'exécution de bfs sur 'exemple précédent. La file apparait comme une
ligne dans laquelle les éléments sont ajoutés par la droite et retirés par la gauche. Note :
Pordre dans lequel on considere les successeurs d’un sommet est a priori arbitraire.

dist

t voisins enAttente 0o 1 2 3 4 5 6 7 8 9

6 === |=1=10|=]=1-=
6| 2,59 2|59 —|=-|/1|=|=]J1]/0|—-|—|1
2 1,3 51913 —-|2/1(2|—-|1(0|—|—|1
5| 1,4,6 9111314 —-|2/1(2(2|1(0|—-|—|1
9 7,8 113|478 - 2111221102]|2]|1
1 6 3141718 (2|12 |2|1|0|2]|2]|1
3 () 4178 —|2|1(2|2|1]012|2]|1
4 0,8 718103 (21221]0(2|2]|1
71 6,2,3 31]0|13|12(1(22|1(0|2|2]|1
8 5 o312 (1212|102 2]|1
0| 1,5 321|221]0|2|2]1

6.4 Comparaison des deux parcours

On peut ramener les parcours en profondeur et en largeur a une structure commune,
mais 'un et 'autre n’explorent pas les sommets dans le méme ordre.

Parcours en profondeur, sans récurrence. On peut obtenir une autre maniere d’écrire
un parcours en profondeur en prenant le code du parcours en largeur, et en remplacant la file
d’attente par une pile. La discipline de pile, dite lifo (« last in, first out »), fait que le premier
sommet analysé est celui qui a été enregistré en dernier. Autrement dit, on poursuit d’abord
dans la direction ouverte par le sommet courant, avant de revenir aux autres sommets du
méme cercle.

static boolean[] dfs(Graphe g, int s) {
boolean[] vu = new boolean[g.taille()];
Deque<Integer> enAttente = new ArrayDeque<>();
vu[s] = true;
enAttente.push(s);
while (!enAttente.isEmpty()) {
int t = enAttente.pop();
for (int v : g.voisins(t)) {
if (!vulv]) {
vulv] = true;
enAttente.push(v);

3
b

return vu;

42

Exemple d’exécution sur ’exemple précédent. La pile apparait comme une ligne dans la-
quelle les éléments sont ajoutés et retirés par la droite. Note : 'ordre dans lequel on considére
les successeurs d’'un sommet est a priori arbitraire.

t voisins enAttente

6
6| 952 [9[5]2

2| 31 [9]5][3][1
1 6 953

3 [0) 95

5/ 64,1 |94

4| 80 [9]8]0

ol 51 [9]38

8 5 9

9| 87 |[7]

71 632 |

Note : dans la version récursive, une « pile » était bien présente. Mais oti ?

Comparaison des deux parcours. Sur ces schémas, on représente en noir les sommets
déja explorés, en gris les sommets déja vus mais pas encore explorés, et en blanc et les
sommets pas encore vus. Les schémas de gauche correspondent a I’état du parcours en pro-
fondeur et ceux de droite a I’état du parcours en largeur, apres 3 puis 4 sommets explorés.
Les nombres en blanc dans les sommets noirs indiquent ’ordre dans lequel les sommets ont
été explorés.

On peut observer que le parcours en profondeur (a gauche) visite en troisieme et en
quatrieme deux sommets qui étaient accessibles depuis le deuxieme sommet visité (mais
pas depuis la source). A I'inverse, le parcours en largeur (3 droite) explore en premier les
trois voisins immeédiats de la source.

43

Question : que se passerait-il si on
remplacait les deux instructions
vu[s] = true; etvulv] = true;
par une unique instruction

vult] = true; placée juste aprés
s = enAttente.pop() ?

6.5 Reconstruction de chemins.

Une petite modification de nos algorithmes de parcours permet de reconstruire un che-
min de la source vers n’importe quel sommet accessible. On modifie pour cela le tableau de
booléens vu en un tableau de sommets pred tel que :

— pour tout sommet s; non vu, pred[i] vaut -1,

— pour tout sommet s; vu, pred[i] contient le numéro du sommet s; depuis lequel on a

vu §;,

— cas particulier pour la source s;, elle-méme : on initialise pred[ip] = io.

Ainsi, lorsque pred[i] est un entier positif j # i, on sait qu’on a une aréte s; — s;, et que
le sommet s; est lui-méme accessible depuis la source. En outre, seul le sommet source vérifie
pred[i] = i. A I'inverse, pred[i] vaut -1 exactement dans les cas ot vu[i] aurait valu false.
On ajoute pour finir une fonction qui, a partir de ce tableau des prédécesseurs, reconstruit
le chemin complet. Cette adaptation s’applique aussi bien au parcours en profondeur qu’au
parcours en largeur. Voici la version basée sur bfs.

public static int[] bfs(Graphe g, int s) {
int[] pred = new int[g.taille()1;
for (int t : g.sommets()) pred[t] = -1;
Queue<Integer> enAttente = new ArrayDeque<>();
pred[s] = s;
enAttente.add(s);
while (!enAttente.isEmpty()) {
int t = enAttente.remove();
for (int v : g.voisins(t)) {
if (pred[v] < 0) {
pred[v] = t;
enAttente.add(v);

3

return pred;

}

public static List<Integer> chemin(Graphe g, int s, int t) {
int[] pred = bfs(g, s);
LinkedList<Integer> chemin = new LinkedList<>();
chemin.add(t);
while (t !=s) {
t = pred[t];
chemin.addFirst(t);
}
return chemin;

}

Dans le tableau de prédécesseurs fourni par un tel parcours, la source n’a pas de prédé-
cesseur, les sommets du premier cercle ont pour prédécesseur la source, les sommets du
deuxieme cercle ont pour prédécesseur un sommet du premier cercle, etc. Pour notre graphe
exemple, et une exploration en largeur des sommets dans l'ordre 6, 2, 5,9, 1, 3,4, 7, 8, 0, le
tableau des prédécesseurs serait celui-ci.

CTzTe 2[5 Ts e [o o e]

On peut également visualiser ceci par une relation « prédécesseur », relation binaire sur
les sommets du graphe qui ne retient que les arétes qui ont réellement été utilisées lors du
parcours.

44

6.6 Approfondissement : analyse du parcours en profondeur

On consideére ici 'algorithme dfs donné page 40, c’est-a-dire 'exploration récursive.

Complexité. Considérons un graphe avec n sommets et k arétes.

Premiére remarque : la fonction explore est appelée au plus une fois par sommet du
graphe. En effet, elle n’est appelée que sur des sommets s vérifiant vu[s] = false, et modifie
cette valeur en true avant toute autre chose. Une fois la premiére instruction de I'appel
réalisée elle ne peut donc plus étre appelée une deuxieme fois sur le méme sommet.

Dans chaque appel a explore on a les opérations suivantes :

— modification de vu pour le sommet courant,
— énumération des voisins,

— consultation de vu pour chaque voisins,

— éventuels appels récursifs.

Le cotit propre d’un appel, ne tenant compte que des opérations de 'appel lui-méme et pas
de ses sous-appels récursifs, est donc proportionnel au nombre de voisins du sommet (son
degré).

L’ordre de grandeur maximum du coiit total est donc donné par le nombre n de sommets
(pour les appels récursifs) et le nombre k d’arétes (pour le cumul des voisins énumérés dans
chaque appel). D’oti une complexité O(n + k).

Spécification et correction. Spécification : I'algorithme dfs prend en entrée un graphe g,
et un sommet s valide de g, et renvoie un tableau A tel que pour tout sommet ¢ de G, on a
A[t] = true si et seulement si t est accessible depuis s par un chemin de g.

Montrons, par récurrence forte sur le nombre total d’appels récursifs déclenchés, quun
appel explore(g, s) ne marque que des sommets accessibles depuis s.

— Cas de base : aucun appel récursif. Alors le seul sommet marqué est s lui-méme, qui
est bien accessible depuis s par le chemin vide.

— Cas héréditaire : les sommets marqués lors de 'appel explore(g, s) sont s lui-méme,
et les sommets marqués par les appels récursifs immédiats explore(g, v;) effectués
pour un certain nombre de voisins {vy, ..., vk} de s. Ces appels récursifs immédiats sont
inclus dans ’appel principal : chacun déclenche un nombre total d’appels récursifs in-
férieur d’au moins 1 au total de 'appel principal, et on peut leur appliquer ’hypothése
de récurrence. Ainsi, chaque appel explore(g, v»;) ne marque que des sommets acces-
sibles depuis v;. Or, un sommet accessible depuis v; est également accessible depuis s,
puisqu’on a une aréte s — v;.

Montrons que, pour tout sommet ¢ tel qu’il existe un chemin s — ... — ¢, le sommet ¢
est marqué apres 'appel explore(g, s). On le montre par récurrence sur la longueur du
chemin.

— Cas de base, pour la longueur 0 : cela signifie que t = s, et ce sommet est bien marqué
immédiatement.

— Pour un chemin de longueur n+ 1, on décompose en s — ... = u — t ol le chemin de
s a u est de longueur n. Par hypothése de récurrence, u est bien marqué, ce qui signifie
qu’un appel explore(g, u) a été déclenché. Lors de cet appel le sommet ¢, voisin de
u, a été examiné. Alors soit t était déja marqué, soit on a eu un appel explore(g, &)
qui a bien marqué le sommet.

Note : pour étre parfaitement rigoureux dans les hypothéses de cette preuve, on suppose que les
sommets ne peuvent étre marqués que par la fonction explore.

Avec ces deux points, on a bien montré que 'appel explore(g, s) réalisé dans la fonction
df's marque bien exactement les sommets accessibles depuis s.

45

Le cotit réel peut étre inférieur
dans le cas ol une grande part
des sommets n’est pas accessible
depuis la source.

6.7 Approfondissement : analyse du parcours en largeur

On considere ici I’algorithme bfs donné page 42, c’est-a-dire ’exploration avec une file fifo.

Complexité. Considérons un graphe avec n sommets et k arétes.

Remarquons d’abord que chaque sommet ne peut étre ajouté qu’une seule fois a la file
enAttente. En effet, cet ajout est soumis a un test préalable de distance non définie, et la
distance est justement définie au moment méme ou le sommet est ajouté, empéchant tout
nouvel ajout du méme sommet. Remarquons en passant que, de méme, une distance définie
dans le tableau dist n’est jamais modifiée par la suite.

Chaque tour de la boucle while traite un nouveau sommet de la file enAttente. On a donc
au maximum n tours, pour chacun des n sommets. Le colit d'un tour de boucle donné est
proportionnel au nombre de voisins du sommet considéré. Le colt total est donc O(n + k),
comme pour le parcours en profondeur.

Spécification et correction. Spécification : 'algorithme bfs prend en entrée un graphe g
et un sommet s valide de g, et renvoie un tableau d’entiers D tel que pour tout sommet ¢
de g, on a D[t] > 0 si et seulement si ¢ est accessible depuis s et & distance D[] (c’est-a-dire
que le plus petit nombre d’arétes d’un chemin de s & t est D[¢]), et D[¢] = —1 sinon.

Notons d; la distance de la source au sommet £, c’est-a-dire le plus petit nombre d’arétes
d’un chemin de s vers t, en posant d; = oo lorsque ¢ n’est pas atteignable. Pour un état donné
de la file enAttente, notons d la distance dist[t] renseignée pour le premier sommet de la
file, si la file est non vide. La correction est obtenue a I’aide des invariants suivants pour la
boucle while de ’algorithme.

1. La file enAttente est constituée :

— d’abord d’une séquence de sommets a distance d,

— puis d’une séquence de sommets a distance d + 1, qui sont exactement les som-
mets a distance d + 1 voisins des sommets a distance d absents de la premiére
partie.

2. Tout sommet ¢ a distance d; < d ou qui est présent dans la file enAttente est tel que
3. Tour sommet t a distance d; > d et qui n’est pas présent dans la file enAttente est tel
que dist[t] = —1.
Ces propriétés sont bien valides avant le premier tour de boucle : la file enAttente contient
alors exclusivement le sommet s, qui est 'unique sommet a distance zéro de lui-méme.
Supposons les propriétés vraies au début d’un tour de boucle. L’algorithme considére
alors le sommet t en téte de la file enAttente, qui par définition est a distance d de la source.
On énumeére ensuite chaque voisin v de t.

— Siwv est tel que dist[v] > 0, alors I’algorithme ne fait rien.

— Sinon, par hypothése on a d, > d, et 'algorithme définit dist[v] = d + 1 et ajoute v &
la file. Cette action est correcte, car on a bien un chemin s — ... = t — v de longueur
d + 1 de la source vers v.

A la fin du tour, t a été retiré de la file, et tous les voisins v de t tels que d, = d+ 1 qui
n’étaient pas déja dans la file y ont été ajoutés. Remarque : si t était le dernier sommet
de la file a distance d, alors la file est maintenant constituée exactement des sommets a
distance d + 1.

L’algorithme s’arréte lorsque la file est vide. En notant d la distance du dernier sommet
traité, cela signifie que le graphe ne contient aucun sommet a distance d + 1, et donc au-
cun sommet a une distance > d. Ainsi, tout sommet d a distance d; finie est bien tel que
dist[t] = d;.

46

7 Se perdre

7.1 Probléme : création d’un labyrinthe

Partons d’un terrain rectangulaire, formé d’une multitude de petites salles carrées sépa-
rées par des cloisons.

On souhaite ouvrir des portes dans certaines des cloisons, de sorte a former un labyrinthe
parfait : on veut que quel que soit le choix d’une salle de départ et d’une salle d’arrivée il
existe un unique itinéraire permettant d’aller de 'une a lautre.

Note : quand on mentionne un « unique itinéraire » ici, on écarte implicitement les itiné-
raires qui contiendraient des rebroussements.

Un tel labyrinthe peut étre vu comme un graphe, dont les sommets sont les salles, et les
arétes sont les portes entre deux salles. Ce graphe est non orienté.

Un « itinéraire » entre deux salles du labyrinthe est un chemin entre les sommets corres-
pondants. L’existence hypothétique de plusieurs chemins entre deux sommets signalerait la
présence d’un cycle dans le graphe. On peut donc reformuler notre objectif : partant d’un
ensemble de sommets, créer un graphe connexe (tous les sommets peuvent étre reliés deux a
deux par des chemins) et sans cycle, en sélectionnant des arétes parmi un ensemble d’arétes
autorisées (ici, une aréte doit correspondre a une porte entre deux salles géographiquement
adjacentes).

On propose de suivre la stratégie suivante : énumérer toutes les cloisons dans un ordre
aléatoire, et pour chacune, y ouvrir une porte si cela ne fait pas apparaitre de cycle. On pour-
rait imaginer une réalisation naive de cette stratégie, en parcourant le graphe a la recherche
d’un cycle a chaque étude d’une potentielle nouvelle aréte : on aurait un parcours de cott
linéaire en le nombre de salles, répété pour chaque aréte potentielle. Nous allons voir a la
place une structure, qui permet de détecter en temps quasiment constant si I’ajout d’une aréte
crée un cycle.

7.2 Composantes connexes d’un graphe
Connexité. Un graphe G non orienté est connexe si tous les sommets de G peuvent étre
reliés deux a deux par un chemin.

/

Vs, s’ € G,3p € chemins(G),p : s —> s

Visuellement, un graphe connexe est un graphe « en un seul morceau » (a gauche), tandis
qu’un graphe non connexe est un graphe comportant des parties isolées les unes des autres
(a droite).

- o

Ces « parties » sont formalisées par la notion de composante connexe que nous allons main-
tenant détailler.

47

Remarque : le critére 2 implique
que les chemins du critére 1
utilisent exclusivement des
sommets de C.

Composante connexe. Dans un graphe G non orienté, une composante connexe est un
sous-ensemble C non vide des sommets de G tel que :

1. tous les sommets de C sont connectés deux a deux par des chemins,
2. aucun sommet de C n’est connecté a un sommet hors de C.

Visuellement, les composantes connexes sont les différents « morceaux » d’un graphe qui
ne serait pas lui-méme connexe.

Formellement, on définit une composante connexe de G comme un sous-graphe connexe
maximal de G. Précisons le vocabulaire de cette définition.

— Un sous-graphe d’un graphe G = (S, A) estun graphe G’ = (5, A”) ou §’ est un sous-
ensemble des sommets de G, et A’ est '’ensemble des arétes de G dont les extrémités
sont dans S’.

s’cS
A ={aceAl|3s,s’ €S, a:s—> s}

Remarque : pour former un sous-graphe, on peut choisir un sous-ensemble S’ C S
arbitraire. En revanche, une fois S’ choisi, 'ensemble A’ d’arétes est fixé (toutes les
arétes de G liées aux sommets choisis).

— Dans cette définition, maximal est utilisé relativement a I'ordre d’inclusion sur les
sommets : la clause de maximalité indique donc qu’un sous-graphe connexe de G
contenant tous les sommets d’'une composante C ne peut étre que C elle-méme. Au-
trement dit : si C est une composante connexe de G, alors un sous-graphe ¢’ C G
dans lequel C est inclus au sens strict ne peut pas étre connexe.

Vs, s’ € C,3p € chemins(C),p : s > & (connexité)
vC',C & C' = 13s,s’ € C/,—3p € chemins(C'),p : s > & (maximalité)

Les composantes connexes d’un graphe ont un certain nombre de propriétés utiles. En par-
ticulier, les composantes connexes d’'un graphe G forment une partition de G :

— tout sommet de G appartient a une et une seule des composantes connexes de G.

Nous pourrons démontrer cette propriété avec un petit peu d’arsenal mathématique.

7.3 Equivalences

Une relation d’équivalence regroupe les objets d’un ensemble en paquets en fonction de
caractéristiques communes. Une telle classification est associée a une relation binaire homo-
géne, qui associe deux a deux les objets appartenant a un méme paquet. On isole trois pro-
priétés d’une telle relation reflétant I’appartenance de plusieurs objets a une méme classe :

— tout élément appartient a son propre paquet (réflexivité),

— D’énoncé « deux éléments appartiennent au méme paquet » ne dépend pas de I'ordre
dans lequel on considére les éléments (symétrie),

— lappartenance a un méme paquet se propage de proche en proche (transitivité).

Ces trois point réunis caractérisent la notion d’équivalence.

Relation d’équivalence. Rappel : une relation binaire homogéne R C E x E est un en-
semble de paires d’éléments « en relation » 'un avec 'autre. On a vu les cas particuliers
suivants :

— larelation Rest réflexive lorsque tout élément est en relation avec lui-méme

Ve € E,eRe

48

— larelation Rest symétriquelorsqu’elle ne distingue pas ’ordre de ses deux arguments
Ve, e €EE, eiRe; = eaRey

— larelation Rest transitive lorsqu’elle se propage de proche en proche
Vei, ey, e3 €E, (e;Re; N eyRes) = e Res

Une relation d’équivalence est une relation binaire homogéne qui est a la fois réflexive,
symétrique et transitive. Souvent, on utilisera le symbole = plutoét que R pour une telle
relation.
Exemples de relations d’équivalence :

— larelation « étre égal & »,

— larelation « avoir la méme taille que » sur des listes,

— larelation « étre lié par un chemin a » dans un graphe non orienté.

Partant d’une relation d’équivalence, on peut reconstruire les « paquets » sous-jacents, sous
la forme de classes d’équivalence.

Classes d’équivalence. On considére un ensemble E et une relation d’équivalence =
sur E. La classe d’équivalence d'un élément e € E pour =, notée [e], est 'ensemble des
éléments de E qui sont en relation avec e.

[e] = {€cE|le=¢}

Les classes d’équivalence de = sont toutes les classes [e] des élément e € E. Tout élément e
d’une classe d’équivalence C est appelé un représentant de cette classe. Nous allons mon-
trer une propriété essentielle des classes : chaque élément e € E appartient a une et une
seule classe d’équivalence de =.
Propriétés.
1. Pourtoute € Eonace € [e].
Preuve : par réflexivité on a e = e, et donc par définition e € [e].

2. Deux éléments équivalents définissent la méme classe.
Ve, e; €E, &1 = &2 = [e1] = [e]

Preuve : soient e, et e; deux éléments de E tels que e; = e;. Montrons que [e;] C [e;].

Soit x € [ey]. Par définition e, = x, d’ou par symétrie x = e, et par transitivité x = e,.
Ainsi e, = x par symétrie d nouveau, d’oti par définition x € [e,].
On montrerait de méme que [e;] C [e;], donc [e;] = [e2].

3. Deux classes d’équivalence sont soit disjointes, soit égales.
Ve, e; €E el n[ex] =@ v [e1] = [e2]

Preuve : Soient e; et e; deux éléments de E.

— Si[e] n[e:] = @, alors la conclusion est immédiate.

— Sinon [e;] N [es] # @, et il existe e € [e;] N [e;]. Par définition de l'intersection
e € [e] et e € [e;], d'ou par définition e; = e et e, = e. Par symétrie on a donc
e = e, et par transitivité e; = e,. Alors la propriété 2 permet de conclure[e;] = [e,].

De ces propriétés, on déduit que I'ensemble C = {C;, C», ...} des classes d’équivalence d’une
relation d’équivalence = sur E couvre tout E sans chevauchements.

ECcCuCGu... AN VYi,jCGnCi=9

Ainsi, les classes d’équivalences de = forment bien une partition de E : chaque élément
e € E appartient a une et une seule classe d’équivalence de =.

49

Une ressemblance avec une
notation vue en PIL ne serait pas
tout a fait fortuite.

Application aux composantes connexes d’'un graphe. Les composantes connexes d'un
graphe peuvent étre définies comme les classes d’équivalence de la relation d’accessibilité.
Etant donnés un graphe G et deux sommets s et s’ de G, on dit que s’ est accessible a partir
de s, et on note s —* §’, s’il existe un chemin dans G entre s et s’.

On va d’abord vérifier que cette relation est une équivalence, puis analyser ses classes d’équi-
valence.

Dans un graphe non orienté, la relation —* est une relation d’équivalence.

Preuve :
— Réflexivité. Pour tout s on a bien un chemin de s a s (le chemin vide), et donc s =~ s.

— Symétrie. Soient s et s” tels qu’il existe un chemin de s & s dans notre graphe G :
s=8) = § = ... s, — s, = 5. Le graphe n’étant pas orienté, chaque aréte peut
étre prise dans lautre sens. On forme ainsi un chemin s, = s,_.; = ... > s = sy de
s’ vers s. Bilan : si s »* s" alors s —* s.

— Transitivité. Soient sy, s, et s3 tels qu’il existe un chemin de s; vers s, et un chemin de
s, vers s3. La concaténation de ces deux chemins forme un chemin allant de s; a s;.
Donc :si sy =% sy et s, & s3 alors s; > s3.
La relation —* d’accessibilité étant une équivalence, elle définit des classes d’équivalence
[s] sur les sommets d’un graphe non orienté, que I'on peut maintenant analyser.

Dans un graphe non orienté G, les classes d’équivalence de la relation d’accessibilité
sont précisément les composantes connexes de G.

Preuve : toute classe [s] est une composante connexe de G.

— Tous les sommets d’une classe [s] sont connectés deux a deux par des chemins.

Soit [s] une classe de —*, et sy, s, € [s] deux sommets de cette classe. Par définition
de [s]ona s —* s; et s > s;. Par symétrie on a s; —>* s, et par transitivité on déduit
s; = s, :on aun chemin de s; vers s.

— Aucun sommet d’une classe [s] n’est connecté d un élément n’appartenant pas d [s).
Soit [s] une classe de —>* et s; € [s] un sommet de cette classe. Soit s, un sommet
quelconque de G tel que s; —* s;. Alors par définition de [s] on a s —* s, et par
transitivité on déduit s —»* s,. Donc s; € [s]. Bilan : un sommet s, accessible de puis
s, est nécessairement dans [s], et ainsi aucun sommet hors de [s] ne peut étre connecté
a un sommet de [s].

Preuve : toute composante connexe C de G est la classe [s] d’un certain sommet s.
Soit C une composante connexe de G. Par définition, C n’est pas '’ensemble vide : il existe
au moins un sommet s € C.

— La composante C est incluse dans la classe [s].

Soit s’ € C un sommet de la composante connexe C. Comme s et s’ sont tous deux
dans C, il existe un chemin s »* ¢, et donc s’ € [s] par définition de [s].

— La classe [s] est incluse dans la composante C.

Soit s” € [s]. Par définition on a s —»* s’. Comme s est dans C, le sommet s’ ne peut
pas étre en dehors de C.

On a donc bien C = [s].

Application au probléeme du labyrinthe. Considérons un graphe G non orienté sans
cycles, et deux sommets s et s’ de G. Alors :

Ajouter 'aréte s » s a G crée un cycle
si et seulement si
les sommets s et s’ sont dans la méme composante connexe.

Traduisons cela pour notre processus de génération de labyrinthe. On énumeére toutes les
cloisons dans un ordre aléatoire, et pour chacune :

— si elle sépare deux salles qui sont dans la méme composante connexe (dans la méme
classe d’accessibilité), ne rien faire,

— sielle sépare deux salles qui sont dans des composantes connexes disjointes (dans des
classes d’accessibilité différentes), créer une porte.

Pour compléter la construction, il ne nous manque plus qu’'une structure ou un algorithme
permettant de manipuler efficacement des classes d’équivalence de sommets.

50

7.4 Structure de données : Union-Find

La structure Union-Find (également appelée disjoint sets) permet de manipuler des parties
disjointes d’un ensemble E, et en particulier des classes d’équivalence d’éléments de E. La
structure fournit deux opérations principales :

— find(e) identifie la classe [e] d’un élément e € E,
— union(ey, e;) modifie la structure pour y fusionner les classes de e, et e,.

L’opération find permet de déterminer si deux éléments e; et e, appartiennent a la méme
classe : il suffit de tester si find(e;) = find(e;). Dans le probléme du labyrinthe, c’est ce test
qui déterminera si deux salles sont déja dans la méme composante connexe du labyrinthe.
L’opération union peut étre utilisée pour batir une telle structure a partir d’'un ensemble de
paires d’éléments équivalents :

1. on part d’une structure initiale dans laquelle on considére que chaque élément e a une
classe réduite a lui-méme,

2. pour chaque paire (ey, ;) d’éléments équivalents, on fusionne les classes [e;] et [e;] &
l’aide de I'opération union.

Modélisation avec des graphes. Notre structure d’union-find sera un graphe orienté
ayant pour sommets les éléments de I’ensemble E, avec deux particularités de forme :

— chaque sommet a au plus une aréte sortante,
— le graphe est acyclique.

Un tel graphe est composé de plusieurs blocs ayant des formes comme les suivantes, ol tous
les chemins convergent vers un élément racine.

R
l

Chaque bloc correspond a une classe, et ’élément « racine » d’un bloc peut servir a identifier
le bloc (et donc une classe). On donne alors le comportement suivant a nos deux opérations :

— L’opération find(e) renvoie I’élément racine du bloc contenant e. Pour cela, il suffit de
suivre les arétes sortantes a partir de e jusqu’a arriver au bout du chemin.

— L’opération union(ey, e;) regroupe les deux blocs contenant e; et e,. Pour cela, il suffit
d’ajouter une aréte entre les racines de ces deux blocs (a supposer que e; et e; ne soient
pas déja dans le méme bloc).

Réalisation par un tableau. On n’a besoin que de deux informations par sommet :
1. le sommet est-il une racine ?
2. sile sommet n’est pas une racine, quel est le numéro de son unique successeur ?
On peut résumer ces deux informations dans un unique tableau t d’entiers, dans lequel

tli] = i si s; est une racine
tli] = j avec i # j si s; est 'unique successeur de s;

Initialisation en java : on crée un tableau t dans lequel, pour tout i, t[i] = i.

class Uf {
private int[] t;
uf(int n) {
this.t = new int[n];
for (int i=0; i<n; i++) { t[il = i; }
}

La méthode find doit trouver la racine du bloc de e. Pour cela elle s’appelle récursivement
sur le successeur de e, jusqu’a arriver a un sommet qui est son propre successeur.

int find(int e) {

int s = t[le];
if (s == e) { return e; }
else { return find(s); }

3

51

La méthode union connecte les blocs de el et de e2 en désignant I'une des deux racines
comme nouveau successeur de l'autre.

void union(int el, int e2) {
int ri find(el);
int r2 = find(e2);
if (r1 !'=r2) { tlr1]l = r2; }
}
}

Approfondissement : améliorations. Le cout d’utilisation de la structure union-find est
essentiellement le cott de I'opération find, qui doit parcourir les successeurs d’'un sommet
jusqu’a trouver la racine du bloc. Le temps est donc proportionnel a la longueur du chemin
a parcourir, qui peut lui-méme étre linéaire en le nombre de sommets. Pour maintenir des
longueurs de chemins trés courtes, on peut ajouter deux choses a ces algorithmes.

— Union par rang : au moment de relier les deux racines r1 et r2, on essaie de mettre
I’aréte dans le sens qui générera les chemins les moins longs.
Pour réaliser cela, on associe a chaque sommet une information supplémentaire appe-
lée « rang », qui majore la longueur des chemins de son bloc. Alors, dans 'opération
union, au lieu de systématiquement faire de r2 le fils de r1, on prend la racine de plus
petit rang pour en faire le fils de Pautre, et on met a jour le rang de la nouvelle racine si
besoin. Ainsi on fait la fusion de sorte a minimiser la hauteur de arbre obtenu. Note :
I'information de rang n’est utile que pour la racine de chaque bloc, on ne cherchera
donc pas a la mettre a jour pour les autres.

class Uf {
private int[] t;
private int[] rang;
Uf(int n) ¢
this.t = new int[n]; for (int i=0; i<n; i++) { t[i] = i; }
this.rang = new int[n]; for (int i=0; i<n; i++) { rang[i] = 0; }
3
void union(int el, int e2) {
int r1 = find(el);
int r2 = find(e2);

if (r1 == r2) return;
if (rangl[r1] < rangl[r2]) {
tlr1] = r2;
} else {
t[r2] = ri1;
if (ranglr1] == ranglr2]) ranglril++;
3

}
}

— Compression de chemins : a chaque utilisation de find, on mémorise la racine trouvée
pour ne plus jamais avoir besoin de parcourir a nouveau le méme chemin.
On réalise cela en indiquant la racine trouvée comme nouveau successeur direct du
sommet, et on le fait méme pour chacun des sommets rencontrés sur la route. Ainsi
le chemin de e a find(e) dans le graphe ne sera plus jamais parcouru a nouveau, car il
a été remplacé par une unique aréte.

int find(int e) {
int s = t[e];
if (s == e) {
return e;
} else {
int r = find(s);
tlel = r;
return r;
}
}

Avec ces deux améliorations, la complexité diminue radicalement : chaque opération find a
maintenant un temps quasiment constant.

52

7.5 Code final : génération du labyrinthe

Une classe simple pour un graphe non orienté. On conserve le principe précédent selon
lequel les sommets sont numérotés.

class Graph {
private final int size;
private ArraylList<ArraylList<Integer>> adj;
public Graph(int size) {
this.size = size;
this.adj = new ArraylList<>(size);
for (int s=0; s<size; s++) { adj.add(new ArrayList<>()); }
}
public void addEdge(int s, int t) { adj.get(s).add(t); adj.get(t).add(s); }
public int size() { return size; }
public Iterable<Integer> succ(int s) { return adj.get(s); }
public boolean haskEdge(int s, int t) {
for (int v: succ(s)) { if (v == t) return true; }
return false;
3
3

Structure pour représenter les cloisons ol 'on est susceptible de créer une porte. On donne :
le numéro d’une case, et un booléen pour identifier la direction (si true : cloison verticale &
Pest de la case, si false : cloison horizontale au sud).

static class Wall {
int s;
boolean v;
Wall(int s, boolean v) { this.s = s; this.v = v; }

}

Si notre graphe correspond a une grille carrée de coté n, il aura n* sommets, et le sommet
a la ligne i et colonne j aura le numéro i = n + j. Un voisin a 'est du sommet numéro k a
donc le numéro s + 1, et un voisin au sud le numéro s + n.

Construction du labyrinthe : on initialise un graphe, dans lequel on ajoute des arétes a
mesure que I’on ouvre des portes dans les cloisons. En paralléle, on maintient une structure
union-find pour savoir quelles salles sont déja connectées par un chemin. Avant cette étape
de construction, on génére 'ensemble des cloisons dans un tableau, et on mélange ce tableau.
L’algorithme de mélange utilisé, bien que tres simple, est connu pour générer des mélanges
parfaits (toutes les permutations du tableau sont équiprobables).

static Graph mkLaby(int n) {
Graph g = new Graph(nn);
Uf uf = new Uf(n*n);
ArrayList<Wall> walls = new ArraylList<>(n*n);
// Generate walls
for (int i=0; i<n; i++) {
for (int j=0; j<n; j++) {
if (i<n-1) { walls.add(new Wall(ixn+j, true)); }
if (j<n-1) { walls.add(new Wall(i*n+j, false)); }
3

3
// Randomize walls (Fisher-Yates algorithme, a.k.a. Knuth shuffle)

Random rnd = new Random();
int k = walls.size();
for (int i=1; i<k; i++) { Collections.swap(walls, i, rnd.nextInt(i+1)); }
// Select doors
for (Wall w : walls) {
int s = w.s;
int t = w.s+(w.v?n:1);
if (uf.find(s) != uf.find(t)) {
uf.union(s, t);
g.addEdge(s, t);
}
3

return g;

53

Pour finir, une petite fonction pour affichier un labyrinthe en ASCIIL.

static void printLaby(int n, Graph g) {
for (int j=0; j<n; j++) { System.out.print("####"); }
System.out.println("##");
for (int i=0; i<n; i++) {
System.out.print("##");
for (int j=0; j<n; j++) {
System.out.print("_.");
if (j<n-1 && g.hasEdge(i*n+j, i*n+j+1)) { System.out.print("_."); }
else { System.out.print("##"); 3}
3
System.out.println();
System.out.print("##");
for (int j=0; j<n; j++) {
if (i<n-1 && g.hasEdge(i*n+j, (i+1)*n+j)) { System.out.print("_."); }
else { System.out.print("##"); 3}
System.out.print("##");
}
System.out.println();
}
3

Et le résultat!

A
H## ## H## #i# ## ##OH#H# #HH ## H##
HHEHHE O HEEEEEEREEEEE SRR # # B B HEEEEREEEE
H## ## ## ##t ## ## ##
#H HEEHEEEEEEREE SHEEEEE S HBEEEE # B HHEEEREEERREE
H## ## H#H# #H ##
HIHHE R HEEEEEEEEE SRR S HEEEE SHEEEEREEEE #
H## ## H#H# H#H ## H## ## ## ## H#H
HHEHHE O HEEEEE # ## 0 #E HEEEEE # HEEEEEEEE 0 .
H## ## ## ##
HHHEEEEEE O #E B #H HEEHEREEEE HEEREEEEREEEEEEEEE #
H#HH# #H O W ## ## ##
HHHHEEHEHAEEEEAAEEE W EEEEE SHEEEEEEEEEREEE HEEREEEEREEEE R

##
##
H##
H## H##
H## H##

##

HtH

##
H#HHEE #H
H##

HHHHEE

##

##

HHHHY

#i#

##

##
i
##

##

##

#i#

##

HHHEEEE #HEEEE HEEE

##

HIHE SRR HEEEEEE

##

#H# HHEEEE #H HHEEEEE S #H# #HE HE SHEEEEEEEEEEEEE SEEEEEEEEEE
#H# O #H H#H H#H HE H#H ##
HHEEEE HEEEEE HEEEEEERE S S D #E # #HBEEE HEEEEREE
H#H# #H ## H#H# H#H O W #E #H H#H
O HH HEHEEE HEEEHEEEEEERE EEEEEREEEE HE EEEEE BEEEEE W
#i# #i# ## H#H# H#HH ## H## H#HH ## ## H##
HHHHHE H O OHH H#H P HHEEEEEEEEEEE # HEEEEE NN
#it ## ## #H O H#H ## #it ## ##t H#H#
#IHHE O HEEEEE P # HEEEREEEEE HBEEEE # SHEEEE i #E
H## ## ## ## H#H# #H ##
HHHEE O HEEHEEE P W B #E HEEEEE HEBEEE B BEEERREEEREEE #
#H# ## #H# ##
HHHHHE SRR S S S SHEERRREEEEEEEEE #
#H# ## ## #H#
O HHHEEE O HHBEEEEREEEEREEEEREEEE HE EEEE REEEEE W
#i# ## H#H# #H ## H## ## ## ## H## ##
HHHHHE HHEEEEEEEE R W #E #H HEHEEEREE D R
#H #H# #i
HHHHHHHH

54

