
Outils logiques et algorithmiques – TD 2 – Complexité
Exercise 1 (Occurrences d’une chaîne) Cette fonction compte le nombre d’occurrences de la séquence s dans le texte t.

static int countOccurrences(String s, String t) {
int ls = s.length ();
int lt = t.length ();
int c=0;
mainLoop:
for (int i=0; i+ls <= lt; i++) {

for (int j=0; j<ls; j++) {
if (s.charAt(j) != t.charAt(i+j)) continue mainLoop;

}
c++;

}
return c;

}

1. En fonction des tailles de s et t, combien cette fonction effectue-t-elle de comparaisons de caractères dans le meilleur cas?
Donner un exemple réalisant cette borne.

2. Même question pour le pire cas.
3. Que dire sur la complexité en moyenne?

Exercise 2 (Exponentiation) Voici deux programmes calculant 𝑎𝑛, pour 𝑛 ∈ ℕ.

static int power1(int a, int n) {
int r = 1;
while (n > 0) {

r *= a;
n--;

}
return r;

}

static int power2(int a, int n) {
int r = 1;
while (n > 0) {

if (n % 2 == 1) r *= a;
a = a*a;
n = n/2;

}
return r;

}

1. Quel est le nombre exact d’opérations arithmétiques ou tests effectués par power1?
2. Donner un encadrement du nombre d’opérations arithmétiques ou tests effectuées par power2.
3. À partir de quelle valeur de 𝑛 la deuxième fonction nécessite-t-elle à coup sûr moins d’opérations que la première?

Exercise 3 (Sommes nulles) Les deux programmes suivants cherchent dans un tableau d’entiers l’ensemble des triplets dont la
somme vaut zéro.

static int threeSum1(int[] tab) {
int n = tab.length;
int count = 0;
for (int i=0; i<n; i++) {

for (int j=i+1; j<n; j++) {
for (int k=j+1; k<n; k++) {

if (t[i] + t[j] + t[k] == 0)
count ++;

}
}

}
return count;

}

static int threeSum2(int[] tab) {
int n = tab.length;
int count = 0;
for (int i=0; i<n; i++) {

int ti = t[i];
for (int j=i+1; j<n; j++) {

int tj = t[j];
for (int k=j+1; k<n; k++) {

if (ti + tj + t[k] == 0)
count ++;

}
}

}
return count;

}

1. Combien de fois est exécutée chacune des boucles ?
2. Combien chacun de ces deux programmes réalise-t-il de lectures dans le tableau t? Donner la valeur exacte, un ordre de

grandeur et un équivalent.
3. Proposer un nouvel algorithme permettant de calculer le même résultat avec un nombre d’accès au tableau Θ(𝑛

2log(𝑛)). On
pourra supposer que tous les éléments du tableau sont distincts.

1



Exercise 4 (Boucles trompeuses) Voici une fonction mystérieuse, et ses temps d’exécution en micro-secondes mesurés pour des
entrées aléatoires de différentes tailles.

static int[] elefant(int[] tab) {
int[] p = new int[tab.length ];
for (int i=1; i<tab.length; i++) {

int j = i-1;
while (t[j] >= t[i]) j = p[j];
p[i] = j;

}
return p;

}

Taille Temps
100 27
200 50
400 100
800 180

1600 360

1. En se fiant uniquement au code, quel serait l’ordre de grandeur de la complexité de cette fonction?
2. Comparer avec les temps mesurés.
3. Que pouvez-vous dire de la boucle while?

Exercise 5 (Plus longue répétition) La fonction suivante cherche dans une chaîne la longueur maximale d’une séquence répétant
un même caractère.

static int longestRepetition(String s) {
int i = 0, r = 0;
while (i < s.length ()) {

int k = 1;
while (i+k < s.length () && s.charAt(i+k) == s.charAt(i)) k++;
if (k > r) r = k;
i += k;

}
return r;

}

Combien cette fonction effectue-t-elle de comparaisons dans le meilleur cas? Dans le pire cas? En moyenne?

Exercise 6 (Grosse omelette) On se trouve dans un immeuble de 𝑁 étages, avec une réserve inépuisable d’œufs. On cherche le
plus petit étage 𝐶 à partir duquel un œuf lâché par la fenêtre casse en arrivant au sol. On suppose 0 ≤ 𝐶 ≤ 𝑁 .

1. Comment trouver 𝐶 avec ∼ log(𝑁 ) lancers?
2. Comment trouver 𝐶 avec ∼ 2log(𝐶) lancers?
3. À quelle condition reliant 𝐶 et 𝑁 la deuxième méthode devient-elle avantageuse?

Supposons maintenant que nous n’avons que 2 œufs.
4. Comment trouver 𝐶 avec ∼ 2

√

𝑁 lancers?

Exercise 7 (Compteur binaire) On souhaite énumérer tous les tableaux de 𝑛 booléens, pour un 𝑛 arbitraire. Stratégie : chaque
tableau correspond à l’écriture binaire d’un nombre 𝑘 ∈ [0, 2

𝑛
[, on les énumère dans l’ordre. On considère que le bit de poids faible

est à l’indice 0 du tableau. Pour cela on se donne la fonction java suivante, qui modifie le tableau t en le tableau du nombre suivant.
static void incr(boolean [] t) {

int n = t.length ();
int i = 0;
while (i < n && t[i]) {

t[i] = false;
i++;

}
if (i < n) t[i] = true;

}

1. Combien la fonction incr modifie-t-elle de cases du tableau t dans le meilleur cas? dans le pire cas?
2. On veut calculer la complexité moyenne de incr. Pour cela on calcule 𝑆(𝑛) la somme des nombres de cases modifiées par incr

sur tous les tableaux de booléens de taille 𝑛.
(a) Dans combien de tableaux de taille 𝑛 incr modifie-t-elle exactement 𝑘 cases? Déduire une expression pour 𝑆(𝑛).
(b) Dans combien de tableaux de taille 𝑛 incr modifie-t-elle la case d’indice 𝑘 ? Déduire une autre expression pour 𝑆(𝑛).
(c) Résoudre l’une ou l’autre de ces deux expressions. Les deux sont solubles ! Mais une est beaucoup plus simple...
(d) En déduire la complexité moyenne de l’opération incr.

2


