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Deuxième partie

Graphes
4 Gérer des conflits

4.1 Problème : allocation de ressources
Panique à l’université Saris-Paclay. Chaque filière a, chacune dans son coin, fixé son

emploi du temps. Il y a chaque semaine des milliers de cours prévus, et il faut maintenant
trouver une salle à chacun. Comme vous pouvez vous en douter, il y a nettement moins de
salles disponibles que de cours à y loger quotidiennement : plusieurs devront certainement
se succéder dans une même salle le même jour. Mais, évidemment, deux cours ne peuvent
avoir lieu dans la même salle que si leurs horaires ne se recouvrent pas 1. Nous avons donc :

— un ensemble de cours, dont certains peuvent se tenir dans une même salle (car leurs
horaires sont disjoints) mais d’autres ne le peuvent pas (car leurs horaires se re-
couvrent),

— et un certain nombre de salles où loger nos cours.
L’objectif est d’affecter une salle à chaque cours en respectant ces contraintes.

Échauffement. Voici un extrait des cours du lundi matin :
— Algèbre linéaire : 8h15–10h15
— Analyse de Fourier pour la physique : 8h15–10h45
— Outils logiques et algorithmiques : 8h45–10h15
— Transformations et propriétés de la matière : 10h30–12h00
— Programmation modulaire : 10h30–12h30
— Électromagnétique : 11h–12h45

De combien d’amphithéâtres avez-vous besoin au minimum pour organiser ces six cours ?

4.2 Modélisation : graphes non orientés
Points et traits. La structure centrale de notre problème est un ensemble d’éléments (ici :
des cours), dont certains sont en relation l’un avec l’autre (ici : compatibles ou incompa-
tibles). On peut résumer cette structure par un schéma dans lequel chaque cours occupe un
point de l’espace, et où certains cours sont reliés par des traits, en fonction de leur relation.
Voici notre exemple précédent, où on a dessiné un lien entre les cours qui sont incompa-
tibles.

OLA

Algèbre linéaire Prog. modulaire

Analyse de Fourier

Électromagnétique

Prop. matière

On appelle une telle structure un graphe.

1. Pour les besoins du scénario, on néglige les questions de capacité et de nature des salles : on suppose que
toute salle peut accueillir n’importe quel cours.
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Définitions. Un graphe est formé par une paire (𝑆, 𝐴) où :
— 𝑆 est un ensemble d’éléments appelés sommets (ou nœuds),
— 𝐴 est un ensemble d’éléments appelés arêtes (ou arcs, ou flèches),
— chaque arête 𝑎 ∈ 𝐴 a deux extrémités 𝑠, 𝑡 ∈ 𝑆.

On peut « dessiner » un graphe en représentant chaque sommet par un point du plan et
chaque arête par un trait liant ses deux extrémités. Ci-dessous, un graphe à six sommets et
huit arêtes. Il y a une arête entre les sommets 𝑠0 et 𝑠1, mais pas entre les sommets 𝑠0 et 𝑠4.

𝑠0 𝑠1 𝑠2

𝑠3 𝑠4 𝑠5

Dans un tel dessin, les positions exactes des différents sommets n’ont aucune importance,
seules comptent les relations qu’entretiennent entre eux les sommets. Les dessins ci-dessous
représentent tous le même graphe.

𝑠0 𝑠1 𝑠2

𝑠3 𝑠4

𝑠5 𝑠0 𝑠1 𝑠2

𝑠3 𝑠4 𝑠5

𝑠0

𝑠1

𝑠2

𝑠3

𝑠4

𝑠5

Deux sommets liés par une arête sont adjacents (ou voisins). Une arête 𝑎 ayant un sommet 𝑠
parmi ses extrémités est incidente à 𝑠.

On appelle boucle une arête dont les deux extrémités sont identiques (arête 𝑎 ci-dessous).
On parle d’arêtes multiples (ou parallèles) lorsque plusieurs arêtes ont les mêmes deux ex-
trémités (arêtes 𝑏 et 𝑐 ci-dessous).

𝑠0 𝑠1
𝑏

𝑐

𝑎

Un graphe simple est un graphe qui n’a ni boucles, ni arêtes multiples.
Le degré d’un sommet 𝑠 d’un graphe simple, noté 𝛿(𝑠), est le nombre de voisins de ce

sommet, équivalent au nombre d’arêtes ayant 𝑠 pour extrémité. On généralise la notion aux
graphes quelconques en comptant le nombre d’extrémités d’arêtes touchant 𝑠 : des arêtes
parallèles comptent chacune pour 1, et une boucle compte pour 2.

𝑠0 𝑠2 𝑠4

𝑠1 𝑠3

𝛿(𝑠0) = 1 𝛿(𝑠3) = 3
𝛿(𝑠1) = 0 𝛿(𝑠4) = 5
𝛿(𝑠2) = 3

Problème du coloriage. Le problème du coloriage d’un graphe consiste à donner à
chaque sommet une couleur, de sorte que les sommets adjacents aient toujours des couleurs
différentes.

𝑠0 𝑠1 𝑠2

𝑠3 𝑠4 𝑠5

0 orange
1 violet
2 orange
3 turquoise
4 turquoise
5 violet

Notre problème d’allocation d’amphithéâtres peut se ramener au coloriage d’un graphe :
1. créer un graphe dont les sommets sont les cours auxquels affecter des salles, avec une

arête entre deux sommets lorsque les cours correspondants sont incompatibles,
2. colorier le graphe en donnant des couleurs différentes aux sommets adjacents,
3. chaque couleur représente un amphithéâtre !

Si on reprend notre sélection de cours, son graphe, et le coloriage exempleRemarquez que d’autres
solutions sont possibles.

précédent, il suffit
donc de trois amphithéâtres :

— un pour OLA et Propriétés de la matière,
— un pour Analyse de Fourier et Électromagnétisme,
— un pour Algèbre linéaire et Prog. modulaire.
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Apparté : graphes planaires. Lorsque l’on peut dessiner un graphe de manière à ce que
ses arêtes ne se croisent pas, on dit que ce graphe est planaire. Le graphe dessiné ci-dessous
à gauche est planaire : même si deux arêtes se croisent sur le dessin, il est possible d’éviter
le croisement en plaçant différemment un sommet, ou en tordant une arête. Celui de droite
en revanche, n’est pas planaire.

𝑠0 𝑠1

𝑠2 𝑠3

𝑠0
𝑠1 𝑠2

𝑠3 𝑠4
𝑠5

Un théorème célèbre, le théorème des quatre couleurs, affirme que quatre couleurs suffisent
toujours pour colorier un graphe planaire.

Apparté : graphes orientés. Dans un graphe orienté, chaque arête a une « direction ».
On distingue ainsi pour chacune une extrémité de départ (ou source) et une extrémité
d’arrivée (ou cible). Dans le dessin d’un tel graphe, on représente une arête par une flèche
allant du sommet de départ au sommet d’arrivée.

𝑠0 𝑠1 𝑠2

𝑠3 𝑠4 𝑠5

Pour un sommet 𝑠 d’un tel graphe, le degré 𝛿(𝑠) se décompose en :
— un degré entrant : nombre d’arêtes dont 𝑠 est l’arrivée,
— un degré sortant : nombre d’arêtes dont 𝑠 est le départ.

Nous reviendrons sur la notion de graphe orienté au prochain chapitre.

4.3 Structure de données : graphe
Pour travailler avec des graphes simples non orientés, on utilisera principalement les

opérations suivantes :
— énumérer les sommets,
— étant donné un sommet 𝑠, énumérer les voisins de 𝑠.

Question : pourquoi divise-t-on la
somme obtenue par 2?

On peut par exemple imaginer le procédé suivant pour connaître le nombre total d’arêtes
d’un graphe : pour chaque sommet 𝑠, compter les voisins de 𝑠, et à la fin diviser le total par 2.

Interface. Pour simplifier le code, on suppose toujours manipuler un graphe dont les som-
mets sont numérotés à partir de zéro. Ainsi, pour un graphe à 𝑛 sommets, on désignera
chaque sommet par un nombre pris dans l’intervalle [0, 𝑛 [. Énumérer les sommets d’un
graphe ou les voisins d’un sommet consiste donc à énumérer une liste d’entiers. Pour repré-
senter un graphe, on veut donc essentiellement réaliser l’interface suivante, où Iterable<Integer>

est le type des énumérations d’entiers pouvant être parcourues à l’aide d’une boucle for each.

interface Graphe {
Iterable<Integer> sommets();
Iterable<Integer> voisins(int s);

}

Notre fonction comptant le nombre d’arêtes d’un graphe réalisant cette interface s’écrirait
ainsi.

static int nombreAretes(Graphe g) {
int d = 0;
for (int s : g.sommets()) {

for (int v : g.voisins(s))
d += 1;

}
return d/2;

}

Ces deux opérations d’énumération des sommets et des voisins permettent également faci-
lement de réaliser des fonctions renvoyant le nombre de sommets Faites-le.d’un graphe, ou le degré
d’un sommet. On supposera par la suite que ces méthodes existent bien.
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Réalisation 1 : matrice d’adjacence. Un graphe 𝐺 à 𝑛 sommets {𝑠0, … , 𝑠𝑛−1} et sans
arêtes parallèles peut être représenté par une matrice 𝑀 , carrée, d’ordre 𝑛, telle que :

— 𝑀[𝑖, 𝑗] = vrai s’il existe une arête entre 𝑠𝑖 et 𝑠𝑗 ,
— 𝑀[𝑖, 𝑗] = faux sinon.

On appelle 𝑀 la matrice d’adjacence de 𝐺. Remarque : dans les graphes non orientés que
nous considérons ici, une arête entre 𝑠𝑖 et 𝑠𝑗 est aussi une arête entre 𝑠𝑗 et 𝑠𝑖. Ainsi, chaque
arête qui n’est pas une boucle donne deux cases à vrai dans la matrice, qui est symétrique.

𝑠0 𝑠1 𝑠2

𝑠3 𝑠4 𝑠5

0 1 2 3 4 5
0 ✔
1 ✔ ✔ ✔ ✔
2 ✔ ✔ ✔
3
4 ✔ ✔
5 ✔ ✔ ✔

En java, on peut représenter une telle matrice par un simple tableau à deux dimensions.
Voici le début du code. Pour créer un graphe, on se donne un constructeur prenant en pa-
ramètre le nombre de sommets et initialisant la matrice, et une méthode ajoutant un lien
entre deux sommets.

class GrapheMat implements Graphe {
public final int taille;
private boolean[][] adj;

public GrapheMat(int taille) {
this.taille = taille;
this.adj = new boolean[taille][taille];

}

public void ajouteArete(int s, int t) {
adj[s][t] = true;
adj[t][s] = true;

}

Pour énumérer les voisins d’un sommet 𝑠𝑖, on construit et on renvoie la liste des 𝑗 tels que
𝑀[𝑖, 𝑗] vaut vrai.Question : dans quel ordre sont

renvoyés les voisins ici ?
public Iterable<Integer> voisins(int s) {

ArrayList<Integer> voisins = new ArrayList<>();
for (int v=0; v<taille; v++) {

if (adj[s][v]) voisins.add(v);
}
return voisins;

}

Pour énumérer les sommets, c’est-à-dire les entiers de 0 à 𝑛 − 1, on pourrait de même
construire une liste à la main et la renvoyer. Voici une variante dans laquelle on se passe
de construire la liste. À la place, on concrétise la classe abstraite AbstractList en indiquant
que l’élément d’indice 𝑖 dans cette énumération est précisément 𝑖 lui-même.

public Iterable<Integer> sommets() {
return new AbstractList<Integer>() {

public Integer get(int index) { return index; }
public int size() { return taille; }

};
}

}
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Réalisation 2 : listes d’adjacence. Un graphe 𝐺 à 𝑛 sommets {𝑠0, … , 𝑠𝑛−1} et sans arêtes
parallèles peut également être représenté par un tableau 𝐴 de taille 𝑛 tel que 𝐴[𝑖] contient
la liste des [numéros des] voisins du sommet 𝑠𝑖.

𝑠0 𝑠1 𝑠2

𝑠3 𝑠4 𝑠5

0 1
1 0 2 4 5
2 1 2 5
3
4 1 5
5 1 2 4

Voici un code java pour cette seconde réalisation. Chaque liste de voisins est du type
ArrayList<Integer>. Pour le tableau 𝐴, on utilise un nouveau ArrayList contenant ces listes
de voisins 2.

class GrapheAdj implements Graphe {
public final int taille;
private ArrayList<ArrayList<Integer>> adj;

public GrapheAdj(int taille) {
this.taille = taille;
this.adj = new ArrayList<>(taille);
for (int s=0; s<taille; s++) adj.add(new ArrayList<>());

}
public void ajouteArete(int s, int t) {

adj.get(s).add(t);
adj.get(t).add(s);

}
public Iterable<Integer> voisins(int s) {

return adj.get(s);
}
public Iterable<Integer> sommets() { /* identique à GrapheMat.sommets() */ }

}

Coût des graphes. Les deux propositions de réalisation des graphes ont des coûts diffé-
rents. Si l’on considère un graphe à 𝑛 sommets et 𝑘 arêtes, voici les ordres de grandeur.

— Une matrice d’adjacence nécessite en mémoire un tableau de 𝑛2 booléens. L’énumé-
ration des voisins d’un sommet a une complexité proportionnelle à 𝑛.

— Un tableau de listes d’adjacence nécessite en mémoire un tableau de 𝑛 références,
plus 𝑛 listes contenant chacune 𝑛 entiers au maximum. Plus précisément, ces listes
réunies contiennent environ 2𝑘 éléments. L’énumération des voisins d’un sommet a
une complexité proportionnelle au nombre de voisins.

Bilan : le plus souvent, la représentation par listes d’adjacence est plus efficace, autant pour
l’utilisation de mémoire (car 𝑛 + 𝑘 ≤ 𝑛2) que pour le coût de l’énumération des voisins (car
le nombre de voisins d’un sommet est toujours inférieur à 𝑛).

La représentation par matrice d’adjacence reste cependant à privilégier dans le cas d’un
graphe dense, c’est-à-dire dans lequel la majorité des arêtes possibles sont présentes : la
structure, plus simple, est alors plus efficace en pratique. Regardons précisément les constantes
associées aux ordres de grandeur Θ(𝑛2) et Θ(𝑛 + 𝑘) pour la représentation en mémoire.

— Chaque booléen de la matrice d’adjacence occupe un octet, d’où un nombre d’octets
∼ 𝑛2 pour une matrice d’adjacence.

— Les listes d’adjacence contiennent des références vers des objets Integer. Chaque ré-
férence occupe huit octets, et chaque objet en java occupe en mémoire au moins 12
octets de plus que la place utilisée pour la donnée elle-même (pour Integer, contenant
des entiers int de 4 octets, on a donc 12 + 4 = 16 octets). En outre, chaque tableau
redimensionnable ArrayList peut avoir une taille double du nombre d’éléments effec-
tivement contenus. Le nombre d’octets pour un tableau de listes d’adjacence est donc
compris entre ∼ 24(𝑘 + 𝑛) et ∼ 32(𝑘 + 𝑛).

En outre, une matrice
d’adjacence dense a un meilleur
comportement vis-à-vis du cache,
d’où un possible gain de vitesse.

Bilan : pour un graphe non orienté contenant un nombre d’arêtes proche du maximum
∼ 𝑛2/2, la matrice d’adjacence est plus compacte.

2. On pourrait vouloir utiliser un tableau primitif pour 𝐴 au lieu d’un ArrayList, mais on ne le fait pas ici
pour des raisons techniques liées au système de types de java : les tableaux primitifs ne peuvent pas, du moins en
théorie, contenir des types génériques comme ArrayList<T>.
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4.4 Algorithme : coloriage glouton
On va numéroter nos « couleurs » par des nombres entiers à partir de zéro. On considère

donc l’ensemble infini de couleurs {𝑐0, 𝑐1, 𝑐2, …}. Produire une coloration pour un graphe
de sommets {𝑠0, … , 𝑠𝑛−1}, c’est donc produire un tableau 𝐶 de 𝑛 entiers, tel que 𝐶[𝑖] est le
numéro de la couleur affectée au sommet 𝑠𝑖.

On cherche à produire un coloriage utilisant un nombre de couleurs aussi petit que
possible. Un algorithme de coloriage glouton consiste à considérer les sommets un à un, et à
choisir pour chacun à son tour la couleur qui paraît la plus adaptée pour lui. On considérera
comme « couleur la plus adaptée » pour un sommet 𝑠, la plus petite des couleurs qui n’a pas
encore été utilisée pour un des voisins de 𝑠.

Reprenons notre exemple, et considérons les sommets dans l’ordre donné par leurs nu-
méros.

𝑠0 𝑠1 𝑠2

𝑠3 𝑠4 𝑠5

Sommet Couleurs voisines Couleur choisie
𝑠0 aucune 𝑐0
𝑠1 𝑐0(𝑠0) 𝑐1
𝑠2 𝑐1(𝑠1) 𝑐0
𝑠3 𝑐0(𝑠0), 𝑐1(𝑠1) 𝑐2
𝑠4 𝑐0(𝑠2), 𝑐1(𝑠1) 𝑐2
𝑠5 𝑐0(𝑠2), 𝑐2(𝑠4) 𝑐1

En définissant 𝑐0 comme orange, 𝑐1 comme violet et 𝑐2 comme turquoise, on obtient exacte-
ment le coloriage proposé plus tôt.

Code java. Dans le code, on initialise un tableau de couleurs avec le numéro -1 pour les
sommets pas encore coloriés. Lors du traitement d’un sommet, on enregistre les couleurs des
sommets voisins dans un tableau de booléens. Il ne reste ensuite plus qu’à considérer chaque
nombre entier à partir de 0 jusqu’à en trouver un qui n’a pas été coché dans ce tableau de
booléens.

static int[] colorie(Graphe g) {
// initialisation du tableau des couleurs
int[] couleurs = new int[g.taille()];
for (int s : g.sommets()) couleurs[s] = -1;
// coloriage de chaque sommet
for (int s : g.sommets()) {

// énumération des couleurs des voisins
int d = g.degre(s);
boolean[] couleursVoisines = new boolean[d+1];
for (int v : g.voisins(s)) {

int c = couleurs[v];
if (0 <= c && c <= d) couleursVoisines[c] = true;

}
// recherche de la première couleur disponible
for (int c=0;; c++) {

if (!couleursVoisines[c]) {
couleurs[s] = c;
break;

}
}

}
return couleurs;

}

Note : l’ensemble des couleurs voisines contient également la « fausse » couleur -1 si l’un des
voisins n’a pas encore été colorié. Cela n’a aucun impact sur le déroulement de l’algorithme.
Note : on suppose également que l’interface des graphes contient des méthodes int taille()

et int degre(int s) renvoyant respectivement le nombre de sommets du graphe et le degré
d’un sommet.
Remarque : dans ce code, on définit la taille du tableau de booléens des couleurs voisines en
fonction du degré du sommet. Pourquoi ?
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4.5 Approfondissement : analyse du coloriage glouton.
Évaluons la complexité de notre algorithme de coloriage, et la qualité du coloriage produit.

Complexité temporelle. La fonction colorie est la succession de deux boucles.
— La première boucle, initialisant le tableau couleurs, a une complexité proportionnelle

au nombre 𝑛 de sommets du graphe.
— La deuxième boucle, qui est la principale, réalise les opérations suivantes pour chaque

sommet 𝑠.
1. Énumération des voisins de 𝑠, pour remplir couleursVoisines : complexité pro-

portionnelle au degré 𝛿(𝑠) de 𝑠.
2. Recherche d’une couleur disponible : complexité encore proportionnelle à 𝛿(𝑠).

D’où complexité totale de la deuxième boucle proportionnelle à la somme des degrés
des sommets, c’est-à-dire proportionnelle au nombre 𝑘 d’arêtes du graphe.

D’où complexité totale Θ(𝑛 + 𝑘).

Qualité du coloriage. L’algorithme glouton ne trouve pas systématiquement le plus pe-
tit nombre de Savez-vous trouver un

contre-exemple?
couleurs possible pour le graphe auquel on l’applique. On peut cependant

démontrer que le nombre 𝜒 de couleurs utilisées est borné par les degrés des sommets du
graphe. Plus précisément, si on note Δ𝑚𝑎𝑥 = 𝛿(𝑠𝑚𝑎𝑥) le degré d’un sommet 𝑠𝑚𝑎𝑥 ayant le plus
grand degré dans notre graphe, alors on a 𝜒 ≤ Δ𝑚𝑎𝑥 + 1.

Démonstration. Considérons le choix d’une couleur pour un sommet 𝑠 quelconque du
graphe. Par définition, ce sommet a 𝛿(𝑠) voisins. Ces voisins utilisent donc au maximum 𝛿(𝑠)
couleurs différentes. Ainsi, il existe au moins un nombre non utilisé dans l’intervalle [0, 𝛿(𝑠)] :
la couleur choisie pour 𝑠 sera nécessairement dans cette intervalle, et en particulier infé-
rieure ou égale à Δ𝑚𝑎𝑥 . Finalement, l’algorithme glouton ne choisit que des couleurs appar-
tenant à l’intervalle [0, Δ𝑚𝑎𝑥], et leur nombre est donc inférieur ou égal à Δ𝑚𝑎𝑥 + 1.

4.6 Approfondissement : relations binaires
Une relation binaire entre les éléments de deux ensembles 𝐴 et 𝐵 est un ensemble d’as-

sociations entre un élément de 𝐴 et un élément de 𝐵, caractérisant des éléments qui sont
« en relation » l’un avec l’autre. La nature de cette « relation » peut couvrir des situations
extrêmement variées. Par exemple :

— similarité entre objets, comme l’égalité =,
— hiérarchie entre un tout et ses parties, comme l’appartenance ∈,
— comparaison de grandeurs, comme la comparaison ≤,
— antécédents et images d’une fonction,
— dépendance entre deux événements,
— incompatibilité ou interférence entre deux faits,
— accessibilité d’un point d’arrivée depuis un point de départ...

Certains de ces exemples correspondent a des types de relations importantes en mathéma-
tiques, à savoir les relations fonctionnelles, les relations d’ordre et les relations d’équiva-
lence, que nous aborderons progressivement. Certains aussi correspondent directement à
des problèmes que l’on peut modéliser et résoudre à l’aide de graphes.

Relations binaires. Une relation binaire  entre deux ensembles 𝐴 et 𝐵 est un sous-
ensemble du produit cartésien 𝐴×𝐵. Dans ce contexte, on note couramment 𝑎𝑏 ou (𝑎, 𝑏)
pour (𝑎, 𝑏) ∈ . On parle de relation binaire homogène lorsque les ensembles 𝐴 et 𝐵 sont
égaux.

Relations fonctionnelles. Une relation fonctionnelle est une relation binaire décrivant
le lien entre les entrées et les sorties d’une fonction. Une telle relation 𝑓 pour une fonction
𝑓 ∶ 𝐴 → 𝐵 contient donc les paires (𝑎, 𝑏) telles que 𝑓 (𝑎) = 𝑏 .

La caractéristique principale d’une telle relation, qui définit le concept de fonction, est
que la sortie 𝑓 (𝑎) est uniquement déterminée par l’entrée 𝑎. Autrement dit, il ne peut pas y
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avoir deux images associées au même antécédent. Une relation𝑓 ⊆ 𝐴×𝐵 est fonctionnelle
si pour tout 𝑎 ∈ 𝐴 il existe au plus un 𝑏 ∈ 𝐵 tel que 𝑓 (𝑎, 𝑏).

∀𝑎 ∈ 𝐴, ∀𝑏1, 𝑏2 ∈ 𝐵, 𝑎𝑏1 ∧ 𝑎𝑏2 ⇒ 𝑏1 = 𝑏2

Notez qu’avec cette définition, une fonction 𝑓 ∶ 𝐴 → 𝐵 peut n’être que partielle, c’est-à-dire
ne pas avoir de valeur 𝑓 (𝑎) définie pour certaines entrées 𝑎 ∈ 𝐴.
Une fonction 𝑓 ∶ 𝐴 → 𝐵, définie par une relation fonctionnelle 𝑓 ⊆ 𝐴 × 𝐵, est :

— totale si tout élément de 𝐴 a une image

∀𝑎 ∈ 𝐴, ∃𝑏 ∈ 𝐵, 𝑎𝑓 𝑏

— surjective si tout élément de 𝐵 a au moins un antécédent

∀𝑏 ∈ 𝐵, ∃𝑎 ∈ 𝐴, 𝑎𝑓 𝑏

— injective si aucun élément de 𝐵 n’a plus d’un antécédent

∀𝑏 ∈ 𝐵, ∀𝑎1, 𝑎2 ∈ 𝐴, 𝑎1𝑓 𝑏 ∧ 𝑎2𝑓 𝑏 ⇒ 𝑎1 = 𝑎2

— bijective si elle est totale, surjective et injective.
Exemple : la fonction 𝑓 ∶ ℕ → ℕ définie par 𝑓 (𝑛) = 𝑛2 est donnée par la relation binaire
𝑓 = {(𝑛, 𝑛2) ∣ 𝑛 ∈ ℕ}. Cette fonction est totale et injective. La même fonction étendue au
domaine ℤ → ℕ serait toujours totale mais plus injective, puisque 𝑓 (1) = 𝑓 (−1) = 1.

Relations binaires homogènes et graphes. Une relation binaire homogène  ⊆ 𝐸 × 𝐸
est :

— symétrique si le fait pour deux éléments 𝑒1, 𝑒2 ∈ 𝐸 d’être en relation est indépendant
de l’ordre dans lequel on les considère

∀𝑒1, 𝑒2 ∈ 𝐸, 𝑒1𝑒2 ⇒ 𝑒2𝑒1

— réflexive si tout élément est en relation avec lui-même

∀𝑒 ∈ 𝐸, 𝑒𝑒

— irréflexive si un élément n’est jamais en relation avec lui-même

∀𝑒 ∈ 𝐸, ¬𝑒𝑒

Un graphe simple (𝑆, 𝐴) définit une relation binaire homogène  sur 𝑆 × 𝑆 par la condition
« 𝑠1𝑠2 s’il existe une arête 𝑎 ∈ 𝐴Que se passe-t-il si le graphe

contient des boucles ?
Et des arêtes parallèles ?

entre 𝑠1 et 𝑠2 ». Cette relation est symétrique et irréflexive.
Réciproquement, toute relation binaire homogène  sur un ensemble 𝐸 qui est symétrique
et irréflexive définit un graphe simple ayant 𝐸 pour ensemble de sommets et ayant une arête
entre 𝑒1 et 𝑒2 si et seulement si 𝑒1𝑒2.
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5 Mettre de l’ordre

5.1 Problème : ordonnancement de tâches interdépendantes
L’université Saris-Paclay a encore besoin d’aide. L’enseignant d’un cours connu sous

le nom de code « OLA » a fait la liste des outils et algorithmes qu’il allait présenter au
cours du semestre, et s’est rendu compte que les dépendances entre ces différents points
étaient sournoisement emmêlées. Il faut maintenant trouver un ordre dans lequel organiser
les séances, de sorte que chacune ne dépende que de ce qui a déjà été vu avant.

Voici un résumé de la liste, et des dépendances :

Sujet Dépendances (doivent être traitées d’abord)
Graphes Complexité
Chemins Graphes
Récurrence Logique, complexité
Complexité
Labyrinthes Graphes, arbres, chemins, complexité
Exploration Chemins
Logique
Arbres Récurrence, complexité, logique
Plus court chemin Exploration, arbres
Optimisation Exploration
Satisfiabilité Logique, arbres
Tables associatives Arbres

Pouvez-vous trouver un ordre de présentation des sujets qui fasse en sorte qu’aucun ne soit
abordé avant que toutes ses dépendances aient été elles-mêmes traitées?

5.2 Modélisation : graphes orientés
On peut reprendre l’idée d’une modélisation du problème par un graphe : chaque sujet

à traiter devient un sommet, et les arêtes matérialisent la relation de dépendance entre deux
sujets. Différence par rapport aux graphes déjà vus : la relation de dépendance est orientée.
Lorsque l’on dit qu’un cours 𝐴 dépend d’un cours 𝐵, cela signifie que 𝐵 doit être programmé
avant 𝐴 : on fixe un ordre entre les éléments. On utilise des flèches pour représenter cela
graphiquement.

Récurrence Logique

SatisfiabilitéComplexité Arbres

Tables assoc.

Graphes

Labyrinthes Chemin courtChemins

Exploration Optimisation

Graphe orienté. La notion de graphe orienté permet d’exprimer ceci en donnant une
direction à chaque arête. Au lieu de deux extrémités équivalentes, on a maintenant un som-
met de départ (ou source) et un sommet d’arrivée (ou cible). On dessine une telle arête sous
la forme d’une flèche.

Pour un sommet 𝑠 d’un tel graphe, le degré 𝛿(𝑠) se décompose en :
— un degré entrant : nombre d’arêtes dont 𝑠 est l’arrivée,
— un degré sortant : nombre d’arêtes dont 𝑠 est le départ.

Le degré sortant d’un sommet 𝑠 correspond également au nombre d’éléments renvoyés par
voisins(𝑠).

Chemins et cycles. Un chemin dans un graphe est une séquence 𝐶 de sommets liés par
des arêtes. C’est-à-dire : une séquence 𝐶[0] → 𝐶[1] → 𝐶[2] → … → 𝐶[𝑘] où les 𝐶[𝑖] sont
des sommets du graphe tels que pour tout 𝑖 ∈ [0, 𝑘 [, on a dans le graphe une arête de 𝐶[𝑖]
vers 𝐶[𝑖+1]. Dans un tel chemin, 𝐶[0] est le départ, et 𝐶[𝑘] l’arrivée. Le nombre 𝑘 d’arêtes
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empruntées est la longueur du chemin.Question : à quoi ressemble un
chemin de longueur zéro ?

Note : dans un graphe orienté, les chemins doivent
respecter l’orientation de chaque arête empruntée. Un cycle est un chemin dont le sommet
d’arrivée est égal au sommet de départ. Un graphe acyclique est un graphe ne possédant
aucun cycle.
Dans notre graphe des sujets, on a par exemple un chemin

Logique → Récurrence → Arbres → Labyrinthes

mais on n’a en revanche aucun cycle. En revanche, si l’arête entre « Complexité » et « La-
byrinthes » était dans l’autre sens, c’est-à-dire de « Labyrinthes » vers « Complexité », alors
on aurait un cycle.

Structure de données. Les structures de données que nous avons déjà vues pour les
graphes sont tout à fait adaptées aux graphes orientés. Aussi bien dans une matrice d’ad-
jacence que dans un tableau de listes d’adjacence, chaque arête non orientée entre deux
sommets 𝑠 et 𝑡 est représentée par deux éléments : l’indication que 𝑡 est un voisin de 𝑠, et
celle que 𝑠 est un voisin de 𝑡. Pour une arête orientée il suffit de ne garder qu’un de ces deux
éléments, choisi selon la direction de l’arête. Les seules adaptations sont donc les suivantes.

— Dans l’interface Graphe, on précise la signification de la méthode voisins : un appel
à voisins(𝑠) énumère les sommets 𝑡 pour lesquels il existe une arête orientée de 𝑠
vers 𝑡.

— Dans la classe GrapheMat, on ajoute la méthode suivante, version simplifiée de ajouteArete.

public void ajouteAreteOrientee(int s, int t) { adj[s][t] = true; }

— Dans la classe GrapheAdj, on ajoute de même la méthode suivante.

public void ajouteAreteOrientee(int s, int t) { adj.get(s).add(t); }

5.3 Algorithme : tri topologique
Le problème du tri topologique, ou ordonnancement séquentiel, d’un graphe orienté

consiste à déterminer une séquence 𝑇 contenant tous les sommets, dans un ordre tel que
s’il existe une arête de 𝑠𝑖 vers 𝑠𝑗 , alors 𝑠𝑗 apparaît après 𝑠𝑖 dans 𝑇 . Autrement dit, on cherche
une permutation 𝜎 ∈ S𝑛 telle que s’il existe une arête de 𝑠𝑖 vers 𝑠𝑗 , alors 𝜎(𝑖) < 𝜎(𝑗).

Principe de l’algorithme. Considérons un sommet 𝑠 de degré entrant zéro, c’est-à-dire
tel qu’il n’existe aucun 𝑡 avec une arête 𝑡 → 𝑠. Il n’y a donc aucun sommet qui doive né-
cessairement apparaître avant 𝑠 : on peut choisir de sélectionner 𝑠 en premier dans notre
tri topologique. Une fois 𝑠 sélectionné en premier, on peut sélectionner en deuxième tout
autre sommet de degré entrant nul, ou tout sommet dont la seule arête entrante vient de 𝑠.
Autrement dit, on peut sélectionner en deuxième tout sommet de degré entrant nul dans le
graphe qu’on obtiendrait en supprimant 𝑠 (et les arêtes incidentes à 𝑠).

On continue ainsi à sélectionner les sommets de degré entrant nul dans des graphes de
plus en plus réduits, car on ne tient plus compte des sommets qui ont déjà été sélectionnés.
Dans l’exemple ci-dessous, on appelle sommets disponibles ces sommets qui sont prêts à être
sélectionnés, car il n’ont aucune arête entrante venant d’un sommet qui n’aurait pas déjà
été sélectionné.

𝑠2 𝑠6

𝑠10𝑠3 𝑠7

𝑠11

𝑠0

𝑠4 𝑠8𝑠1

𝑠5 𝑠9

Étape Disponibles Sélectionné
1 𝑠3, 𝑠6 𝑠6
2 𝑠3, 𝑠2 𝑠3
3 𝑠0, 𝑠2 𝑠2
4 𝑠0, 𝑠7 𝑠0
5 𝑠1, 𝑠7 𝑠1
6 𝑠5, 𝑠7 𝑠5
7 𝑠7, 𝑠9 𝑠7
8 𝑠4, 𝑠8, 𝑠9, 𝑠10, 𝑠11 𝑠10
9 𝑠4, 𝑠8, 𝑠9, 𝑠11 𝑠11
10 𝑠4, 𝑠8, 𝑠9 𝑠8
11 𝑠4, 𝑠9 𝑠9
12 𝑠4 𝑠4

Note : à chaque étape, le choix parmi les sommets disponibles est arbitraire. L’ordre donné
ici en exemple correspond au plan réel du semestre.
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Code java. Dans le code java suivant, on ne modifie pas le graphe lui-même pour sup-
primer les sommets sélectionnés (ce serait potentiellement coûteux). À la place, on crée un
tableau degreEntrant qui renseigne le degré entrant de chaque sommet, et on décrémente
les valeurs de ce tableau pour qu’elles ne comptent plus les sommets déjà sélectionnés. La
boucle principale (boucle while) parcourt le tableau des sommets sélectionnés et réalise deux
choses :

— pour chaque sommet 𝑠 trouvé dans ce tableau, décrémenter le degré entrant des som-
mets 𝑣 voisins de 𝑠,

— lorsque cette opération annule le degré entrant d’un sommet 𝑣, sélection de celui-ci.
On déclare que le tri topologique a réussi lorsque ce processus permet bien de sélectionner
tous les sommets.

static int[] triTopologique(Graphe g) {
int n = g.taille();
// calcul du degré entrant de chaque sommet
int[] degreEntrant = new int[n];
for (int s : g.sommets())

for (int v : g.voisins(s))
degreEntrant[v] += 1;

// initialisation avec les sommets de degré entrant nul
int[] ordre = new int[n];
int j = 0;
for (int s : g.sommets())

if (degreEntrant[s] == 0) ordre[j++] = s;
// énumération des sommets sélectionnés
int i = 0;
while (i < j) {

// degré entrant des voisins décroît, sélection si devient nul
for (int v : g.voisins(ordre[i])) {

degreEntrant[v] -= 1;
if (degreEntrant[v] == 0) ordre[j++] = v;

}
i++;

}
// échec si on n'a pas sélectionné tous les sommets
if (j < n) return null;
return ordre;

}

Suivi de l’exécution de la boucle principale, sur notre graphe exemple.

degreEntrant

i s 0 1 2 3 4 5 6 7 8 9 10 11 ordre [0, j [
1 1 2 0 4 1 0 3 2 1 2 1 𝑠3, 𝑠6

0 𝑠3 0 1 1 0 3 1 0 2 2 1 2 1 𝑠3, 𝑠6, 𝑠0
1 𝑠6 0 1 0 0 3 1 0 1 2 1 1 1 𝑠3, 𝑠6, 𝑠0, 𝑠2
2 𝑠0 0 0 0 0 2 1 0 1 2 1 1 1 𝑠3, 𝑠6, 𝑠0, 𝑠2, 𝑠1
3 𝑠2 0 0 0 0 2 1 0 0 2 1 1 1 𝑠3, 𝑠6, 𝑠0, 𝑠2, 𝑠1, 𝑠7
4 𝑠1 0 0 0 0 1 0 0 0 2 1 1 1 𝑠3, 𝑠6, 𝑠0, 𝑠2, 𝑠1, 𝑠7, 𝑠5
5 𝑠7 0 0 0 0 0 0 0 0 1 1 0 0 𝑠3, 𝑠6, 𝑠0, 𝑠2, 𝑠1, 𝑠7, 𝑠5, 𝑠4, 𝑠10, 𝑠11
6 𝑠5 0 0 0 0 0 0 0 0 0 0 0 0 𝑠3, 𝑠6, 𝑠0, 𝑠2, 𝑠1, 𝑠7, 𝑠5, 𝑠4, 𝑠10, 𝑠11, 𝑠8, 𝑠9

Note : les cinq dernières étapes ne font plus décroître les degrés, car les sommets restants
𝑠4, 𝑠10, 𝑠11, 𝑠8 et 𝑠9 n’ont aucune arête sortante.

Cas où le tri topologique est impossible. Pour certains graphes, il n’est pas possible
de trouver un tri topologique. C’est le cas notamment dès qu’un graphe contient un cycle.

𝑠0 𝑠1

𝑠2 𝑠3
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5.4 Terminaison : technique du variant
La boucle principale de notre algorithme de tri topologique est une boucle while, com-

parant deux indices i et j. Pour que la boucle s’arrête, il faut que l’indice i devienne égal
(ou supérieur) à l’indice j. Il n’est pas évident que cela arrive un jour :

— à chaque tour, i est incrémenté de 1,
— à chaque tour, j peut rester tel quel ou être incrémenté, de 1 ou plus.

Si l’indice j est non nul à l’origine, et est incrémenté au moins de 1 à chaque tour, il ne sera
jamais rattrapé par l’indice i ! Nous avons besoin d’un argument plus élaboré que la simple
croissance de iEn plus, si j devenait trop grand

on échouerait à cause d’accès
hors des limites du tableau ordre.

On aimerait aussi éviter cela.

pour assurer que notre algorithme produit bien toujours un résultat en un
temps fini.

Argument intuitif : on s’attend à ce que chaque sommet du graphe ne soit ajouté qu’une
fois à la liste ordre. La longueur de cette liste ne doit donc pas dépasser la taille 𝑛 du graphe,
et la boucle n’est pas censée effectuer plus de 𝑛 étapes.

Argument de décroissance. Pour garantir qu’un algorithme avec une boucle s’arrête,
on identifie un variant de la boucle, c’est-à-dire un nombre entier calculé en fonctionNe pas confondre !

Invariant : propriété préservée
Variant : quantité décroissante

des
variables du programme et qui a les deux propriétés suivantes :

— il est positif ou nul,
— il décroît strictement à chaque tour.

Comme un nombre entier donné ne peut décroître qu’un nombre fini de fois avant de de-
venir négatif ou nul, on s’assure qu’une boucle dotée d’un variant ne peut pas « boucler
infiniment ».

Pour notre tri topologique, on peut prendre comme variant le nombre suivant :

j − i + ∑
0≤𝑘<𝑛

degreEntrant[𝑘]

Vérifions les deux propriétés demandées.
— Ce nombre est bien positif pendant toute la durée de la boucle : d’une part la somme

∑0≤𝑘<𝑛 degreEntrant[𝑘] est une somme de nombres positifs ou nuls, et d’autre part
j − i ≥ 0 car la boucle teste elle-même i < j.

— D’un tour de boucle au suivant, la somme j+∑0≤𝑘<𝑛 degreEntrant[𝑘] ne croît jamais,
car chaque augmentation de j est associée à la baisse de l’un des degreEntrant[𝑘]. À
l’inverse, à chaque tour i augmente de 1. La valeur totale décroît donc au moins de 1.

Avec ce variant, on garantit la terminaison de la boucle sans justifier rigoureusement que
chaque sommet est ajouté au plus une fois à ordre. On se contente ici de garantir que le
nombre d’insertions dans ordre ne dépasse par le nombre d’arêtes du graphe. On n’a donc
pas encore assuré que la taille 𝑛 donnée au tableau ordre était suffisante.

Argument de décroissance, version plus précise. Pour comparer plus précisément j
et 𝑛, on introduit une propriété liant j au nombre d’entrées inférieures ou égales à zéro dans
degreEntrant.

j = card({𝑘 ∈ [0, 𝑛 [ ∣ degreEntrant[𝑘] ≤ 0})

Cette propriété est préservée par la boucle for (int v : g.voisins(ordre[i])). En effet,
considérons un tour de cette boucle pour un sommet 𝑣.

— Si au début, degreEntrant[𝑣] > 1, alors à la fin degreEntrant[𝑣] ≥ 1 et aucune des
valeurs j et card({𝑘 ∈ [0, 𝑛 [ ∣ degreEntrant[𝑘] ≤ 0}) n’a changé.

— Si au début, degreEntrant[𝑣] = 1, alors à la fin degreEntrant[𝑣] = 0 et les deux va-
leurs j et card({𝑘 ∈ [0, 𝑛 [ ∣ degreEntrant[𝑘] ≤ 0}) ont augmenté de 1.

— Si au début, degreEntrant[𝑣] ≤ 0, alors à la fin degreEntrant[𝑣] ≤ 0 et aucune des
valeurs j et card({𝑘 ∈ [0, 𝑛 [ ∣ degreEntrant[𝑘] ≤ 0}) n’a changé (ce dernier cas ne
doit pas arriver si degreEntrant a été correctement initialisé, mais il ne poserait pas
de problème à cette propriété).
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Pour assurer que notre propriété d’égalité est un invariant, il ne reste plus qu’à justifier
qu’elle est vraie avant le début de la boucle. Pour cela, on remarque d’abord que l’égalité est
également préservée par la boucle while (i < j), puisque cette dernière n’a aucune action
sur j ou degreEntrant autre que celles contenues dans la boucle for. Enfin, l’égalité est vraie
avant le début de la boucle while, car la boucle précédente (for (int s : g.sommets()))
initialise j précisément à la valeur demandée.

Notre invariant sur j en implique un autre : j ≤ 𝑛. Comme en outre d’un bout à l’autre
de l’algorithme i ≤ j, on déduit un invariant sur i :

i ≤ 𝑛

Avec cette propriété, on assure que la valeur 𝑛 − i est un variant de notre boucle while

principale, et donc que celle-ci termine. On assure même que cette boucle termine après 𝑛
tours au maximum.

5.5 Relations d’ordre
Une notion d’ordre est une manière de comparer et classer les éléments d’un ensemble.

Définition. Étant donné un ensemble 𝐸, une relation d’ordre sur 𝐸 est une relation bi-
naire homogène sur 𝐸 qui est :

— réflexive : tout élément est comparable à lui-même

∀𝑒 ∈ 𝐸, 𝑒𝑒

— anti-symétrique : deux éléments distincts ne peuvent pas être comparables à la fois
dans un sens et dans l’autre

∀𝑒1, 𝑒2 ∈ 𝐸, (𝑒1𝑒2 ∧ 𝑒2𝑒1) ⇒ 𝑒1 = 𝑒2

— transitive : la comparabilité se propage de proche en proche

∀𝑒1, 𝑒2, 𝑒3 ∈ 𝐸, (𝑒1𝑒2 ∧ 𝑒2𝑒3) ⇒ 𝑒1𝑒3

Un ordre total est un ordre pour lequel tous deux éléments sont comparables (dans un sens
ou dans l’autre).

∀𝑒1, 𝑒2 ∈ 𝐸, 𝑒1𝑒2 ∨ 𝑒2𝑒1

Exemples
— Relation d’ordre usuelle ≤ sur un ensemble de nombres.
— Relation d’inclusion ⊆ sur les parties d’un ensemble 𝐴.
— Relation de divisibilité | sur les nombres entiers.

Ordre strict. Un ordre ≤ sur un ensemble 𝐸 définit un ordre strict < par la condition
𝑒1 < 𝑒2 ⟺ (𝑒1 ≤ 𝑒2 ∧ 𝑒1 ≠ 𝑒2). Cette relation est transitive, anti-symétrique et irréflexive.

Plus petit élément, élément minimal. On considère un ensemble 𝐸 et un ordre ≤ sur 𝐸.
Étant donnés un sous-ensemble 𝐴 ⊆ 𝐸 et un élément 𝑥 ∈ 𝐴, on dit que :

— 𝑥 est le plus petit élément de 𝐴 si 𝑥 est plus petit que tous les éléments de 𝐴

∀𝑎 ∈ 𝐴, 𝑥 ≤ 𝑎

— 𝑥 est le plus grand élément de 𝐴 si 𝑥 est plus grand que tous les éléments de 𝐴

∀𝑎 ∈ 𝐴, 𝑎 ≤ 𝑥

Note : une partie 𝐴 n’admet pas nécessairement de plus petit élément, mais dans le cas où
un tel élément existe il est unique (de même pour le plus grand élément).

Étant donnés un sous-ensemble 𝐴 ⊆ 𝐸 et un élément 𝑥 ∈ 𝐴, on dit que :
— 𝑥 est un élément minimal de 𝐴 s’il n’existe pas dans 𝐴 d’élément plus petit que 𝑥

∀𝑎 ∈ 𝐴, 𝑎 ≤ 𝑥 ⇒ 𝑎 = 𝑥
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— 𝑥 est un élément maximal de 𝐴 s’il n’existe pas dans 𝐴 d’élément plus grand que 𝑥

∀𝑎 ∈ 𝐴, 𝑥 ≤ 𝑎 ⇒ 𝑎 = 𝑥

Note : minimal n’est pas la même chose que plus petit, et un élément minimal de 𝐴 n’est pas
nécessairement unique (de même pour maximal/plus grand).

Quelques propriétés.
— Le plus petit élément, s’il existe, est unique.
— Le plus petit élément, s’il existe, est l’unique élément minimal.
— Si l’ordre ≤ est total, les conditions « être le plus petit élément de 𝐴 » et « être un

élément minimal de 𝐴 » deviennent équivalentes.

Majorants/minorants, bornes. On considère un ensemble 𝐸, un ordre ≤ sur 𝐸 et une
partie 𝐴 ⊆ 𝐸.

— Un élément 𝑥 ∈ 𝐸 est un minorant de 𝐴 s’il est plus petit que tous les éléments de 𝐴

∀𝑎 ∈ 𝐴, 𝑥 ≤ 𝑎

— Un élément 𝑥 ∈ 𝐸 est un majorant de 𝐴 s’il est plus grand que tous les éléments de 𝐴

∀𝑎 ∈ 𝐴, 𝑎 ≤ 𝑥

— La borne inférieure de 𝐴 est, s’il existe, le plus grand élément des minorants de 𝐴.
— La borne supérieure de 𝐴 est, s’il existe, le plus petit élément des majorants de 𝐴.

Note : les majorants, minorants et bornes de 𝐴 n’existent pas forcément, et dans le cas où ils
existent n’appartiennent pas nécessairement à 𝐴.

5.6 Approfondissement : ordres bien fondés
La notion d’ordre permet de donner du sens à la notion de « progression » évoquée dans
notre problème de justification de l’arrêt d’un algorithme : on considérera avoir progressé
dès lors que l’on obtiendra quelque chose de strictement plus petit vis-à-vis de l’ordre choisi.
En revanche, tous les ordres n’empêchent pas une telle progression de se poursuivre indé-
finiment. Cette dernière propriété caractérise les ordres dits « bien fondés ».

Ordre bien fondé : définition. Un ordre ≤ sur un ensemble 𝐸 est bien fondé s’il n’existe
pas de suite infinie strictement décroissante pour ≤. Autrement dit, en notant < l’ordre strict
associé à ≤, il ne peut pas exister de suite (𝑥𝑘)𝑘∈ℕ telle que ∀𝑘 ∈ ℕ, 𝑥𝑘+1 < 𝑥𝑘 .

Cette propriété traduit directement la notion d’arrêt cherchée.

Caractérisation alternative Un ordre≤ sur un ensemble 𝐸 est bien fondé si et seulement
toute partie non vide de 𝐸 admet un élément minimal. Autrement écrit :

∀𝐴 ⊆ 𝐸, 𝐴 ≠ ∅ ⇒ (∃𝑎 ∈ 𝐴, ∀𝑥 ∈ 𝐴, 𝑥 ≤ 𝑎 ⇒ 𝑥 = 𝑎)

Preuve
— Supposons (𝐸, ≤) bien fondé. Soit 𝐴 une partie non vide de 𝐸.

Raisonnement par l’absurde. Supposons que 𝐴 n’admette pas d’élément minimal. Au-
trement dit, ∀𝑎 ∈ 𝐴, ∃𝑎′ ∈ 𝐴, 𝑎′ < 𝑎. Comme 𝐴 est non vide, il existe au moins un
élément 𝑎0 ∈ 𝐴. Comme ≤ est bien fondé, il n’existe pas de suite infinie strictement
décroissante à partir de 𝑎0. Soit (𝑎𝑘)𝑘∈[0,𝑁 ] une suite strictement décroissante d’élé-
ments de 𝐴 à partir de 𝑎0, qui soit la plus longue possible. Comme 𝑎𝑁 ∈ 𝐴 et 𝐴 n’ad-
met pas d’élément minimal, il existe 𝑎𝑁+1 ∈ 𝐴 avec 𝑎𝑁+1 < 𝑎𝑁 . Donc (𝑎𝑘)𝑘∈[0,𝑁+1] est
une suite strictement décroissante dans 𝐴 strictement plus longue que la précédente.
Contradiction, donc 𝐴 doit admettre un élément minimal.

— Supposons que toute partie non vide 𝐴 de 𝐸 admette un élément minimal.
Raisonnement par l’absurde. Soit (𝑥𝑘)𝑘∈ℕ une suite infinie strictement décroissante
dans 𝐸. On note 𝐴 l’ensemble des valeurs de cette suite. Cet ensemble 𝐴 est non vide
(il contient par exemple 𝑥0), et admet donc un élément minimal 𝑥𝑘 . Or 𝑥𝑘+1 < 𝑥𝑘 avec
𝑥𝑘+1 ∈ 𝐴, ce qui contredit la minimalité de 𝑥𝑘 . Donc il ne peut pas exister de suite
infinie strictement décroissante dans 𝐸, et l’ordre ≤ est bien fondé.
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Exemples
— Ordre usuel ≤ sur ℕ.
— Divisibilité | sur ℤ.
— Inclusion ⊆ sur les parties d’un ensemble fini.

Contre-exemples
— Ordre usuel ≤ sur ℤ : on peut descendre indéfiniment dans les négatifs.
— Ordre usuel ≤ sur ℝ+ : on peut s’approcher indéfiniment de 0 sans jamais l’atteindre.
— Inclusion ⊆ sur les parties d’un ensemble infini : on peut définir une suite infinie

d’ensembles qui ont toujours moins d’éléments mais restent infinis, comme la suite
([𝑘, ∞ [)𝑘∈ℕ.

Récurrence bien fondée On considère un ensemble 𝐸, avec un ordre bien fondé ≤. En
notant < l’ordre strict associé à ≤ (par définition, 𝑥 < 𝑦 si et seulement si 𝑥 ≤ 𝑦 ∧ 𝑥 ≠ 𝑦),
on a le nouveau principe de récurrence suivant.

Pour tout prédicat 𝑃 sur les éléments de 𝐸, si
1. pour tout 𝑒 ∈ 𝐸, (∀𝑥 ∈ 𝐸, 𝑥 < 𝑒 ⇒ 𝑃(𝑥)) implique 𝑃(𝑒),

alors pour tout élément 𝑒 ∈ 𝐸 on a 𝑃(𝑒).

Autrement dit, si l’on peut déduire 𝑃(𝑒) dès lors que l’on suppose la propriété vraie pour
tout les élément strictement inférieurs à 𝑒, et ceci pour chaque 𝑒, alors la propriété 𝑃 est
vraie pour tous les éléments de 𝐸. C’est la même idée que le principe de récurrence forte sur
les entiers.

Justification du principe de récurrence bien fondée Supposons que pour tout 𝑒 ∈ 𝐸,
(∀𝑥 ∈ 𝐸, 𝑥 < 𝑒 ⇒ 𝑃(𝑥)) implique 𝑃(𝑒), notons 𝐴 l’ensemble des éléments de 𝑎 ∈ 𝐸 tels
que 𝑃(𝑎) ne soit pas vraie et montrons que cet ensemble est vide en raisonnant par l’absurde.

Supposons cet ensemble 𝐴 non vide. Comme ≤ est bien fondé et 𝐴 non vide, il existe
un élément minimal 𝑎 de 𝐴. Soit 𝑥 ∈ 𝐸 tel que 𝑥 < 𝑎. Comme 𝑎 est minimal dans 𝐴, nous
savons que 𝑥 ∉ 𝐴, et donc que 𝑃(𝑥) est vraie. Ceci étant vrai pour pour tous les 𝑥 < 𝑎, on
déduit 𝑃(𝑎). Contradiction avec l’appartenance de 𝑎 à 𝐴. Donc l’ensemble 𝐴 doit être vide,
et tous les éléments de 𝐸 vérifient 𝑃 .

5.7 Approfondissement : combinaison d’ordres
Comment jugeons-nous les propositions suivantes?
— (1, 2) < (3, 4)?
— (1, 3) < (2, 4)?
— (1, 5) < (2, 3)?
— (2, 3) < (1, 5)?

De manière plus générale, étant donnés deux ensembles 𝐴 et 𝐵, chacun avec un ordre (on
pourra les noter respectivement ≤𝐴 et ≤𝐵), on cherche à ordonner les paires de 𝐴 × 𝐵.

Ordre produit cartésien L’ordre produit sur 𝐴×𝐵 est défini par (𝑎1, 𝑏1) ≤ (𝑎2, 𝑏2) si et
seulement si (𝑎1, 𝑏1) est plus petit sur les deux composantes à la fois : 𝑎1 ≤𝐴 𝑎2 ∧ 𝑏1 ≤𝐵 𝑏2.

Par exemple :
— (1, 2) ≤ (3, 4)
— (1, 3) ≤ (2, 4)
— (1, 5) et (2, 3) sont incomparables

Note : l’ordre produit n’est donc pas total.
Si ≤𝐴 et ≤𝐵 sont deux ordres bien fondés, alors leur produit est lui aussi bien fondé.
Justification. Si on prend une suite infinie (𝑎𝑛, 𝑏𝑛)𝑛∈ℕ strictement décroissante pour l’ordre

produit, alors on obtient deux suites infinies décroissantes (𝑎𝑛)𝑛∈ℕ et (𝑏𝑛)𝑛∈ℕ pour les ordres
≤𝐴 et ≤𝐵. On a plus précisément, pour tout 𝑛 ∈ ℕ, d’une part 𝑎𝑛 ≥𝐴 𝑎𝑛+1 et 𝑏𝑛 ≥𝐵 𝑏𝑛+1, et
d’autre part au moins l’une des deux conditions 𝑎𝑛 ≠ 𝑎𝑛+1 ou 𝑏𝑛 ≠ 𝑏𝑛+1. Ainsi, au moins
l’une des deux suites (𝑎𝑛) ou (𝑏𝑛) décroît strictement infiniment souvent. Cela contredit
l’hypothèse selon laquelle l’ordre correspondant (≤𝐴 ou ≤𝐵) est bien fondé.
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Ordre produit lexicographique Le produit lexicographique des deux ordres ≤𝐴 et ≤𝐵
consiste à comparer d’abord la première composante, puis à ne tenir compte de la deuxième
composante qu’en cas d’égalité sur la première : on a (𝑎1, 𝑏1) ≤ (𝑎2, 𝑏2) si et seulement si
𝑎1 <𝐴 𝑎2 ∨ (𝑎1 = 𝑎2 ∧ 𝑏1 ≤𝐵 𝑏2).

C’est selon ce principe que l’on compare deux mots dans le dictionnaire (l’ordre lexico-
graphique est aussi appelé ordre du dictionnaire).

— (1, 2) ≤ (3, 4)
— (1, 3) ≤ (2, 4)
— (1, 5) ≤ (2, 3)

Note : l’ordre lexicographique est total.
Si ≤𝐴 et ≤𝐵 sont des ordres bien fondés, alors leur produit lexicographique est bien fondé

également.
Justification. On va utiliser la caractérisation alternative des ordres bien fondés : toute

partie non vide contient au moins un élément minimal. Soit donc 𝐶 ⊆ 𝐴 × 𝐵 un ensemble
non vide arbitraire de paires d’un élément de 𝐴 et d’un élément de 𝐵. On note 𝐶𝐴 l’en-
semble des éléments de 𝐴 apparaissant dans une paire de 𝐶. Formellement : 𝐶𝐴 = {𝑎 ∈
𝐴 ∣ ∃𝑏 ∈ 𝐵, (𝑎, 𝑏) ∈ 𝐶}. Comme 𝐶 n’est pas vide, 𝐶𝐴 contient également au moins un élé-
ment. L’ordre ≤𝐴 étant bien fondé on en déduit qu’il existe un élément minimal 𝑎0 pour ≤𝐴
dans 𝐶𝐴. Notons maintenant 𝐶𝐵 l’ensemble des éléments de 𝐵 apparaissant associés à 𝑎0
dans l’ensemble 𝐶. Formellement : 𝐶𝐵 = {𝑏 ∈ 𝐵 ∣ (𝑎0, 𝑏) ∈ 𝐶}. Cet ensemble 𝐶𝐵 est à nou-
veau non vide, puisque 𝑎0 ∈ 𝐶𝐴 et par définition de 𝐶𝐴 il existe au moins un 𝑏 ∈ 𝐵 tel que
(𝑎0, 𝑏) ∈ 𝐶. L’ordre ≤𝐵 étant bien fondé on en déduit qu’il existe un élément minimal 𝑏0
pour ≤𝐵 dans 𝐶𝐵. Il ne reste plus qu’à montrer que la paire (𝑎0, 𝑏0) est un élément mini-
mal de 𝐶 pour l’ordre lexicographique. Soit donc (𝑎, 𝑏) ∈ 𝐶, telle que (𝑎, 𝑏) ≤ (𝑎0, 𝑏0). Par
définition de l’ordre lexicographique ≤, on a deux cas.

— Soit 𝑎 < 𝑎0, ce qui contredirait la minimalité de 𝑎0 car 𝑎 ∈ 𝐶𝐴.
— Soit 𝑎 = 𝑎0 et 𝑏 ≤𝐵 𝑏0. Alors 𝑏 ∈ 𝐶𝐵, et par minimalité de 𝑏0 on a donc 𝑏 = 𝑏0.

On a donc nécessairement (𝑎, 𝑏) = (𝑎0, 𝑏0), et la paire (𝑎0, 𝑏0) est bien minimale. Donc 𝐶
admet un élément minimal, et ainsi l’ordre lexicographique est bien fondé.

5.8 Approfondissement : critère d’existence d’un tri topologique
On constate que la présence d’un cycle dans le graphe empêche tout tri topologique.

Raisonnons par l’absurde : prenons un graphe contenant un cycle

𝑡0 → 𝑡1 → 𝑡2 → … → 𝑡𝑘 → 𝑡0

et supposons que ce graphe admet un tri topologique. Nécessairement, le tri topologique
fait intervenir tous les sommets de ce cycle. Notons 𝑡𝑖 celui qui apparaît en premier. En
particulier, il apparaît avant 𝑡𝑖−1, ce qui contredit l’existence d’une arête 𝑡𝑖−1 → 𝑡𝑖 (dans le
cas où 𝑖 = 0, on remplace dans ce raisonnement 𝑖 − 1 par 𝑘).

Critère d’existence d’un tri topologique. Inversement, on peut démontrer le fait sui-
vant.

Tout graphe sans cycle admet un tri topologique.

On commence par démontrer le lemme suivant : tout graphe acyclique non vide admet au
moins un sommet de degré entrant 0.

Preuve par l’absurde. Soit 𝐺 un graphe acyclique non vide tel que tous les sommets de
𝐺 ont un degré entrant strictement positif. On va démontrer par récurrence que ∀𝑛 ∈ ℕ, le
graphe 𝐺 admet un chemin de longueur 𝑛 :

— Cas de base : 𝐺 étant non vide il contient un sommet 𝑠, et un chemin de longueur 0
de 𝑠 à 𝑠.

— Itération : Soit 𝑛 ∈ ℕ tel que 𝐺 admette un chemin de longueur 𝑛, et soit 𝑡0 → 𝑡1 →
… → 𝑡𝑛 un tel chemin de longueur 𝑛 dans 𝐺. Le sommet de départ 𝑡0 de ce chemin a
un degré entrant non nul, il existe donc une arête 𝑠 → 𝑡0 ayant 𝑡0 pour arrivée. On
peut donc construire un chemin 𝑠 → 𝑡0 → 𝑡1 → … → 𝑡𝑛 de longueur 𝑛 + 1 dans 𝐺.
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Donc ∀𝑛 ∈ ℕ, le graphe 𝐺 admet un chemin de longueur 𝑛. En particulier, en notant 𝑁 le
nombre de sommets de 𝐺, on sait que 𝐺 admet un chemin de longueur 𝑁 +1. Par le principe
des tiroirs il existe un sommet 𝑠 de 𝐺 par lequel ce chemin passe deux fois. On extrait du
chemin la séquence comprise entre les deux premières occurrences de 𝑠 pour obtenir un
chemin de 𝑠 à 𝑠, c’est-à-dire un cycle. Contradiction avec l’hypothèse selon laquelle 𝐺 est
acyclique. Donc 𝐺 admet nécessairement un sommet de degré entrant 0.

Retour au théorème : tout graphe orienté acyclique admet un tri topologique.
Preuve par récurrence sur le nombre de sommets du graphe. On note 𝑃(𝑛) la propriété :

« tous les graphes acycliques à 𝑛 sommets admettent un tri topologique ».
— Initialisation (preuve de 𝑃(0)) : un graphe vide est trié topologiquement par la sé-

quence vide.
— Hérédité (preuve de ∀𝑛 ∈ ℕ, 𝑃(𝑛) ⇒ 𝑃(𝑛+ 1)). Soit 𝑛 tel que 𝑃(𝑛) soit vraie, et soit 𝐺

un graphe acyclique à 𝑛+1 sommets {𝑠0, … , 𝑠𝑛}. Par notre lemme, 𝐺 admet un sommet
𝑠𝑖 de degré entrant 0. Le sous-graphe 𝐺′ obtenu en retirant de 𝐺 ce sommet 𝑠𝑖 et ses
arêtes incidentes a 𝑛 sommets, et est de plus acyclique (supposons qu’il existe un cycle
dans 𝐺′, alors ce cycle existerait également dans 𝐺 ; or 𝐺 est acyclique : contradiction).
On peut donc appliquer l’hypothèse de récurrence à𝐺′ pour obtenir un tri topologique
de 𝐺′, c’est-à-dire une séquence 𝑡0, 𝑡1, … , 𝑡𝑛−1 des sommets {𝑠0, … , 𝑠𝑛} ⧵ {𝑠𝑖} compatible
avec l’orientation des arêtes. Alors la séquence 𝑠𝑖, 𝑡0, 𝑡1, … , 𝑡𝑛−1 obtenue en ajoutant le
sommet 𝑠𝑖 en tête de la précédente est un tri topologique du graphe 𝐺 complet.
En effet, soit une arête 𝑠 → 𝑡 quelconque de 𝐺, montrons que 𝑠 apparaît bien avant 𝑡
dans la séquence 𝑠𝑖, 𝑡0, 𝑡1, … , 𝑡𝑛−1.

— Si ni 𝑠 ni 𝑡 n’est égal à 𝑠𝑖, alors l’arête 𝑠 → 𝑡 apparaît dans le sous-graphe 𝐺′,
et par hypothèse les sommets 𝑠 et 𝑡 apparaissent dans le bon ordre dans le tri
topologique 𝑡0, 𝑡1, … , 𝑡𝑛−1 de 𝐺′.

— Si 𝑠 = 𝑠𝑖, alors 𝑠 = 𝑠𝑖 apparait bien avant 𝑡 = 𝑡𝑗 , dans la séquence 𝑠𝑖, 𝑡0, 𝑡1, … , 𝑡𝑛−1.
— Il n’est pas possible que 𝑡 = 𝑠𝑖, car l’existence de l’arête 𝑠 → 𝑠𝑖 contredirait

l’hypothèse selon laquelle le sommet 𝑠𝑖 a un degré entrant 0.
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6 Trouver la voie

6.1 Problème : recherche de chemin
On se donne un graphe, un sommet de départ, et un sommet cible. Question : le som-

met cible est-il accessible à partir du sommet de départ ? C’est-à-dire : existe-t-il un chemin
allant du sommet de départ ou sommet cible, en suivant les arêtes du graphe? Si oui, peut-
on indiquer un tel chemin? Et si plusieurs chemins sont possibles, peut-on privilégier les
chemins les plus courts ? Dans ce chapitre, nous cherchons donc à explorer un graphe.

6.2 Algorithme : parcours en profondeur
Pour parcourir un graphe, on peut suivre une stratégie très simple : avancer dans une

direction quelconque jusqu’à aboutir à un cul-de-sac, puis revenir sur ses pas jusqu’au der-
nier embranchement et choisir une nouvelle direction (c’est-à-dire une direction qui n’a pas
encore été explorée).

On peut voir ceci comme une stratégie récursive : pour explorer un graphe à partir d’un
sommet 𝑠, on considère tour à tour toutes les arêtes 𝑠 → 𝑡𝑖, et on explore récursivement
à partir de chacune des cibles 𝑡𝑖 prises à tour de rôle. Attention cependant : il est possible
lors de cette exploration récursive de retourner à un sommet à partir duquel l’exploration
a déjà été faite, voire de retourner au point de départ. Dans ce cas, on ne veut pas refaire
l’exploration déjà faite, et encore moins tourner en rond. On mémorise donc les sommets
déjà vus, afin de ne pas les explorer à nouveau.

Exemple d’exploration. On prend pour point de départ le sommet 𝑠6.

𝑠0

𝑠1 𝑠2
𝑠3

𝑠4

𝑠5 𝑠6
𝑠7

𝑠8 𝑠9

1. Explorer 𝑠6, puis 𝑠2, puis 𝑠1.
2. Le seul successeur possible est 𝑠6, déjà exploré, revenir au sommet précédent 𝑠2 et

choisir une autre voie. Explorer 𝑠3.
3. Aucun successeur, revenir au précédent 𝑠2. Aucune voie inexplorée restante, revenir

au précédent 𝑠6 et choisir une autre voie.
4. Explorer 𝑠5 puis 𝑠4 (note : le successeur 𝑠1 de 𝑠5 a déjà été exploré), puis 𝑠0.
5. Les seuls successeurs possibles sont 𝑠1 et 𝑠5, déjà explorés, revenir au sommet précé-

dent 𝑠4 et choisir une autre voie. Explorer 𝑠8.
6. Unique successeur 𝑠5 déjà exploré, revenir au sommet précédent 𝑠4. Aucune voie in-

explorée restante, revenir encore au précédent 𝑠5. Aucune voie inexplorée restante,
revenir encore au précédent 𝑠6 et choisir une autre voie. Explorer 𝑠9, puis 𝑠7.

7. Aucun successeur non exploré, revenir au précédent 𝑠9. Aucune voie inexplorée res-
tante, revenir au précédent puis 𝑠6. Aucune voie inexplorée non plus, et pas non plus
de précédent restant. Arrêt.

Code java. Pour marquer les sommets déjà explorés, on peut utiliser un tableau vu conte-
nant un booléen par sommet du graphe, et tel que vu[𝑖] vaut true si et seulement si 𝑠𝑖 a
effectivement été rencontré. Alors, avant tout appel récursif on peut vérifier si le sommet
considéré n’a pas déjà été visité. La fonction principale dfs initialise ce tableau de booléens,
puis appelle la fonction récursive explore réalisant notre stratégie d’exploration. À la fin le
tableau vu indique, pour chaque numéro 𝑖, si le sommet 𝑠𝑖 est accessible par un chemin à
partir de la source s.

private static boolean[] vu;

private static void explore(Graphe g, int s) {
vu[s] = true;
for (int v : g.voisins(s)) {

if (!vu[v]) explore(g, v);
}

}

static boolean[] dfs(Graphe g, int s) {
vu = new boolean[g.taille()];
explore(g, s);
return vu;

}
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Voici le détail de l’exécution de dfs sur l’exemple précédent. On note explore 𝑘 pour
un appel récursif sur le sommet 𝑠𝑘 , et ignore 𝑘 lorsque le sommet 𝑠𝑘 est examiné dans une
énumération de voisins, mais ignoré car déjà marqué.

Sommets vus
Action 0 1 2 3 4 5 6 7 8 9
explore 6 ✔
+-- explore 2 ✔ ✔
| +-- explore 1 ✔ ✔ ✔
| | +-- ignore 6 ✔ ✔ ✔
| +-- explore 3 ✔ ✔ ✔ ✔
+-- explore 5 ✔ ✔ ✔ ✔ ✔
| +-- ignore 1 ✔ ✔ ✔ ✔ ✔
| +-- explore 4 ✔ ✔ ✔ ✔ ✔ ✔
| | +-- explore 0 ✔ ✔ ✔ ✔ ✔ ✔ ✔
| | | +-- ignore 1 ✔ ✔ ✔ ✔ ✔ ✔ ✔
| | | +-- ignore 5 ✔ ✔ ✔ ✔ ✔ ✔ ✔
| | +-- explore 8 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
| | +-- ignore 5 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
| +-- ignore 6 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
+-- explore 9 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

+-- explore 7 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
+-- ignore 2 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
+-- ignore 3 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Question : que se passerait-il si
l’instruction vu[s] = true; était
placée à la fin de l’exploration
plutôt qu’au début ?

Ce mode d’exploration est appelé parcours en profondeur , et est caractérisé comme suit :
on s’avance aussi loin que possible sur un chemin donné, pour ne revenir sur nos pas qu’une
fois un cul-de-sac atteint. Ceci est lié à l’emboîtement des appels récursifs : un appel donné
à explore(g, s) ne se termine qu’une fois que toute l’exploration à partir de s est faite.

6.3 Algorithme : parcours en largeur
Partant d’un sommet 𝑠 donné, le parcours en profondeur consiste à choisir une voie et

à la suivre jusqu’au bout avant de considérer les autres voies qui étaient possibles. Alter-
nativement, on peut vouloir suivre toutes les voies en parallèle, en progressant en cercles
concentriques autour de 𝑠 : d’abord tous les voisins immédiats, puis les sommets accessibles
depuis l’ensemble de ces voisins, puis les sommets accessibles depuis l’ensemble de ces sui-
vants, etc. On parle ici de parcours en largeur .

Exemple d’exploration. On part du sommet 𝑠6.

𝑠0

𝑠1 𝑠2
𝑠3

𝑠4

𝑠5 𝑠6
𝑠7

𝑠8 𝑠9

1. On regarde la source 𝑠6. Ses voisins immédiats sont 𝑠2, 𝑠5 et 𝑠9.
2. On regarde à tour de rôle 𝑠2, 𝑠5 et 𝑠9, et on découvre les nouveaux sommets 𝑠1, 𝑠3, 𝑠4,

𝑠7 et 𝑠8.
3. On regarde à tour de rôle les cinq précédents, et on découvre encore un nouveau

sommet 𝑠0.
4. Après 𝑠0, on ne trouve plus de sommets non encore découverts : arrêt.

Code java. Il n’est plus question ici d’exploration récursive. L’analyse d’un sommet 𝑠
du 𝑘-ème cercle consiste à observer ses voisins 𝑣, et à les enregistrer comme devant être
analysés à l’étape 𝑘 + 1 (du moins, ceux des voisins qui n’ont pas déjà été vus). En pratique,
il n’est pas nécessaire de matérialiser la transition entre les différents « cercles » : on stocke
les sommets du 𝑘-ème et du 𝑘 + 1-ème cercle dans une même file de sommets en attente, et
on traite un par un les sommets pris dans cette file. La discipline de file, dite fifo (« first in,
first out »), assure que les premiers sommets analysés sont ceux qui ont été enregistrés en
premier. Alors, tous les sommets du 𝑘-ème cercle seront analysés avant tous les sommets
du 𝑘 + 1-ème cercle, eux-mêmes analysés avant tous les sommets du 𝑘 + 2-ème cercle, etc.
À nouveau, la fonction renvoie le tableau de booléens identifiant les sommets accessibles
depuis la source s.

Dans le code proposé ici, on remplace le tableau de booléens vu par un tableau d’entiers
dist, tel que dist[𝑠] vaut -1 pour un sommet 𝑠 non visité, et 𝑘, pour un sommet visité du
𝑘-ème cercle. On obtient donc une information plus précise : pas seulement d’accessibilité,
mais de distance par rapport à la source.
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static int[] bfs(Graphe g, int s) {
int[] dist = new int[g.taille()];
for (int t : g.sommets()) dist[t] = -1;
Queue<Integer> enAttente = new ArrayDeque<>();
dist[s] = 0;
enAttente.add(s);
while (!enAttente.isEmpty()) {

int t = enAttente.remove();
for (int v : g.voisins(t)) {

if (dist[v] < 0) {
dist[v] = dist[t] + 1;
enAttente.add(v);

}
}

}
return dist;

}

Voici le détail de l’exécution de bfs sur l’exemple précédent. La file apparaît comme une
ligne dans laquelle les éléments sont ajoutés par la droite et retirés par la gauche. Note :
l’ordre dans lequel on considère les successeurs d’un sommet est a priori arbitraire.

𝑠0

𝑠1 𝑠2
𝑠3

𝑠4

𝑠5 𝑠6
𝑠7

𝑠8 𝑠9

dist

t voisins enAttente 0 1 2 3 4 5 6 7 8 9
6 − − − − − − 0 − − −

6 2, 5, 9 2 5 9 − − 1 − − 1 0 − − 1
2 1, 3 5 9 1 3 − 2 1 2 − 1 0 − − 1
5 1, 4, 6 9 1 3 4 − 2 1 2 2 1 0 − − 1
9 7, 8 1 3 4 7 8 − 2 1 2 2 1 0 2 2 1
1 6 3 4 7 8 − 2 1 2 2 1 0 2 2 1
3 ∅ 4 7 8 − 2 1 2 2 1 0 2 2 1
4 0, 8 7 8 0 3 2 1 2 2 1 0 2 2 1
7 6, 2, 3 3 0 3 2 1 2 2 1 0 2 2 1
8 5 0 3 2 1 2 2 1 0 2 2 1
0 1, 5 3 2 1 2 2 1 0 2 2 1

6.4 Comparaison des deux parcours
On peut ramener les parcours en profondeur et en largeur a une structure commune,

mais l’un et l’autre n’explorent pas les sommets dans le même ordre.

Parcours en profondeur, sans récurrence. On peut obtenir une autre manière d’écrire
un parcours en profondeur en prenant le code du parcours en largeur, et en remplaçant la file
d’attente par une pile. La discipline de pile, dite lifo (« last in, first out »), fait que le premier
sommet analysé est celui qui a été enregistré en dernier. Autrement dit, on poursuit d’abord
dans la direction ouverte par le sommet courant, avant de revenir aux autres sommets du
même cercle.

static boolean[] dfs(Graphe g, int s) {
boolean[] vu = new boolean[g.taille()];
Deque<Integer> enAttente = new ArrayDeque<>();
vu[s] = true;
enAttente.push(s);
while (!enAttente.isEmpty()) {

int t = enAttente.pop();
for (int v : g.voisins(t)) {

if (!vu[v]) {
vu[v] = true;
enAttente.push(v);

}
}

}
return vu;

}
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Exemple d’exécution sur l’exemple précédent. La pile apparaît comme une ligne dans la-
quelle les éléments sont ajoutés et retirés par la droite. Note : l’ordre dans lequel on considère
les successeurs d’un sommet est a priori arbitraire. Question : que se passerait-il si on

remplaçait les deux instructions
vu[s] = true; et vu[v] = true;

par une unique instruction
vu[t] = true; placée juste après
s = enAttente.pop() ?

𝑠0

𝑠1 𝑠2
𝑠3

𝑠4

𝑠5 𝑠6
𝑠7

𝑠8 𝑠9

t voisins enAttente

6
6 9, 5, 2 9 5 2
2 3, 1 9 5 3 1
1 6 9 5 3
3 ∅ 9 5
5 6, 4, 1 9 4
4 8, 0 9 8 0
0 5, 1 9 8
8 5 9
9 8, 7 7
7 6, 3, 2

Note : dans la version récursive, une « pile » était bien présente. Mais où?

Comparaison des deux parcours. Sur ces schémas, on représente en noir les sommets
déjà explorés, en gris les sommets déjà vus mais pas encore explorés, et en blanc et les
sommets pas encore vus. Les schémas de gauche correspondent à l’état du parcours en pro-
fondeur et ceux de droite à l’état du parcours en largeur, après 3 puis 4 sommets explorés.
Les nombres en blanc dans les sommets noirs indiquent l’ordre dans lequel les sommets ont
été explorés.

On peut observer que le parcours en profondeur (à gauche) visite en troisième et en
quatrième deux sommets qui étaient accessibles depuis le deuxième sommet visité (mais
pas depuis la source). À l’inverse, le parcours en largeur (à droite) explore en premier les
trois voisins immédiats de la source.

𝑠0

𝑠1 𝑠2
𝑠3

𝑠4

𝑠5 1
𝑠7

𝑠8 𝑠9

𝑠0

𝑠1 2
𝑠3

𝑠4

𝑠5 1
𝑠7

𝑠8 𝑠9

𝑠0

3 2
𝑠3

𝑠4

𝑠5 1
𝑠7

𝑠8 𝑠9

𝑠0

𝑠1 2
𝑠3

𝑠4

3 1
𝑠7

𝑠8 𝑠9

𝑠0

3 2

4

𝑠4

𝑠5 1
𝑠7

𝑠8 𝑠9

𝑠0

𝑠1 2
𝑠3

𝑠4

3 1
𝑠7

𝑠8 4
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6.5 Reconstruction de chemins.
Une petite modification de nos algorithmes de parcours permet de reconstruire un che-

min de la source vers n’importe quel sommet accessible. On modifie pour cela le tableau de
booléens vu en un tableau de sommets pred tel que :

— pour tout sommet 𝑠𝑖 non vu, pred[𝑖] vaut -1,
— pour tout sommet 𝑠𝑖 vu, pred[𝑖] contient le numéro du sommet 𝑠𝑗 depuis lequel on a

vu 𝑠𝑖,
— cas particulier pour la source 𝑠𝑖0 elle-même : on initialise pred[𝑖0] = 𝑖0.

Ainsi, lorsque pred[𝑖] est un entier positif 𝑗 ≠ 𝑖, on sait qu’on a une arête 𝑠𝑗 → 𝑠𝑖, et que
le sommet 𝑠𝑗 est lui-même accessible depuis la source. En outre, seul le sommet source vérifie
pred[𝑖] = 𝑖. À l’inverse, pred[𝑖] vaut -1 exactement dans les cas où vu[𝑖] aurait valu false.
On ajoute pour finir une fonction qui, à partir de ce tableau des prédécesseurs, reconstruit
le chemin complet. Cette adaptation s’applique aussi bien au parcours en profondeur qu’au
parcours en largeur. Voici la version basée sur bfs.

public static int[] bfs(Graphe g, int s) {
int[] pred = new int[g.taille()];
for (int t : g.sommets()) pred[t] = -1;
Queue<Integer> enAttente = new ArrayDeque<>();
pred[s] = s;
enAttente.add(s);
while (!enAttente.isEmpty()) {

int t = enAttente.remove();
for (int v : g.voisins(t)) {

if (pred[v] < 0) {
pred[v] = t;
enAttente.add(v);

}
}

}
return pred;

}

public static List<Integer> chemin(Graphe g, int s, int t) {
int[] pred = bfs(g, s);
LinkedList<Integer> chemin = new LinkedList<>();
chemin.add(t);
while (t != s) {

t = pred[t];
chemin.addFirst(t);

}
return chemin;

}

Dans le tableau de prédécesseurs fourni par un tel parcours, la source n’a pas de prédé-
cesseur, les sommets du premier cercle ont pour prédécesseur la source, les sommets du
deuxième cercle ont pour prédécesseur un sommet du premier cercle, etc. Pour notre graphe
exemple, et une exploration en largeur des sommets dans l’ordre 6, 2, 5, 9, 1, 3, 4, 7, 8, 0, le
tableau des prédécesseurs serait celui-ci.

0 1 2 3 4 5 6 7 8 9
4 2 6 2 5 6 6 9 9 6

On peut également visualiser ceci par une relation « prédécesseur », relation binaire sur
les sommets du graphe qui ne retient que les arêtes qui ont réellement été utilisées lors du
parcours.

𝑠0

𝑠1 𝑠2

𝑠3

𝑠4

𝑠5 𝑠6

𝑠7

𝑠8 𝑠9
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6.6 Approfondissement : analyse du parcours en profondeur
On considère ici l’algorithme dfs donné page 40, c’est-à-dire l’exploration récursive.

Complexité. Considérons un graphe avec 𝑛 sommets et 𝑘 arêtes.
Première remarque : la fonction explore est appelée au plus une fois par sommet du

graphe. En effet, elle n’est appelée que sur des sommets 𝑠 vérifiant vu[𝑠] = false, et modifie
cette valeur en true avant toute autre chose. Une fois la première instruction de l’appel
réalisée elle ne peut donc plus être appelée une deuxième fois sur le même sommet.

Dans chaque appel à explore on a les opérations suivantes :
— modification de vu pour le sommet courant,
— énumération des voisins,
— consultation de vu pour chaque voisins,
— éventuels appels récursifs.

Le coût propre d’un appel, ne tenant compte que des opérations de l’appel lui-même et pas
de ses sous-appels récursifs, est donc proportionnel au nombre de voisins du sommet (son
degré).

L’ordre de grandeur maximum du coût total est donc donné par le nombre 𝑛 de sommets
(pour les appels récursifs) et le nombre 𝑘 d’arêtes (pour le cumul Le coût réel peut être inférieur

dans le cas où une grande part
des sommets n’est pas accessible
depuis la source.

des voisins énumérés dans
chaque appel). D’où une complexité 𝑂(𝑛 + 𝑘).

Spécification et correction. Spécification : l’algorithme dfs prend en entrée un graphe 𝑔 ,
et un sommet 𝑠 valide de 𝑔 , et renvoie un tableau 𝐴 tel que pour tout sommet 𝑡 de 𝐺, on a
𝐴[𝑡] = true si et seulement si 𝑡 est accessible depuis 𝑠 par un chemin de 𝑔 .

Montrons, par récurrence forte sur le nombre total d’appels récursifs déclenchés, qu’un
appel explore(𝑔, 𝑠) ne marque que des sommets accessibles depuis 𝑠.

— Cas de base : aucun appel récursif. Alors le seul sommet marqué est 𝑠 lui-même, qui
est bien accessible depuis 𝑠 par le chemin vide.

— Cas héréditaire : les sommets marqués lors de l’appel explore(𝑔, 𝑠) sont 𝑠 lui-même,
et les sommets marqués par les appels récursifs immédiats explore(𝑔, 𝑣𝑖) effectués
pour un certain nombre de voisins {𝑣1, … , 𝑣𝑘} de 𝑠. Ces appels récursifs immédiats sont
inclus dans l’appel principal : chacun déclenche un nombre total d’appels récursifs in-
férieur d’au moins 1 au total de l’appel principal, et on peut leur appliquer l’hypothèse
de récurrence. Ainsi, chaque appel explore(𝑔, 𝑣𝑖) ne marque que des sommets acces-
sibles depuis 𝑣𝑖. Or, un sommet accessible depuis 𝑣𝑖 est également accessible depuis 𝑠,
puisqu’on a une arête 𝑠 → 𝑣𝑖.

Montrons que, pour tout sommet 𝑡 tel qu’il existe un chemin 𝑠 → … → 𝑡, le sommet 𝑡
est marqué après l’appel explore(𝑔, 𝑠). On le montre par récurrence sur la longueur du
chemin.

— Cas de base, pour la longueur 0 : cela signifie que 𝑡 = 𝑠, et ce sommet est bien marqué
immédiatement.

— Pour un chemin de longueur 𝑛+1, on décompose en 𝑠 → … → 𝑢 → 𝑡 où le chemin de
𝑠 à 𝑢 est de longueur 𝑛. Par hypothèse de récurrence, 𝑢 est bien marqué, ce qui signifie
qu’un appel explore(𝑔, 𝑢) a été déclenché. Lors de cet appel le sommet 𝑡, voisin de
𝑢, a été examiné. Alors soit 𝑡 était déjà marqué, soit on a eu un appel explore(𝑔, 𝑡)
qui a bien marqué le sommet.

Note : pour être parfaitement rigoureux dans les hypothèses de cette preuve, on suppose que les
sommets ne peuvent être marqués que par la fonction explore.

Avec ces deux points, on a bien montré que l’appel explore(g, s) réalisé dans la fonction
dfs marque bien exactement les sommets accessibles depuis s.
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6.7 Approfondissement : analyse du parcours en largeur
On considère ici l’algorithme bfs donné page 42, c’est-à-dire l’exploration avec une file fifo.

Complexité. Considérons un graphe avec 𝑛 sommets et 𝑘 arêtes.
Remarquons d’abord que chaque sommet ne peut être ajouté qu’une seule fois à la file

enAttente. En effet, cet ajout est soumis à un test préalable de distance non définie, et la
distance est justement définie au moment même où le sommet est ajouté, empêchant tout
nouvel ajout du même sommet. Remarquons en passant que, de même, une distance définie
dans le tableau dist n’est jamais modifiée par la suite.

Chaque tour de la boucle while traite un nouveau sommet de la file enAttente. On a donc
au maximum 𝑛 tours, pour chacun des 𝑛 sommets. Le coût d’un tour de boucle donné est
proportionnel au nombre de voisins du sommet considéré. Le coût total est donc 𝑂(𝑛 + 𝑘),
comme pour le parcours en profondeur.

Spécification et correction. Spécification : l’algorithme bfs prend en entrée un graphe 𝑔
et un sommet 𝑠 valide de 𝑔 , et renvoie un tableau d’entiers 𝐷 tel que pour tout sommet 𝑡
de 𝑔 , on a 𝐷[𝑡] ≥ 0 si et seulement si 𝑡 est accessible depuis 𝑠 et à distance 𝐷[𝑡] (c’est-à-dire
que le plus petit nombre d’arêtes d’un chemin de 𝑠 à 𝑡 est 𝐷[𝑡]), et 𝐷[𝑡] = −1 sinon.

Notons 𝑑𝑡 la distance de la source au sommet 𝑡, c’est-à-dire le plus petit nombre d’arêtes
d’un chemin de 𝑠 vers 𝑡, en posant 𝑑𝑡 = ∞ lorsque 𝑡 n’est pas atteignable. Pour un état donné
de la file enAttente, notons 𝑑 la distance dist[𝑡] renseignée pour le premier sommet de la
file, si la file est non vide. La correction est obtenue à l’aide des invariants suivants pour la
boucle while de l’algorithme.

1. La file enAttente est constituée :
— d’abord d’une séquence de sommets à distance 𝑑,
— puis d’une séquence de sommets à distance 𝑑 + 1, qui sont exactement les som-

mets à distance 𝑑 + 1 voisins des sommets à distance 𝑑 absents de la première
partie.

2. Tout sommet 𝑡 à distance 𝑑𝑡 ≤ 𝑑 ou qui est présent dans la file enAttente est tel que
dist[𝑡] = 𝑑𝑡 .

3. Tour sommet 𝑡 à distance 𝑑𝑡 > 𝑑 et qui n’est pas présent dans la file enAttente est tel
que dist[𝑡] = −1.

Ces propriétés sont bien valides avant le premier tour de boucle : la file enAttente contient
alors exclusivement le sommet s, qui est l’unique sommet à distance zéro de lui-même.

Supposons les propriétés vraies au début d’un tour de boucle. L’algorithme considère
alors le sommet 𝑡 en tête de la file enAttente, qui par définition est à distance 𝑑 de la source.
On énumère ensuite chaque voisin 𝑣 de 𝑡.

— Si 𝑣 est tel que dist[𝑣] ≥ 0, alors l’algorithme ne fait rien.
— Sinon, par hypothèse on a 𝑑𝑣 > 𝑑, et l’algorithme définit dist[𝑣] = 𝑑 + 1 et ajoute 𝑣 à

la file. Cette action est correcte, car on a bien un chemin 𝑠 → … → 𝑡 → 𝑣 de longueur
𝑑 + 1 de la source vers 𝑣.

À la fin du tour, 𝑡 a été retiré de la file, et tous les voisins 𝑣 de 𝑡 tels que 𝑑𝑣 = 𝑑 + 1 qui
n’étaient pas déjà dans la file y ont été ajoutés. Remarque : si 𝑡 était le dernier sommet
de la file à distance 𝑑, alors la file est maintenant constituée exactement des sommets à
distance 𝑑 + 1.

L’algorithme s’arrête lorsque la file est vide. En notant 𝑑 la distance du dernier sommet
traité, cela signifie que le graphe ne contient aucun sommet à distance 𝑑 + 1, et donc au-
cun sommet à une distance > 𝑑. Ainsi, tout sommet 𝑑 à distance 𝑑𝑡 finie est bien tel que
dist[𝑡] = 𝑑𝑡 .

46



7 Se perdre

7.1 Problème : création d’un labyrinthe
Partons d’un terrain rectangulaire, formé d’une multitude de petites salles carrées sépa-

rées par des cloisons.

On souhaite ouvrir des portes dans certaines des cloisons, de sorte à former un labyrinthe
parfait : on veut que quel que soit le choix d’une salle de départ et d’une salle d’arrivée il
existe un unique itinéraire permettant d’aller de l’une à l’autre.

Note : quand on mentionne un « unique itinéraire » ici, on écarte implicitement les itiné-
raires qui contiendraient des rebroussements.

Un tel labyrinthe peut être vu comme un graphe, dont les sommets sont les salles, et les
arêtes sont les portes entre deux salles. Ce graphe est non orienté.

Un « itinéraire » entre deux salles du labyrinthe est un chemin entre les sommets corres-
pondants. L’existence hypothétique de plusieurs chemins entre deux sommets signalerait la
présence d’un cycle dans le graphe. On peut donc reformuler notre objectif : partant d’un
ensemble de sommets, créer un graphe connexe (tous les sommets peuvent être reliés deux à
deux par des chemins) et sans cycle, en sélectionnant des arêtes parmi un ensemble d’arêtes
autorisées (ici, une arête doit correspondre à une porte entre deux salles géographiquement
adjacentes).

On propose de suivre la stratégie suivante : énumérer toutes les cloisons dans un ordre
aléatoire, et pour chacune, y ouvrir une porte si cela ne fait pas apparaître de cycle. On pour-
rait imaginer une réalisation naïve de cette stratégie, en parcourant le graphe à la recherche
d’un cycle à chaque étude d’une potentielle nouvelle arête : on aurait un parcours de coût
linéaire en le nombre de salles, répété pour chaque arête potentielle. Nous allons voir à la
place une structure, qui permet de détecter en temps quasiment constant si l’ajout d’une arête
crée un cycle.

7.2 Composantes connexes d’un graphe
Connexité. Un graphe 𝐺 non orienté est connexe si tous les sommets de 𝐺 peuvent être
reliés deux à deux par un chemin.

∀𝑠, 𝑠′ ∈ 𝐺, ∃𝑝 ∈ chemins(𝐺), 𝑝 ∶ 𝑠 → 𝑠′

Visuellement, un graphe connexe est un graphe « en un seul morceau » (à gauche), tandis
qu’un graphe non connexe est un graphe comportant des parties isolées les unes des autres
(à droite).

Ces « parties » sont formalisées par la notion de composante connexe que nous allons main-
tenant détailler.
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Composante connexe. Dans un graphe 𝐺 non orienté, une composante connexe est un
sous-ensemble 𝐶 non vide des sommets de 𝐺 tel que :

1. tous les sommets de 𝐶 sont connectés deux à deux par des chemins,
2. aucun sommet de 𝐶 n’est connecté à un sommet hors de 𝐶.Remarque : le critère 2 implique

que les chemins du critère 1
utilisent exclusivement des

sommets de 𝐶.

Visuellement, les composantes connexes sont les différents « morceaux » d’un graphe qui
ne serait pas lui-même connexe.

Formellement, on définit une composante connexe de 𝐺 comme un sous-graphe connexe
maximal de 𝐺. Précisons le vocabulaire de cette définition.

— Un sous-graphe d’un graphe 𝐺 = (𝑆, 𝐴) est un graphe 𝐺′ = (𝑆′, 𝐴′) où 𝑆′ est un sous-
ensemble des sommets de 𝐺, et 𝐴′ est l’ensemble des arêtes de 𝐺 dont les extrémités
sont dans 𝑆′.

{
𝑆′ ⊆ 𝑆
𝐴′ = {𝑎 ∈ 𝐴 ∣ ∃𝑠, 𝑠′ ∈ 𝑆′, 𝑎 ∶ 𝑠 → 𝑠′}

Remarque : pour former un sous-graphe, on peut choisir un sous-ensemble 𝑆′ ⊆ 𝑆
arbitraire. En revanche, une fois 𝑆′ choisi, l’ensemble 𝐴′ d’arêtes est fixé (toutes les
arêtes de 𝐺 liées aux sommets choisis).

— Dans cette définition, maximal est utilisé relativement à l’ordre d’inclusion sur les
sommets : la clause de maximalité indique donc qu’un sous-graphe connexe de 𝐺
contenant tous les sommets d’une composante 𝐶 ne peut être que 𝐶 elle-même. Au-
trement dit : si 𝐶 est une composante connexe de 𝐺, alors un sous-graphe 𝐶′ ⊆ 𝐺
dans lequel 𝐶 est inclus au sens strict ne peut pas être connexe.

{
∀𝑠, 𝑠′ ∈ 𝐶, ∃𝑝 ∈ chemins(𝐶), 𝑝 ∶ 𝑠 → 𝑠′ (connexité)
∀𝐶′, 𝐶 ⊊ 𝐶′ ⇒ ∃𝑠, 𝑠′ ∈ 𝐶′, ¬∃𝑝 ∈ chemins(𝐶′), 𝑝 ∶ 𝑠 → 𝑠′ (maximalité)

Les composantes connexes d’un graphe ont un certain nombre de propriétés utiles. En par-
ticulier, les composantes connexes d’un graphe 𝐺 forment une partition de 𝐺 :

— tout sommet de 𝐺 appartient à une et une seule des composantes connexes de 𝐺.
Nous pourrons démontrer cette propriété avec un petit peu d’arsenal mathématique.

7.3 Équivalences
Une relation d’équivalence regroupe les objets d’un ensemble en paquets en fonction de

caractéristiques communes. Une telle classification est associée à une relation binaire homo-
gène, qui associe deux à deux les objets appartenant à un même paquet. On isole trois pro-
priétés d’une telle relation reflétant l’appartenance de plusieurs objets à une même classe :

— tout élément appartient à son propre paquet (réflexivité),
— l’énoncé « deux éléments appartiennent au même paquet » ne dépend pas de l’ordre

dans lequel on considère les éléments (symétrie),
— l’appartenance à un même paquet se propage de proche en proche (transitivité).

Ces trois point réunis caractérisent la notion d’équivalence.

Relation d’équivalence. Rappel : une relation binaire homogène  ⊆ 𝐸 × 𝐸 est un en-
semble de paires d’éléments « en relation » l’un avec l’autre. On a vu les cas particuliers
suivants :

— la relation est réflexive lorsque tout élément est en relation avec lui-même

∀𝑒 ∈ 𝐸, 𝑒𝑒
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— la relationest symétrique lorsqu’elle ne distingue pas l’ordre de ses deux arguments

∀𝑒1, 𝑒2 ∈ 𝐸, 𝑒1𝑒2 ⇒ 𝑒2𝑒1

— la relation est transitive lorsqu’elle se propage de proche en proche

∀𝑒1, 𝑒2, 𝑒3 ∈ 𝐸, (𝑒1𝑒2 ∧ 𝑒2𝑒3) ⇒ 𝑒1𝑒3

Une relation d’équivalence est une relation binaire homogène qui est à la fois réflexive,
symétrique et transitive. Souvent, on utilisera le symbole ≈ plutôt que  pour une telle
relation.
Exemples de relations d’équivalence :

— la relation « être égal à »,
— la relation « avoir la même taille que » sur des listes,
— la relation « être lié par un chemin à » dans un graphe non orienté.

Partant d’une relation d’équivalence, on peut reconstruire les « paquets » sous-jacents, sous
la forme de classes d’équivalence.

Classes d’équivalence. On considère un ensemble 𝐸 et une relation d’équivalence ≈
sur 𝐸. La classe d’équivalence d’un élément 𝑒 ∈ 𝐸 pour ≈, notée [𝑒], est l’ensemble des
éléments de 𝐸 qui sont en relation avec 𝑒.

[𝑒] = {𝑒′ ∈ 𝐸 ∣ 𝑒 ≈ 𝑒′}

Les classes d’équivalence de ≈ sont toutes les classes [𝑒] des élément 𝑒 ∈ 𝐸. Tout élément 𝑒
d’une classe d’équivalence 𝐶 est appelé un représentant de cette classe. Nous allons mon-
trer une propriété essentielle des classes : chaque élément 𝑒 ∈ 𝐸 appartient à une et une
seule classe d’équivalence de ≈.
Propriétés.

1. Pour tout 𝑒 ∈ 𝐸 on a 𝑒 ∈ [𝑒].
Preuve : par réflexivité on a 𝑒 ≈ 𝑒, et donc par définition 𝑒 ∈ [𝑒].

2. Deux éléments équivalents définissent la même classe.

∀𝑒1, 𝑒2 ∈ 𝐸, 𝑒1 ≈ 𝑒2 ⇒ [𝑒1] = [𝑒2]

Preuve : soient 𝑒1 et 𝑒2 deux éléments de 𝐸 tels que 𝑒1 ≈ 𝑒2. Montrons que [𝑒1] ⊆ [𝑒2].
Soit 𝑥 ∈ [𝑒1]. Par définition 𝑒1 ≈ 𝑥 , d’où par symétrie 𝑥 ≈ 𝑒1 et par transitivité 𝑥 ≈ 𝑒2.
Ainsi 𝑒2 ≈ 𝑥 par symétrie à nouveau, d’où par définition 𝑥 ∈ [𝑒2].
On montrerait de même que [𝑒2] ⊆ [𝑒1], donc [𝑒1] = [𝑒2].

3. Deux classes d’équivalence sont soit disjointes, soit égales.

∀𝑒1, 𝑒2 ∈ 𝐸, [𝑒1] ∩ [𝑒2] = ∅ ∨ [𝑒1] = [𝑒2]

Preuve : Soient 𝑒1 et 𝑒2 deux éléments de 𝐸.

— Si [𝑒1] ∩ [𝑒2] = ∅, alors la conclusion est immédiate.
— Sinon [𝑒1] ∩ [𝑒2] ≠ ∅, et il existe 𝑒 ∈ [𝑒1] ∩ [𝑒2]. Par définition de l’intersection

𝑒 ∈ [𝑒1] et 𝑒 ∈ [𝑒2], d’où par définition 𝑒1 ≈ 𝑒 et 𝑒2 ≈ 𝑒. Par symétrie on a donc
𝑒 ≈ 𝑒2 et par transitivité 𝑒1 ≈ 𝑒2. Alors la propriété 2 permet de conclure [𝑒1] = [𝑒2].

De ces propriétés, on déduit que l’ensemble  = {𝐶1, 𝐶2, …} des classes d’équivalence d’une
relation d’équivalence ≈ sur 𝐸 couvre tout 𝐸 sans chevauchements.

𝐸 ⊆ 𝐶1 ∪ 𝐶2 ∪ … ∧ ∀𝑖, 𝑗 , 𝐶𝑖 ∩ 𝐶𝑗 = ∅

Ainsi, les classes d’équivalences de ≈ forment bien une partition de 𝐸 : chaque élément
𝑒 ∈ 𝐸 appartient à une et une seule classe d’équivalence de ≈.
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Application aux composantes connexes d’un graphe. Les composantes connexes d’un
graphe peuvent être définies comme les classes d’équivalence de la relation d’accessibilité.
Étant donnés un graphe 𝐺 et deux sommets 𝑠 et 𝑠′ de 𝐺, on dit que 𝑠′ est accessible à partir
de 𝑠, et on noteUne ressemblance avec une

notation vue en PIL ne serait pas
tout à fait fortuite.

𝑠 →∗ 𝑠′, s’il existe un chemin dans 𝐺 entre 𝑠 et 𝑠′.
On va d’abord vérifier que cette relation est une équivalence, puis analyser ses classes d’équi-
valence.

Dans un graphe non orienté, la relation →∗ est une relation d’équivalence.

Preuve :
— Réflexivité. Pour tout 𝑠 on a bien un chemin de 𝑠 à 𝑠 (le chemin vide), et donc 𝑠 →∗ 𝑠.
— Symétrie. Soient 𝑠 et 𝑠′ tels qu’il existe un chemin de 𝑠 à 𝑠′ dans notre graphe 𝐺 :

𝑠 = 𝑠0 → 𝑠1 → … → 𝑠𝑛−1 → 𝑠𝑛 = 𝑠′. Le graphe n’étant pas orienté, chaque arête peut
être prise dans l’autre sens. On forme ainsi un chemin 𝑠𝑛 → 𝑠𝑛−1 → … → 𝑠1 → 𝑠0 de
𝑠′ vers 𝑠. Bilan : si 𝑠 →∗ 𝑠′ alors 𝑠′ →∗ 𝑠.

— Transitivité. Soient 𝑠1, 𝑠2 et 𝑠3 tels qu’il existe un chemin de 𝑠1 vers 𝑠2 et un chemin de
𝑠2 vers 𝑠3. La concaténation de ces deux chemins forme un chemin allant de 𝑠1 à 𝑠3.
Donc : si 𝑠1 →∗ 𝑠2 et 𝑠2 →∗ 𝑠3 alors 𝑠1 →∗ 𝑠3.

La relation →∗ d’accessibilité étant une équivalence, elle définit des classes d’équivalence
[𝑠] sur les sommets d’un graphe non orienté, que l’on peut maintenant analyser.

Dans un graphe non orienté 𝐺, les classes d’équivalence de la relation d’accessibilité
sont précisément les composantes connexes de 𝐺.

Preuve : toute classe [𝑠] est une composante connexe de 𝐺.
— Tous les sommets d’une classe [𝑠] sont connectés deux à deux par des chemins.

Soit [𝑠] une classe de →∗, et 𝑠1, 𝑠2 ∈ [𝑠] deux sommets de cette classe. Par définition
de [𝑠] on a 𝑠 →∗ 𝑠1 et 𝑠 →∗ 𝑠2. Par symétrie on a 𝑠1 →∗ 𝑠, et par transitivité on déduit
𝑠1 →∗ 𝑠2 : on a un chemin de 𝑠1 vers 𝑠2.

— Aucun sommet d’une classe [𝑠] n’est connecté à un élément n’appartenant pas à [𝑠].
Soit [𝑠] une classe de →∗ et 𝑠1 ∈ [𝑠] un sommet de cette classe. Soit 𝑠2 un sommet
quelconque de 𝐺 tel que 𝑠1 →∗ 𝑠2. Alors par définition de [𝑠] on a 𝑠 →∗ 𝑠1, et par
transitivité on déduit 𝑠 →∗ 𝑠2. Donc 𝑠2 ∈ [𝑠]. Bilan : un sommet 𝑠2 accessible de puis
𝑠1 est nécessairement dans [𝑠], et ainsi aucun sommet hors de [𝑠] ne peut être connecté
à un sommet de [𝑠].

Preuve : toute composante connexe 𝐶 de 𝐺 est la classe [𝑠] d’un certain sommet 𝑠.
Soit 𝐶 une composante connexe de 𝐺. Par définition, 𝐶 n’est pas l’ensemble vide : il existe
au moins un sommet 𝑠 ∈ 𝐶.

— La composante 𝐶 est incluse dans la classe [𝑠].
Soit 𝑠′ ∈ 𝐶 un sommet de la composante connexe 𝐶. Comme 𝑠 et 𝑠′ sont tous deux
dans 𝐶, il existe un chemin 𝑠 →∗ 𝑠′, et donc 𝑠′ ∈ [𝑠] par définition de [𝑠].

— La classe [𝑠] est incluse dans la composante 𝐶.
Soit 𝑠′ ∈ [𝑠]. Par définition on a 𝑠 →∗ 𝑠′. Comme 𝑠 est dans 𝐶, le sommet 𝑠′ ne peut
pas être en dehors de 𝐶.

On a donc bien 𝐶 = [𝑠].

Application au problème du labyrinthe. Considérons un graphe 𝐺 non orienté sans
cycles, et deux sommets 𝑠 et 𝑠′ de 𝐺. Alors :

Ajouter l’arête 𝑠 → 𝑠′ à 𝐺 crée un cycle
si et seulement si

les sommets 𝑠 et 𝑠′ sont dans la même composante connexe.

Traduisons cela pour notre processus de génération de labyrinthe. On énumère toutes les
cloisons dans un ordre aléatoire, et pour chacune :

— si elle sépare deux salles qui sont dans la même composante connexe (dans la même
classe d’accessibilité), ne rien faire,

— si elle sépare deux salles qui sont dans des composantes connexes disjointes (dans des
classes d’accessibilité différentes), créer une porte.

Pour compléter la construction, il ne nous manque plus qu’une structure ou un algorithme
permettant de manipuler efficacement des classes d’équivalence de sommets.
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7.4 Structure de données : Union-Find
La structure Union-Find (également appelée disjoint sets) permet de manipuler des parties

disjointes d’un ensemble 𝐸, et en particulier des classes d’équivalence d’éléments de 𝐸. La
structure fournit deux opérations principales :

— find(𝑒) identifie la classe [𝑒] d’un élément 𝑒 ∈ 𝐸,
— union(𝑒1, 𝑒2) modifie la structure pour y fusionner les classes de 𝑒1 et 𝑒2.

L’opération find permet de déterminer si deux éléments 𝑒1 et 𝑒2 appartiennent à la même
classe : il suffit de tester si find(𝑒1) = find(𝑒2). Dans le problème du labyrinthe, c’est ce test
qui déterminera si deux salles sont déjà dans la même composante connexe du labyrinthe.
L’opération union peut être utilisée pour bâtir une telle structure à partir d’un ensemble de
paires d’éléments équivalents :

1. on part d’une structure initiale dans laquelle on considère que chaque élément 𝑒 a une
classe réduite à lui-même,

2. pour chaque paire (𝑒1, 𝑒2) d’éléments équivalents, on fusionne les classes [𝑒1] et [𝑒2] à
l’aide de l’opération union.

Modélisation avec des graphes. Notre structure d’union-find sera un graphe orienté
ayant pour sommets les éléments de l’ensemble 𝐸, avec deux particularités de forme :

— chaque sommet a au plus une arête sortante,
— le graphe est acyclique.

Un tel graphe est composé de plusieurs blocs ayant des formes comme les suivantes, où tous
les chemins convergent vers un élément racine.

Chaque bloc correspond à une classe, et l’élément « racine » d’un bloc peut servir à identifier
le bloc (et donc une classe). On donne alors le comportement suivant à nos deux opérations :

— L’opération find(𝑒) renvoie l’élément racine du bloc contenant 𝑒. Pour cela, il suffit de
suivre les arêtes sortantes à partir de 𝑒 jusqu’à arriver au bout du chemin.

— L’opération union(𝑒1, 𝑒2) regroupe les deux blocs contenant 𝑒1 et 𝑒2. Pour cela, il suffit
d’ajouter une arête entre les racines de ces deux blocs (à supposer que 𝑒1 et 𝑒2 ne soient
pas déjà dans le même bloc).

Réalisation par un tableau. On n’a besoin que de deux informations par sommet :
1. le sommet est-il une racine?
2. si le sommet n’est pas une racine, quel est le numéro de son unique successeur?

On peut résumer ces deux informations dans un unique tableau t d’entiers, dans lequel
{

t[𝑖] = 𝑖 si 𝑠𝑖 est une racine
t[𝑖] = 𝑗 avec 𝑖 ≠ 𝑗 si 𝑠𝑗 est l’unique successeur de 𝑠𝑖

Initialisation en java : on crée un tableau t dans lequel, pour tout 𝑖, t[𝑖] = 𝑖.

class Uf {
private int[] t;
Uf(int n) {
this.t = new int[n];
for (int i=0; i<n; i++) { t[i] = i; }

}

La méthode find doit trouver la racine du bloc de e. Pour cela elle s’appelle récursivement
sur le successeur de e, jusqu’à arriver à un sommet qui est son propre successeur.

int find(int e) {
int s = t[e];
if (s == e) { return e; }
else { return find(s); }

}
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La méthode union connecte les blocs de e1 et de e2 en désignant l’une des deux racines
comme nouveau successeur de l’autre.

void union(int e1, int e2) {
int r1 = find(e1);
int r2 = find(e2);
if (r1 != r2) { t[r1] = r2; }

}
}

Approfondissement : améliorations. Le coût d’utilisation de la structure union-find est
essentiellement le coût de l’opération find, qui doit parcourir les successeurs d’un sommet
jusqu’à trouver la racine du bloc. Le temps est donc proportionnel à la longueur du chemin
à parcourir, qui peut lui-même être linéaire en le nombre de sommets. Pour maintenir des
longueurs de chemins très courtes, on peut ajouter deux choses à ces algorithmes.

— Union par rang : au moment de relier les deux racines r1 et r2, on essaie de mettre
l’arête dans le sens qui générera les chemins les moins longs.
Pour réaliser cela, on associe à chaque sommet une information supplémentaire appe-
lée « rang », qui majore la longueur des chemins de son bloc. Alors, dans l’opération
union, au lieu de systématiquement faire de r2 le fils de r1, on prend la racine de plus
petit rang pour en faire le fils de l’autre, et on met à jour le rang de la nouvelle racine si
besoin. Ainsi on fait la fusion de sorte à minimiser la hauteur de l’arbre obtenu. Note :
l’information de rang n’est utile que pour la racine de chaque bloc, on ne cherchera
donc pas à la mettre à jour pour les autres.

class Uf {
private int[] t;
private int[] rang;
Uf(int n) {
this.t = new int[n]; for (int i=0; i<n; i++) { t[i] = i; }
this.rang = new int[n]; for (int i=0; i<n; i++) { rang[i] = 0; }

}
void union(int e1, int e2) {
int r1 = find(e1);
int r2 = find(e2);
if (r1 == r2) return;
if (rang[r1] < rang[r2]) {
t[r1] = r2;

} else {
t[r2] = r1;
if (rang[r1] == rang[r2]) rang[r1]++;

}
}

}

— Compression de chemins : à chaque utilisation de find, on mémorise la racine trouvée
pour ne plus jamais avoir besoin de parcourir à nouveau le même chemin.
On réalise cela en indiquant la racine trouvée comme nouveau successeur direct du
sommet, et on le fait même pour chacun des sommets rencontrés sur la route. Ainsi
le chemin de 𝑒 à find(𝑒) dans le graphe ne sera plus jamais parcouru à nouveau, car il
a été remplacé par une unique arête.

int find(int e) {
int s = t[e];
if (s == e) {
return e;

} else {
int r = find(s);
t[e] = r;
return r;

}
}

Avec ces deux améliorations, la complexité diminue radicalement : chaque opération find a
maintenant un temps quasiment constant.
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7.5 Code final : génération du labyrinthe
Une classe simple pour un graphe non orienté. On conserve le principe précédent selon

lequel les sommets sont numérotés.

class Graph {
private final int size;
private ArrayList<ArrayList<Integer>> adj;
public Graph(int size) {
this.size = size;
this.adj = new ArrayList<>(size);
for (int s=0; s<size; s++) { adj.add(new ArrayList<>()); }

}
public void addEdge(int s, int t) { adj.get(s).add(t); adj.get(t).add(s); }
public int size() { return size; }
public Iterable<Integer> succ(int s) { return adj.get(s); }
public boolean hasEdge(int s, int t) {

for (int v: succ(s)) { if (v == t) return true; }
return false;

}
}

Structure pour représenter les cloisons où l’on est susceptible de créer une porte. On donne :
le numéro d’une case, et un booléen pour identifier la direction (si true : cloison verticale à
l’est de la case, si false : cloison horizontale au sud).

static class Wall {
int s;
boolean v;
Wall(int s, boolean v) { this.s = s; this.v = v; }

}

Si notre graphe correspond à une grille carrée de côté 𝑛, il aura 𝑛2 sommets, et le sommet
à la ligne 𝑖 et colonne 𝑗 aura le numéro 𝑖 ∗ 𝑛 + 𝑗 . Un voisin à l’est du sommet numéro 𝑘 a
donc le numéro 𝑠 + 1, et un voisin au sud le numéro 𝑠 + 𝑛.

Construction du labyrinthe : on initialise un graphe, dans lequel on ajoute des arêtes à
mesure que l’on ouvre des portes dans les cloisons. En parallèle, on maintient une structure
union-find pour savoir quelles salles sont déjà connectées par un chemin. Avant cette étape
de construction, on génère l’ensemble des cloisons dans un tableau, et on mélange ce tableau.
L’algorithme de mélange utilisé, bien que très simple, est connu pour générer des mélanges
parfaits (toutes les permutations du tableau sont équiprobables).

static Graph mkLaby(int n) {
Graph g = new Graph(n*n);
Uf uf = new Uf(n*n);
ArrayList<Wall> walls = new ArrayList<>(n*n);
// Generate walls
for (int i=0; i<n; i++) {
for (int j=0; j<n; j++) {
if (i<n-1) { walls.add(new Wall(i*n+j, true)); }
if (j<n-1) { walls.add(new Wall(i*n+j, false)); }

}
}
// Randomize walls (Fisher-Yates algorithme, a.k.a. Knuth shuffle)
Random rnd = new Random();
int k = walls.size();
for (int i=1; i<k; i++) { Collections.swap(walls, i, rnd.nextInt(i+1)); }
// Select doors
for (Wall w : walls) {
int s = w.s;
int t = w.s+(w.v?n:1);
if (uf.find(s) != uf.find(t)) {
uf.union(s, t);
g.addEdge(s, t);

}
}
return g;

}
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Pour finir, une petite fonction pour affichier un labyrinthe en ASCII.

static void printLaby(int n, Graph g) {
for (int j=0; j<n; j++) { System.out.print("####"); }
System.out.println("##");
for (int i=0; i<n; i++) {
System.out.print("##");
for (int j=0; j<n; j++) {
System.out.print("␣␣");
if (j<n-1 && g.hasEdge(i*n+j, i*n+j+1)) { System.out.print("␣␣"); }
else { System.out.print("##"); }

}
System.out.println();
System.out.print("##");
for (int j=0; j<n; j++) {
if (i<n-1 && g.hasEdge(i*n+j, (i+1)*n+j)) { System.out.print("␣␣"); }
else { System.out.print("##"); }
System.out.print("##");

}
System.out.println();

}
}

Et le résultat !

##########################################################################
## ## ## ## ## ## ## ## ## ## ## ##
## ###### ## ## ############## ###### ## ## ## ## ########## ##
## ## ## ## ## ## ## ## ##
## ## ## ############## ###### ## ###### ## ## ############## ##
## ## ## ## ## ## ## ## ## ##
###### ###### ########## ###### ## ## ## ## ###### ########## ##
## ## ## ## ## ## ## ## ## ## ## ##
## ###### ## ###### ## ## ## ###### ## ########## ## ###### ##
## ## ## ## ## ## ## ## ##
########## ## ## ## ## ## ## ########## ###################### ##
## ## ## ## ## ## ## ## ## ##
################## ## ## ###### ############## ############## ######
## ## ## ## ## ## ##
## ## ############## ################## ## ###### ###### ##########
## ## ## ## ## ## ## ## ## ##
## ## ## ###### ## ## ###### ###### ###### ########## ##########
## ## ## ## ## ## ## ## ##
## ###### ## ###### ## ## ## ## ############## ##################
## ## ## ## ## ## ## ## ## ## ##
## ###### ###### ########## ## ## ## ## ## ###### ########## ##
## ## ## ## ## ## ## ## ## ## ## ## ##
## ## ###### ############## ########## ## ###### ###### ## ## ##
## ## ## ## ## ## ## ## ## ## ##
###### ## ## ## ## ############## ## ###### ############## ######
## ## ## ## ## ## ## ## ## ## ## ##
###### ###### ## ## ## ########## ###### ## ###### ## ## ## ##
## ## ## ## ## ## ## ## ## ## ##
###### ## ###### ## ## ## ## ###### ###### ## ############## ##
## ## ## ## ## ## ## ##
###### ## ########## ###### ## ## ###### ## ################## ##
## ## ## ## ## ## ## ## ## ## ##
## ###### ## ## ###################### ## ###### ###### ## ## ##
## ## ## ## ## ## ## ## ## ## ## ##
###### ############## ########## ## ## ## ############## ## ######
## ## ## ## ## ##
##########################################################################
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