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Preface

Thisprefaceisan introduction to this document and other related documents. It contains
the following sections:

. About this document on page xviii
. Feedback on page xxii.
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About this document

Thisisthe technical reference manual for the ARM 1022E processor.

Intended audience

This document is written to help designers devel op systems around the ARM 1022E
processor.

Using this document
This document is organized into the following chapters:

Chapter 1 Introduction
Read this chapter to |earn about the components of the ARM 10 processor
and about the ARM and Thumb instruction sets.

Chapter 2 Integer Core
Read this chapter to learn how the integer core pipeline achieves a
throughput approaching one instruction per cycle.

Chapter 3 System Control Coprocessor
Read this chapter to learn how to use CP15, the system control
COprocessor.

Chapter 4 Memory Management Units
Read this chapter to learn how to use the address translation process of
the memory management units.

Chapter 5 Caches and Write Buffer

Read this chapter to learn how to use CP15 to control operation of the
instruction and data caches, the write buffer, and the hit-under-miss
buffer.

Chapter 6 Prefetch Unit

Read this chapter to learn how the ARM 10 processor prefetches and
buffersinstructions, and how to implement an instruction memory barrier
to flush the prefetch buffer.

Chapter 7 Bus Interface

Read this chapter to learn how to use the bus interfaceto AMBA ™.,
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Chapter 8 Coprocessor I nterface
Read this chapter to learn how to integrate one or more coprocessorswith
the ARM 10 processor.

Chapter 9 JTAG Interface
Read this chapter to learn how to use the built-in JTAG debug hardware.

Chapter 10 Debug
Read this chapter to learn how to use coprocessor 14 to debug application
software, operating systems, and hardware systems.
Chapter 11 Instruction Cycle Summary and I nterlocks
Read this chapter to learn about the cycle counts of ARM and Thumb
instructions and how pipeline interlocks resolve data dependencies.
Chapter 12 Design for Test
Read this chapter to learn how to use the built-in scan chains, wrapper
cells, and memory BIST to test the ARM 10 processor.
Chapter 13 Power Manager
Read this chapter to learn how to use the power manager to control
system power modes.
Chapter 14 Clock Generator
Read this chapter to learn how to synthesize the two programmable
system clocks.
Appendix A Signal Descriptions
Refer to this appendix for a summary of ARM10 signal descriptions.

Typographical conventions

The following typographical conventions are used in this book:
italic Introduces special terminology. Also denotes cross-references.

bold Denotes signal names. Also used for termsin descriptive lists,
where appropriate.

monospace Denotes text that can be entered at the keyboard, such as
commands, file and program names, and source code.

ARM DDI 0237A
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monospace Denotes a permitted abbreviation for acommand or option. The
underlined text can be entered instead of the full command or
option name.

monospace italic Denotes arguments to commands and functions where the
argument is to be replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

Timing diagram conventions
The figure explains the symbol s used in timing diagrams. Any variations are clearly
labeled when they occur. Therefore, you must attach no additional meaning unless
specifically stated.

Clock

HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

High impedance to stable bus

T

Key to timing diagram conventions

Shaded bus and signal areas are undefined, so the bus or signal can assume any value
within the shaded area at that time. The actual level is unimportant and does not affect
normal operation.
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Register Notation Conventions

The table shows the terms and abbreviations used in register descriptions. In al cases,
reading or writing any fields, including those specified asUNPREDICTABLE, SHOULD BE ONE,
or SHOULD BE ZERO, does not cause any physical damage to the chip.

Register notation conventions

Term

Description

UNPREDICTABLE (UNP)

Dataread from thisfield can have any value. Writing to thisfield causes unpredictable behavior or
an unpredictable change in device configuration.

UNDEFINED (UND)

An instruction that accesses thisfield in the manner indicated takes the undefined instruction trap.

SHOULD BE ZERO (SBZ)

When writing to this field, write only zeros. Writing ones has UNPREDICTABLE results.

SHOULD BE ONE (SBO)

When writing to this field, write only ones. Writing zeros has UNPREDICTABLE results.

Further reading

ARM publications

Other publications

This section lists publications by ARM Limited and by third parties.

ARM periodically provides updates and corrections to its documentation. See
http://www.arm.com for current errata sheets and addenda.

See also the ARM Frequently Asked Questions list at:
http://www.arm.com/DevSupp/Sales+Support/faq.html

This document containsinformation that is specific to the ARM 1022E processor. Refer
to the following documents for other relevant information:

ARM Architecture Reference Manual (ARM DUI 0100)

ARM AMBA Soecification (Rev 2.0) (ARM [HI 0001)

ARM10220E Test Chip Implementation Guide (ARM DXI 0141)
ARM VFP10 (Rev 1) Technical Reference Manual (ARM DDI 0106)
ARM ETM10 (Rev 0) Technical Reference Manual (ARM DDI 0206).

This section lists relevant documents published by third parties:

|EEE Standard, Test Access Port and Boundary-Scan Architecture specification
1149.1-1990 (JTAG).

ARM DDI 0237A
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Feedback

ARM Limited welcomes feedback both on the ARM 1022E processor, and on the
documentation.

Feedback on the ARM1022E processor

If you have any comments or suggestions about this product, please contact your
supplier giving:

. the product name

. a concise explanation of your comments.

Feedback on this document

If you have any comments on this document, please send email to errata@arm.com
giving:

. the document title

. the document number

. the page number(s) to which your comments refer

. a concise explanation of your comments.

General suggestions for additions and improvements are al so welcome.
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Chapter 1
Introduction

This chapter describes the components and features of the ARM 1022E processor. It
contains the following sections:

About the processor on page 1-2
Programmer’s model on page 1-4
Components of the processor on page 1-5
Instruction set summary on page 1-10.
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1.1 About the processor

The ARM 1022E processor incorporates the ARM10E™ integer core, which
implements the ARMV5TE architecture. It is a high-performance, low-power, cached
processor that provides full virtual memory capabilities. It is designed to run high-end
embedded applications and sophisticated operating systems such as JavaOS, Linux,
Microsoft WindowsCE, NetBSD, and EPOC-32 from Symbian. It supports the ARM
and Thumb instruction sets, and includes EmbeddedI CE-RT™ logic and JTAG
software debug features.

The ARM 1022E processor consists of :

. the ARM10E integer core:
- load/store unit
- prefetch unit
- integer unit
- EmbeddedI CE-RT logic for JTAG-based debug

. external coprocessor interface and coprocessors CP14 and CP15
. Memory Management Unit (MMU)

. instruction and data caches

. write-back Physical Address (PA) TAG RAM

. write buffer and Hit-Under-Miss (HUM) buffer

. Advanced Micro Bus Architecture (AMBA) High-performance Bus (AHB) bus
interface

. Embedded Trace Macrocell (ETM) interface.

Features of the ARM 1022E processor include:

. asix-stage pipeline

. branch prediction that supports branch folding (zero cycle branches)
. 32KB level 1 cache (16KB instruction, 16KB data)

. full 64-bit interfaces between the integer core and caches, write buffer, and bus
interface units on both instruction and data sides, and coprocessors

. multilayer AHB support through independent 64-bit AHB interfaces for
instruction and data sides

1-2
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parallel execution of data processing instructions under load and store multiple
instructions

aHUM buffer that supports execution of load hits underneath an outstanding load
miss

nonblocking caches that support execution of data processing instructions under
load misses

additional register read and write ports to support reading of up to four registers
and writing of three registersin one cycle

improved power management support

enhanced debug support.

ARM DDI 0237A
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1.2 Programmer’s model

The ARM 10E programmer’s model, including a detailed instruction set specification,

is described in the ARM Architecture Reference Manual. The programmer's model of

the ARM 1022E processor isthe same asthe programmer's model of the ARM 10E core,
but extended in the following ways:

. The system control coprocessor (CP15) isintegrated into the ARM 10 processor
and provides additional registers for configuring and controlling caches, MMU,
protection system, power-down, and clocking mode.

. The MMU page tables define the virtual-to-physical address mapping, page and
section access permissions, cache, and write buffer configuration. These are
created by the operating system software and accessed automatically by the
MMU hardware whenever an instruction read or data access causesa TLB miss.
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1.3 Components of the processor

This section introduces the main blocks of the ARM1022E processor and gives
references to detailed descriptions of those blocks:

. Integer core on page 1-7

. Memory Management Unit on page 1-7

. Instruction and data caches on page 1-7

. Cache power-down capabilities on page 1-8

. Branch prediction and prefetch unit on page 1-8
. AMBA interface on page 1-8

. Coprocessor interface on page 1-8

. Debug on page 1-8

. Instruction cycle summary and interlocks on page 1-8
. Design-for-test features on page 1-8

. Power management on page 1-9

. Clocking and PLL on page 1-9.

Figure 1-1 on page 1-6 shows the main blocks of the ARM1022E processor.
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ETM External IA[31:0] _ | Instruction | IWD[63:0]
interface  coprocessors i cache -
ARM10E integer core
with EmbeddedICE-RT
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Instruction AHB
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CP14 Prefetch unit |« A 4 [ ] bus interface
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transfer CP15 AMBA bus
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register
i Data-side
| DRDI[63:0] P Data AHB
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Figure 1-1 ARM1022E processor block diagram
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1.3.1 Integer core

Introduction

This ARM1022E processor is built around the ARM 10E integer corein an ARMV5TE
implementation that runs the 32-bit ARM and 16-bit compressed Thumb instruction
sets. You can balance high performance against code size and extract maximum
performance from 8-bit, 16-bit, and 32-bit memory. The processor includes
EmbeddedI CE-RT logic for JTAG software debugging, and is supported by the
Multi-1CE JTAG debug interface.

Refer to Chapter 2 Integer Core for details of the pipeline stages and instruction
progression.

Refer to Chapter 3 System Control Coprocessor for system coprocessor programming
information.

1.3.2 Memory Management Unit

The MMU has separate instruction and data Translation Lookaside Buffers (TLBs). It
is backward-compatible with the ARM v4 architecture MMU of StrongARM and
ARMO920T. TheMMU includesa 1K B tiny page mapping sizeto enableasmaller RAM
and ROM footprint for embedded systems and operating systems such as
WindowsCE™ that have many small mapped objects. The ARM1022E processor
implements the Fast Context Switching Extension (FCSE) and high vectors extension
that are required to run Microsoft WindowsCE. Refer to Chapter 4 Memory
Management Units for more information.

1.3.3 Instruction and data caches

This ARM1022E processor has a 16KB Instruction Cache (ICache) and a 16KB Data
Cache (DCache). The data cache provides Write-Through (WT) or Write-Back (WB)
operation, selected under software control on a per-region basis. The large caches
enable you to obtain high performance from commodity memory systems by
significantly reducing:

. the read bandwidth required of main memory

. the write bandwidth required of main memory (when write-back caching is used)
. overall system power consumption by reducing accesses to off-chip memory.

The processor provides awrite buffer that holds up to eight 64-bit values, each at an
independent address.

Refer to Chapter 5 Caches and Write Buffer for more information.

ARM DDI 0237A
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1.3.4

1.3.5

1.3.6

1.3.7

1.3.8

1.3.9

Cache power-down capabilities

The power manager provides a software-controlled hardware mechanism to maintain
power to the CAM and RAM state element arrays in the caches when the remainder of
the deviceis powered down. Refer to Chapter 5 Caches and Write Buffer for more
information.

Branch prediction and prefetch unit

The prefetch unit is part of the integer core. It fetches instructions from the | Cache or
from external memory and issues them to the integer core. To increase performance, it
also predicts the outcome of branchesin the instruction stream. Refer to Chapter 6
Prefetch Unit for more information.

AMBA interface

The bus interface unit provides a multimaster AHB interface to memory and
peripherals. The AHB isan on-chip bus with two unidirectional 64-bit data buses and
one 32-bit address bus. Refer to Chapter 7 Bus I nterface for more information.
Coprocessor interface
Chapter 8 Coprocessor Interface describestheinterface for on-chip coprocessors such
as floating-point units or application-specific hardware accel eration units.
Debug
The debug coprocessor, CP14, implements a full range of debug features described in
Chapter 9 JTAG Interface and Chapter 10 Debug.
Instruction cycle summary and interlocks

Chapter 11 Instruction Cycle Summary and I nterlocks describes instruction cycletimes
and gives examples of interlock timing.

1.3.10 Design-for-test features

The ARM 1022E processor is designed to be embedded into large System-on-Chip
(SoC) designs. The EmbeddedI CE-RT logic debug facilities, AMBA on-chip system
bus, and test methodology are all designed for efficient use of the processor when
integrated into alarger IC. Refer to Chapter 12 Design for Test for details of testing.

1-8
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1.3.11 Power management

Power management features are described in Chapter 13 Power Manager.

1.3.12 Clocking and PLL

The ARM 10 processor has two clock inputs:
. GCLK
. HCLK.

Thedesign isfully static. When both these clocks are stopped, the internal state of the
processor is preserved indefinitely. GCLK drivestheinternal logic in the processor.
HCLK drivesthe businterface. Most input and output timings are specified with
respect to HCLK.

Refer to Chapter 14 Clock Generator and Chapter 7 Bus Interface for details.

Note

Typically, GCLK frequency is higher than that of HCLK. The two clocks must have a
fixed phase relationship. HCLK isusually derived by dividing down the source of
GCLK.

1.3.13 ETMinterface logic

An optional external ETM can be connected to the ARM1022E processor to provide
real-time tracing of instructions and datain an embedded system. The processor
includes the logic and interface to enable you to trace program execution and data
transfers using the ETM 10. Further details are in Embedded Trace Macrocell
Foecification. See Table A-10 on page A-13 for descriptions of ETM-related signals.

ARM DDI 0237A Copyright © 2001 ARM Limited. All rights reserved. 1-9
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14 Instruction set summary

This section provides a summary of the ARM and Thumb instruction sets:
. ARM instruction summary on page 1-11
. Thumb instruction summary on page 1-20.

The ARM1022E processor is an implementation of the ARM architecture version 5TE.
For a complete description of both instruction sets, refer to the ARM Architecture
Reference Manual.

Table 1-1 isakey to the notation used in the instruction set tables.

Table 1-1 Key to instruction set table notation

Notation Description

{cond} Table 1-11 on page 1-19 defines the condition notation.

<Oprnd2> Table 1-9 on page 1-18 gives examples of Oprnd2.

{field} Table 1-10 on page 1-18 defines the field notation.

S Sets condition codes (optional).

B Byte operation (optional).

H Halfword operation (optional).

T Forces address trand ation. Cannot be used with preindexed addresses.

<a_mode2> Table 1-3 on page 1-14 describes addressing mode 2.

<a_mode2P>  Table 1-4 on page 1-15 describes addressing mode 2 (privileged).

<a_mode3> Table 1-5 on page 1-16 describes addressing mode 3.

<a_modedlL>  Table 1-6 on page 1-17 describes addressing mode 4 (load).

<a_mode4S>  Table 1-7 on page 1-17 describes addressing mode 4 (store).

<a_mode5> Table 1-8 on page 1-17 describes addressing mode 5.

#32bit_Imm A 32-hit constant, formed by right-rotating an 8-hit val ue by an even number
of hits.

<reglist> A comma-separated list of registers, enclosed in braces ({ and } ).

1-10
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1.4.1 ARMinstruction summary

Introduction

Table 1-2 summarizesthe ARM instructions. Asterisksin the Operation column denote

ARMV5TE instructions.

Table 1-2 ARM instruction summary

Operation Assembler

Move Move MOV{cond}{S} Rd, <Oprnd2>
Move NOT MVN{cond}{S} Rd, <Oprnd2>
Move SPSR to register MRS{cond} Rd, SPSR
Move CPSR to register MRS{cond} Rd, CPSR
Move register to SPSR MSR{cond} SPSR_{field}, Rm
Move register to CPSR MSR{cond} CPSR_{field}, Rm

Move immediate to SPSR flags

MSR{cond} SPSR_f, #32bit_Imm

Move immediate to CPSR flags

MSR{cond} CPSR_f, #32bit_Imm

Arithmetic Add

ADD{cond}{S} Rd, Rn, <Oprnd2>

Add with carry ADC{cond}{S} Rd, Rn, <Oprnd2>
* Saturating add QADD{cond} Rd, Rm, Rn
* Saturating add QDADD{cond} Rd, Rm, Rn
Subtract SUB{cond}{S} Rd, Rn, <Oprnd2>
* Saturating subtract QSUB{cond} Rd, Rm, Rn
* Saturating subtract QDSUB{cond} Rd, Rm, Rn

Subtract with carry

SBC{cond}{S} Rd, Rn, <Oprnd2>

Subtract reverse subtract

RSB{cond}{S} Rd, Rn, <Oprnd2>

Subtract reverse subtract with carry

RSC{cond}{S} Rd, Rn, <Oprnd2>

Multiply

MUL{cond}{S} Rd, Rm, Rs

Multiply accumulate

MLA{cond}{S} Rd, Rm, Rs, Rn

Multiply unsigned long

UMULL{cond}{S} RdLo, RdHi, Rm, Rs

Multiply unsigned accumulate long

UMLAL{cond}{S} RdLo, RdHi, Rm, Rs
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Table 1-2 ARM instruction summary (continued)

Operation Assembler
Multiply signed long SMULL{cond}{S} RdLo, RdHi, Rm, Rs

* Multiply signed, 16-bit operands SMUL<x><y>{cond}Rd, Rm, Rs, Rn
Multiply signed, Word and 16-bit operand SMULW<y>{cond}Rd, Rm, Rs, Rn

* Multiply signed accumulate, 16-bit operands SMLA<x><y>{cond} Rd, Rs, Rm, Rn
Multiply signed accumulate long SMLAL{cond}{S} RdLo, RdHi, Rm, Rs

* Multiply signed accumulate long, 16-bit operands SMLAL<x><y>{cond}{S} RdLo, RdHi, Rm, Rs

* Multiply signed accumulate, Word and 16-bit operand  SMLAW<y>{cond} Rd, Rs, Rm, Rn
Compare CMP{cond} Rd, <Oprnd2>

Compare negative

CMN{cond} Rd, <Oprnd2>

Logical Test TST{cond} Rn, <Oprnd2>
Test equivalence TEQ{cond} Rn, <Oprnd2>
AND AND{cond}{S} Rd, Rn, <Oprnd2>
EOR EOR{cond}{S} Rd, Rn, <Oprnd2>
ORR ORR{cond}{S} Rd, Rn, <Oprnd2>
Bit clear BIC{cond}{S} Rd, Rn, <Oprnd2>

Branch Branch B{cond} label
Branch with link BL{cond} Tabel
Branch and exchange instruction set BX{cond} Rn

Load Word LDR{cond} Rd, <a_mode2>
Word with user-mode privilege LDR{cond}T Rd, <a_mode2P>
Byte LDR{cond}B Rd, <a_mode2>
Byte with user-mode privilege LDR{cond}BT Rd, <a_mode2P>
Byte signed LDR{cond}SB Rd, <a_mode3>
Halfword LDR{cond}H Rd, <a_mode3>
Halfword signed LDR{cond}SH Rd, <a_mode3>
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Table 1-2 ARM instruction summary (continued)

Operation Assembler
* Pair of registers LDR{cond}D Rd, <a_mode3>
Load Increment before LDM{cond}IB Rd{!}, <reglist>{A}
multiple
Increment after LDM{cond}IA Rd{!}, <reglist>{A}
Decrement before LDM{cond}DB Rd{!}, <reglist>{A}
Decrement after LDM{cond}DA Rd{!}, <reglist>{A}
Stack operations LDM{cond}<a_mode4L> Rd{!}, <reglist>
Stack operations and restore CPSR LDM{cond}<a_mode4L> Rd{!}, <reglist+pc>A
User registers LDM{cond}<a_mode4L> Rd{!}, <reglist>A
Store Word STR{cond} Rd, <a_mode2>
Word with User mode privilege STR{cond}T Rd, <a_mode2P>
Byte STR{cond}B Rd, <a_mode2>
Byte with User mode privilege STR{cond}BT Rd, <a_mode2P>
Halfword STR{cond}H Rd, <a_mode3>
* Pair of registers STR{cond}D Rd, <a_mode3>
Store Increment before STM{cond}IB Rd{!}, <reglist>{A}
multiple
Increment after STM{cond}IA Rd{!}, <reglist>{A}
Decrement before STM{cond}DB Rd{!}, <reglist>{A}
Decrement after STM{cond}DA Rd{!}, <reglist>{A}
Stack operations STM{cond}<a_mode4S> Rd{!}, <reglist>
User registers STM{cond}<a_mode4S> Rd{!}, <reglist>A
Swap Word SWP{cond} Rd, Rm, [Rn]
Byte SWP{cond}B Rd, Rm, [Rn]
CP Data operations CDP{cond} p<cpnum>, <opl>, CRd, CRn, CRm, <op2>
operations

Moveto ARM register from coprocessor

MRC{cond} p<cpnum>, <opl>, Rd, CRn, CRm, <op2>

Move to coprocessor from ARM register

MCR{cond} p<cpnum>, <opl>, Rd, CRn, CRm, <op2>

ARM DDI 0237A
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Table 1-2 ARM instruction summary (continued)

Operation Assembler
* Move two coprocessor registersinto ARM registers ~ MRRC{cond} <coproc>, <opcode>, Rd>, <Rm>,<CRm>
* Move two ARM registersinto coprocessor registers MCRR{cond} <coproc>, <opcode>, <Rd>, <Rn>, <CRm>
Load LDC{cond} p<cpnum>, CRd, <a_mode5>
Store STC{cond} p<cpnum>, CRd, <a_mode5>

Software interrupt

SWI 24bit_Imm

* Soft preload

PLD <a_mode2>

Table 1-3 shows addressing mode 2 operations.

Table 1-3 Addressing mode 2

Addressing mode 2

Immediate offset [Rn, #+/-12bit_Offset]
Register offset [Rn, +/-Rm]
Scaled register offset [Rn, +/-Rm, LSL #5bit_shift_imm]

[Rn, +/-Rm, LSR #5bit_shift_imm]

[Rn, +/-Rm, ASR #5bit_shift_imm]

[Rn, +/-Rm, ROR #5bit_shift_imm]

[Rn, +/-Rm, RRX]

Preindexed offset

Immediate [Rn, #+/-12bit_Offset]!

Register [Rn, +/-Rm]!

Scaled register [Rn, +/-Rm, LSL #5bit_shift_imm]!

[Rn, +/-Rm, LSR #5bit_shift_imm]!

[Rn, +/-Rm, ASR #5bit_shift_imm]!

[Rn, +/-Rm, ROR #5bit_shift_imm]!

[Rn, +/-Rm, RRX]!
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Table 1-3 Addressing mode 2 (continued)

Addressing mode 2

Postindexed offset

Immediate [Rn], #+/-12bit_Offset
Register [Rn], +/-Rm
Scaled register [Rn], +/-Rm, LSL #5bit_shift_imm

[Rn], +/-Rm, LSR #5bit_shift_imm

[Rn], +/-Rm, ASR #5bit_shift_imm

[Rn], +/-Rm, ROR #5bit_shift_imm

[Rn, +/-Rm, RRX]

Table 1-4 shows privileged addressing mode 2 operations.

Table 1-4 Addressing mode 2, privileged

Addressing mode 2

Privileged
Immediate offset [Rn, #+/-12bit_Offset]
Register offset [Rn, +/-Rm]

Scaled register offset [Rn, +/-Rm, LSL #Sbit_shift_imm]

[Rn, +/-Rm, LSR #5bit_shift_imm]

[Rn, +/-Rm, ASR #5bit_shift_imm]

[Rn, +/-Rm, ROR #5bit_shift_imm]

[Rn, +/-Rm, RRX]

Postindexed offset

Immediate [Rn], #+/-12bit_Offset
Register [Rn], +/-Rm
Scaled register [Rn], +/-Rm, LSL #5bit_shift_imm

[Rn], +/-Rm, LSR #5bit_shift_imm
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Table 1-4 Addressing mode 2, privileged (continued)

Addressing mode 2

Privileged

[Rn], +/-Rm, ASR #5bit_shift_imm

[Rn], +/-Rm, ROR #5bit_shift_imm

[Rn, +/-Rm, RRX]

Table 1-5 shows addressing mode 3 operations.

Table 1-5 Addressing mode 3

Addressing mode 3
Signed byte, and
halfword data transfer

Immediate offset [Rn, #+/-8bit_Offset]
Preindexed [Rn, #+/-8bit_Offset]!
Postindexed [Rn], #+/-8bit_Offset
Register [Rn, +/-Rm]
Preindexed [Rn, +/-Rm]!
Postindexed [Rn], +/-Rm
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Table 1-6 shows addressing mode 4 (load) operations.

Table 1-6 Addressing mode 4, load

Addressing mode 4

Load Stack type

IA increment after FD full descending
IB increment before ED empty descending
DA decrement after FA full ascending

DB decrement before EA empty ascending

Table 1-7 shows addressing mode 4 (store) operations.

Table 1-7 Addressing mode 4, store

Addressing mode 4

Store Stack type

IA increment after EA empty ascending
IB increment before FA full ascending
DA decrement after ED empty descending

DB decrement before FD full descending

Table 1-8 shows addressing mode 5 (load) operations.

Table 1-8 Addressing mode 5

Addressing mode 5
Coprocessor data transfer

Immediate offset [Rn, #+/-(8bit_Offsetx4)]
Preindexed [Rn, #+/-(8bit_Offsetx4)]!
Postindexed [Rn], #+/-(8bit_Offset«4)
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Table 1-9 shows example uses of Oprnd2.

Table 1-9 Oprnd2 examples

Oprnd2

Example

Immediate value

#32bit_Imm

Logical shift left

Rm LSL #5bit_Imm

Logical shift right

Rm LSR #5bit_Imm

Arithmetic shift right ~ Rm ASR #5bit_Imm
Rotate right Rm ROR #5bit_Imm
Register Rm

Logical shift left Rm LSL Rs
Logical shift right Rm LSR Rs
Arithmetic shift right  Rm ASR Rs
Rotate right Rm ROR Rs
Rotateright extended  Rm RRX

Table 1-10 shows the suffixes to set fieldsin M SR operations.

Table 1-10 Suffixes to set fields

Suffix  Sets

_C Control field mask hit (bit 3)
_X Extension field mask hit (bit 2)
S Status field mask bit (bit 1)

f Flags field mask bit (bit 0)

1-18
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Table 1-11 shows the condition code extensions.

Introduction

Table 1-11 Condition fields

Extension Description

EQ Equal

NE Not equal

Cs Unsigned higher or same
cC Unsigned lower

MI Negative

PL Positive or zero

VS Overflow

vVC No overflow

HI Unsigned higher

LS Unsigned lower, or same
GE Greater, or equa

LT Less than

GT Greater than

LE Less than, or equal

AL Always

ARM DDI 0237A
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1.4.2  Thumb instruction summary
Table 1-12 summarizes the Thumb instruction set.
Table 1-12 Thumb instruction summary
Operation Assembler
Move Immediate MOV Rd, #8bit_Imm
High to low MOV Rd, Hs
Low to high MOV Hd, Rs
High to high MOV Hd, Hs
Arithmetic Add ADD Rd, Rs, #3bit_Imm
Add low and low ADD Rd, Rs, Rn
Add hightolow ADD Rd, Hs
Add low to high ADD Hd, Rs
Add high to high ADD Hd, Hs
Add immediate ADD Rd, #8bit_Imm
Add valueto SP ADD SP, #7bit_Imm
Add with carry ADC Rd, Rs
Subtract SUB Rd, Rs, RnSUB Rd, Rs, #3bit_Imm
Subtract immediate SUB Rd, #8bit_Imm
Subtract with carry SBC Rd, Rs
Negate NEG Rd, Rs
Multiply MUL Rd, Rs
Compare low and low CMP Rd, Rs
Compare low and high CMP Rd, Hs
Compare high and low CMP Hd, Rs
Compare high and high CMP Hd, Hs
Compare negative CMN Rd, Rs
Compare immediate CMP Rd, #8bit_Imm
1-20 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0237A



Introduction

Table 1-12 Thumb instruction summary (continued)

Operation Assembler
Logical AND AND Rd, Rs
EOR EOR Rd, Rs
OR ORR Rd, Rs
Bit clear BIC Rd, Rs
Move NOT MVN Rd, Rs
Test bits TST Rd, Rs
Shift/rotate Logical shift left LSL Rd, Rs, #5bit_shift_imm
LSL Rd, Rs
Logical shift right LSR Rd, Rs, #5bit_shift_imm LSR Rd, Rs
Arithmetic shift right ASR Rd, Rs, #5bit_shift_immASR Rd, Rs
Rotate right ROR Rd, Rs
Branch Conditional
If Z set BEQ Tabel
If Z clear BNE Tabel
If Cset BCS Tabel
If Cclear BCC Tabel
If N set BMI Tabel
If N clear BPL Tabel
IfV set BVS Tabel
If V clear BVC Tabel
If Csetand Z clear BHI Tabel
If C clear and Z set BLS Tabel
If N setand V set, or if N clear and V clear BGE Tabel
If N set and V clear, or if N clear and V set BLT Tabel

If Zclearand N or V set, or if Z clear,and N or V clear  BGT Tabel

ARM DDI 0237A
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Table 1-12 Thumb instruction summary (continued)

Operation Assembler
If Z set, or N set and V clear, or N clear and V set BLE label
Unconditional B Tabel
Long branch with link BL Tabel
Optional state change
To addressheldin Lo reg BX Rs
To address held in Hi reg BX Hs

Load With immediate offset
Word LDR Rd, [Rb, #7bit_offset]
Halfword LDRH Rd, [Rb, #6bit_offset]
Byte LDRB Rd, [Rb, #5bit_offset]
With register offset
Word LDR Rd, [Rb, Ro]
Halfword LDRH Rd, [Rb, Rol
Signed halfword LDRSH Rd, [Rb, Ro]
Byte LDRB Rd, [Rb, Ro]
Signed byte LDRSB Rd, [Rb, Ro]
PC-relative LDR Rd, [PC, #10bit_Offset]
SP-relative LDR Rd, [SP, #10bit_Offset]
Address
Using PC ADD Rd, PC, #10bit_Offset
Using SP ADD Rd, SP, #10bit_Offset
Multiple LDMIA Rb!, <reglist>

Store With immediate offset

Word

STR Rd, [Rb, #7bit_offset]

Halfword

STRH Rd, [Rb, #6bit_offset]
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Table 1-12 Thumb instruction summary (continued)

Operation Assembler
Byte STRB Rd, [Rb, #5bit_offset]
With register offset
Word STR Rd, [Rb, Ro]
Halfword STRH Rd, [Rb, Ro]
Byte STRB Rd, [Rb, Ro]
SP-relative STR Rd, [SP, #10bit_offset]
Multiple STMIA Rb!, <reglist>
Push/pop Push registers onto stack PUSH <reglist>

Push LR and registers onto stack

PUSH <reglist, LR>

Pop registers from stack

POP <reglist>

Pop registers and PC from stack

POP <reglist, PC>

Software interrupt

SWI 8bit_Imm

ARM DDI 0237A
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Chapter 2
Integer Core

This chapter describes the ARM 10 integer core. It contains the following sections:
. About the integer core on page 2-2

. Pipeline on page 2-4

. Prefetch unit on page 2-5

. Typical operations on page 2-6

. Load/store unit on page 2-9

. Instruction progression on page 2-10.
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2.1 About the integer core

By overlapping the various stages of operation, the integer core maximizes the clock
rate achievable to execute each instruction. Because it has multiple execution units, the
integer core enables multiple instructions to exist in the same pipeline stage, enabling
simultaneous execution of some instructions. Asaresult, it delivers a peak throughput
approaching one instruction per cycle. The integer core consists of:

Prefetch unit

The prefetch unit fetches instructions from instruction cache or external
memory. To reduce the number of pipelinerefills, it predictsthe outcome
of branches whenever it can.

Integer unit

The integer unit decodes instructions sent from the prefetch unit. It
contains the barrel shifter, ALU, and multiplier, and executes
dataprocessing instructions such asMov, ADD, and MUL. The integer unit
hel pstheload/store unit to execute loads, stores, and coprocessor transfer
instructions such as LDR, STM, LDC, and MCRR. It also contains the main
instruction sequencer that takes care of multicycle data processing
instructions, mode changes, exceptions, and debug events.

L oad/store unit
The Load/Sore Unit (LSU) can load or store two registers (64 bits) per
cycle, if the dataaddressis 64-bit aligned. After the first access of aload
or store multiple instruction (LDM or STM) the LSU can decouple from the
integer unit and complete the instruction autonomously.
While the LSU is decoupled, the integer unit can run data processing
instructionsif there are no dependencies on the LSU or on the loaded or
stored data.
The LSU also supports Hit-Under-Miss (HUM) operation. If aload
missesin the data cache, the outstanding request is moved into the HUM
buffer. Other instructions, including loads, can continue to execute unless
asecond missoccurs or adependency on the outstanding datais detected.

These components are shown in Figure 2-1 on page 2-3.
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Figure 2-1 Integer core components
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2.2 Pipeline

The ARM 10 pipeline consists of six stages to maximize instruction throughput:

Fetch Instruction cache access. Branch prediction for instructions that have
already been fetched.
Issue Initial instruction decode.

Decode Final instruction decode, register reads for Arithmetic/Logic Unit (ALU)
operation, forwarding, and initial interlock resolution.

Execute Data access address cal culation, data processing shift, shift and saturate,
ALU operation, first stage of multiplications, flag setting, condition code
check, branch mispredict detection, and store data register read.

Memory Data cache access, second stage of multiplications, and saturations.
Write Register writes, instruction retirement.

The Fetch stage uses a Fir st-In-First-Out buffer (FIFO) prefetch buffer that can hold up
to three instructions. Here a path to fetch along is predicted ahead of execution of
branch instructions.

The Issue and Decode stages can contain a predicted branch in parallel with one
instruction.

The Execute, Memory, and Write stages can simultaneously contain all of the
following:

. apredicted branch

. an ALU or multiply instruction

. ongoing multicycle load or store multiple instructions
. ongoing multicycle coprocessor instructions.
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2.3 Prefetch unit

The prefetch unit and branch prediction are described in detail in Chapter 6 Prefetch
Unit.

The prefetch unit operates in the Fetch stage of the pipeline. It can fetch 64 bits every
cycle from the instruction-side cache. It can only issue one 32-bit instruction per cycle
to theinteger unit. Because it can fetch more instructions than it can issue, the prefetch
unit puts pending instructions in the prefetch buffer. While an instruction isin the
prefetch buffer, the branch prediction logic can decode it to seeif it isa predictable
branch.

Where possible, the branch prediction logic removes branches from the instruction
stream. If the branch is predicted to be taken, then the instruction address is redirected
to the branch target address. If the branch is predicted not to be taken, then the
instruction address continues to progress through the instructions following the branch
instruction. Often in these cases, if theinstruction following the branch isalready inthe
prefetch buffer, it can beissued in place of the branch and the branch effectively takes
no cycles. When there is not enough time to completely remove the branch, the fetch
address is redirected anyway, because this still hel ps to reduce the branch penalty.

Theinteger unit executes unpredicted or unpredictable branches. To get the address out
quickly, it uses a dedicated fast branch adder whose inputs do not pass through the
barrel shifter.

A multiplexor in the LSU sends loaded data straight to the prefetch unit. This updates
the fetch address after loads to the Program Counter (PC).

Thereis aso apath from the ALU output to the prefetch unit. Thisis used for data
processing instructions that write to the PC. Because the path through the barrel shifter
and ALU isslower than that through the dedicated adder, theseinstructions usually take
one more cyclethan branches. The one exceptionisasimple movethat does not require
ashift, for example, MOV PC R14. For optimum performance, this uses the fast branch
adder rather than the ALU.

ARM DDI 0237A
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2.4 Typical operations
Figure 2-2 shows in the six stages of atypical operation.
Fetch Issue Decode Execute Memory Write
Instruction Main Secondary ALU Saturation. Register write.
fetch. instruction instruction operation. (multiply 2)
ALU decode. decode. (multiply 1)
pipeline Register read.
Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6
Store data Memory Loaded data
register read. access. write to
.lel.J Data address registers.
pipeiine calculation.
Cycle 4 Cycle 5 Cycle 6
Load miss
waits.
Hit-under-miss
Cycle 5, ...
Figure 2-2 Pipeline stages of a typical operation
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ALU
pipeline

LSuU
pipeline

Figure 2-3 shows the stages of atypical data processing operation.

Integer Core

Fetch Issue Decode Execute Memory Write
Instruction Main Secondary ALU Saturation. Register
fetch. instruction instruction operation. write.

decode. decode.
Register read.
Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6
Not used. Not used. Not used.
Not used.

Hit-under-miss

Figure 2-3 Pipeline stages of a typical ALU operation
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ALU
pipeline

LSuU
pipeline

Figure 2-4 shows the stages of atypical multiply operation. TheMUL loopsin the

Execute stage until it passes through the first part of the multiplier array enough times.
Then it progressesto the Memory stage whereit passes once through the second half of
the array to produce the final result.

Fetch Issue Decode Execute Memory Write
Instruction Main Secondary ALU Saturation. Register
fetch. instruction instruction operation. write.

decode. decode.
Register read.
Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6
Not used. Not used. Not used.
Not used.

Hit-under-miss

Figure 2-4 Pipeline stages of a typical multiply operation
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2.5 Load/store unit

If the dataaddressis 64-hit aligned, the LSU can load or store two registers (64 bits) per
transfer. This does not speed up single load or store instructions (LDR, STR) but it does
considerably speed up load and store multiple instructions (LDM, STM). Load and store
double instructions (LDRD, STRD) also take advantage of the available bandwidth.

Accesses that are not 64-bit aligned have to take place over two cycles. If an LDM or STM
address is not 64-bit aligned, then only one register (32 hits) is transferred on the first
access. After that, two registers per cycle can be transferred each cycle.

Single loads and stores work in cooperation with the integer unit. Thefirst cycle of
multiple loads and stores works in cooperation with the integer unit, but the LSU can
finish ongoing multiple loads and stores autonomously.

The LSU calculates the address for the data access using a dedicated adder. This adder
evaluatesin parallel with the adder inthe ALU. The adder inthe ALU calcul ates abase
register write-back valueif it is required.

The A and B register ports of the integer unit read the operands for both adders. For
complex (scaled-register) addressing modes that require the barrel shifter, the ALU has
to calculate data addresses. This costs one extra cycle.

The LSU has two dedicated register bank read ports (S1 and S2) and two dedicated
write ports (L1 and L2). These are used to read data to be stored and to write data that
isloaded.

ARM DDI 0237A
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2.6 Instruction progression

ALU
pipeline

LSU
pipeline

Figure 2-5 shows a simple LDR/STR operation that hits in the data cache.

Fetch Issue Decode Execute Memory Write
Instruction Main Secondary Writeback Base register
fetch. instruction instruction value writeback.
decode. decode. calculation.
Register read.
Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6
Register Memory Loaded data
read. Data access. register write.
address
calculation.
Cycle 4 Cycle 5 Cycle 6
Not used.

Hit-under-miss

Figure 2-5 Pipeline stages of a load or store operation
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pipeline

LSU

pipeline

Integer Core

Figure 2-6 shows the progression of an LDM/STM operation using the load/store pipeline
to complete. Other instructions can use the ALU pipeline at the same time asthe
LDM/STM completesin the LSU pipeline.

Hit-under-miss

Fetch Issue Decode Execute Memory Write
Instruction Main Secondary Writeback Base register
fetch. instruction instruction value writeback.
decode. decode. calculation.
Register read.
Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6
Register Memory Loaded data
read. Data access. register write.
address
calculation.
Cycle 4,5,6 Cycle 5,6,7 Cycle 7, 8,9
Not used
unless cache
miss occurs.

Figure 2-6 Pipeline stages of a load multiple or store multiple operation

ARM DDI 0237A

Copyright © 2001 ARM Limited. All rights reserved.

2-11



Integer Core

Figure 2-7 shows the progression of an LDR that misses. When the LDR isin the HUM
stage, other instructions, including independent loadsthat hit inthe cache, can run under

it.
Fetch Issue Decode Execute Memory Write
Instruction Main Secondary Writeback Not used. Base register
fetch. instruction instruction value writeback if
.ALIL.J decode. decode. calculation if needed.
pipeline Register read. needed.
Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6
Register Memory Loaded data
read. Data access. register write.
.LSIl.J address
pipeline calculation.
Cycle 4 Cycle 5 Cycle 8
Register
read.
Hit-under-miss
Cycle 6,7

Figure 2-7 Pipeline stages of an LDR operation that misses

Refer to Chapter 11 Instruction Cycle Summary and Interlocks for further details of
instruction cycles and timings.
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Chapter 3
System Control Coprocessor

This chapter describes the registers of the system control coprocessor. It contains the
following sections:

. About the system control coprocessor on page 3-2
. Register descriptions on page 3-6.
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3.1 About the system control coprocessor

The ARM 10 programmer’s model, including adetailed instruction set specification, is

described in the ARM Architecture Reference Manual. The programmer's model of the

ARM1022E processor is the same as the programmer’'s model of the ARM 10 integer

unit, but extended in the following ways:

. The system control coprocessor (CP15) provides additional registers for
configuring and controlling caches, MMU, protection system, power-down, and
clocking mode.

. The MMU page tables define the virtual-to-physical address mapping, page and
section access permissions, cache, and write buffer configuration. These are
created by the operating system software and accessed automatically by the
MMU hardware whenever an instruction read or data access causes a TLB miss.
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3.1.1

Accessing CP15 registers

System Control Coprocessor

CP15 registers can be accessed only withMRC and MCR instructionsin aprivileged mode.
Figure 3-1 and Figure 3-2 show the MCR and MRC instruction formats.

31 28 27 2423 212019 16 15 12 11 8 7 5 4 3 0
cond 1110 SBZ |0 CRn Rd 1111 opcode_2| 1 CRm
Figure 3-1 CP15 MCR instruction format
31 28 27 2423 212019 16 15 12 11 8 7 5 4 3 0
cond 1110 SBZ |1 CRn Rd 1111 opcode_ 2|1 CRm

The assembler for these instructionsis:

Figure 3-2 CP15 MRC instruction format

MCR{cond} P15,opcode_1,Rd,CRn,CRm,opcode_2
MRC{cond} P15,opcode_1,Rd,CRn,CRm,opcode_2

Other CP15 instructions (CDP, LDC, and STC), with MRC and MCR instructions executed in
User mode, are UNDEFINED. Any MCR or MRC instruction that is not executed in aprivileged
mode takes the UNDEFINED instruction trap. The CRn field of MRC and MCR instructions
specifies the coprocessor register to access. The CRm fields, opcode_1, and opcode_2,
specify aparticular action when addressing registers. Refer to the ARM Architecture
Reference Manual for details of these fields.

ARM DDI 0237A

Copyright © 2001 ARM Limited. All rights reserved.

3-3



System Control Coprocessor

3.1.2  Summary of CP15 registers
CP15 contains 16 registers. Table 3-1 shows their read and write functions.
Table 3-1 CP15 register summary
Register  Register name Reads Writes
CP15 RO Device ID register Cache ID and typeinformation -
Cache type register
CP15R1 Control register 1 Control Control
CP15 R2 Trand ation table base register Trandation table base Trandation table base
CP15R3 Domain access control register Domain access control Domain access control
CP15R4 - UNPREDICTABLE UNPREDICTABLE
CP15R5 Fault status register Fault status Fault status
CP15 R6 Fault address register Fault address Fault address
CP15R7 Index cache operations register UNPREDICTABLE Cache operations
VA cache operations register
CP15R8 TLB operations register UNPREDICTABLE MMU operations
CP15R9 Cache lockdown register Cache lockdown Cache lockdown
CP15R10 TLB lockdown register TLB lockdown TLB lockdown
CP15R11 - UNDEFINED UNDEFINED
CP15R12 - UNDEFINED UNDEFINED
CP15R13  Process ID register Process ID Process ID and context ID
Context ID register Context ID
CP15R14 - UNDEFINED UNDEFINED
CP15R15 PLL configuration register PLL configuration PLL configuration
Power manager status register Power manager status Power manager status
Power manager receive dataregister ~ Power manager receive data Power manager receive data
Power manager transmit dataregister ~ Power manager transmit data Power manager transmit data
Control register 2 Cache and soft TLB control Cache and soft TLB control
All CP15 register bits that are defined and contain state are cleared by reset except:
. the V bit in CP15 R1, which takes the value of input signal HIVECSINIT
. the B bit in CP15 R1, which takes the value of input signal BIGENDINIT.
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3.1.3 Address types

The ARM processor uses three address types:
. Virtual Address (VA)

. Modified Virtual Address (MVA)

. Physical Address (PA).

Table 3-2 shows the address types.

Table 3-2 Address types

Integer unit Caches and TLBs AMBA bus

Address type  Virtual address  Modified virtual address  Physical address

Figure 1-1 on page 1-6 shows pathsfor these addresses. When the integer core requests
an instruction, the following address manipulation occurs:

1.  Theinteger unit issuesthe VA of theinstruction.

2. TheVA istrandated using the process ID to the MVA. The instruction cache and
MMU perform alookup using the MVA.

3. If the protection check carried out by the MMU on the MVA does not abort, and
the MVA tag isin theinstruction cache, then the instruction dataisreturned to the
integer unit.

4.  If the MVA tagisnot in theinstruction cache, causing an instruction cache miss,
then the MMU performs a translation to produce the Instruction PA (1PA).

5. ThePA ispassed to the AMBA businterface to perform an external access.
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3.2

3.2.1

Register descriptions

This section describes the CP15 registers:

CP15 RO, device ID and cache type registers

CP15 R1, control register 1 on page 3-9

CP15 R2, trand ation table base register on page 3-12

CP15 R3, domain access control register on page 3-12
CP15 R4 on page 3-13

CP15 R5, fault statusregister on page 3-14

CP15 R, fault address register on page 3-16

CP15 R7, index and VA cache operations registers on page 3-17
CP15 RS, TLB operations register on page 3-20

CP15 R9, cache lockdown register on page 3-22

CP15 R10, TLB lockdown register on page 3-23

CP15 R11 on page 3-24

CP15 R12 on page 3-24

CP15 R13, process ID and context ID registers on page 3-25
CP15 R14 on page 3-27

CP15 R15 on page 3-27.

CP15 RO, device ID and cache type registers

The device ID and cache type registers are read-only. Depending on the value of
opcode_2, reading CP15 RO returns one of the following:

When opcode_2 is 0, reading CP15 RO returns the device ID value 0x4105A22r,

wherer isthe revision.

When opcode_2 is 1, reading CP15 RO returns the cache information value
0x0D172172, which reflects the type, size, associativity, and line length of the

|Cache and DCache.

The CRm field SHOULD BE ZERO when reading CP15 RO. Writing to CP15 RO is
UNPREDICTABLE.
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Table 3-3 shows the instructions for using the device ID and cache type registers.

Table 3-3 Device ID and cache type register instructions

Function Data Instruction

Read device ID ARM processor deviceID  MRC p15, 0, Rd, c0, co, @

Read cacheinformation  1Cache and DCache type MRC p15, @, Rd, c0, c0, 1

Device ID register

Figure 3-3 shows the device ID register bit fields.

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

0100/0O0O0M100O0O001011010(001O0/0O0 1 0] Revision

Figure 3-3 Device ID register
Table 3-4 describes the hit fields of the device ID register.

Table 3-4 Encoding of the device ID register

Bits Meaning

[31:24] ASCII code for implementer’s trademark. For example, 0x41 = ARM.

[23:20] Variant 0x0.

[19:16] Architecture. ox5 = ARM architecture version 5TE.

[15:4] Contain the three-digit part number, 0xA22

[3:0] Contain the revision number for the ARM processor
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Cache type register

Figure 3-4 shows the cache type register bit fields.

31 29 28 2524 23 2120 18 17 15141312 11 98 65 3210
Reserved ctype S |Reserved | size |assoc |M| len |Reserved| size |assoc |M| len
000 0110 1 000 101 110 |0 | 10 000 101 110 (0| 10

Fi Dsize 4>F7 Isize 4%

Figure 3-4 Cache type register

Table 3-5 describes the bit fields of the cache type register.

Table 3-5 Encoding of the cache type register

Bits Meaning Value  Notes

[31:29] Reserved 000 -

[28:25] Cache class 0110 Cache-clean-step operation
Cache-invalidate-step operation
Lock-down facilities

24 Harvard architecture 1 -

[23:21] Reserved 000 -

[20:18] Data cache sizes 101 16KB

[17:15] Data cache associtivity 110 64-way associative

14 Data cache parameters 0 Associativity and size are equal

[13:12] Data cache line length 10 Eight words per line

[11:9] Reserved 000 -

[8:6] Instruction cache size 101 16KB

[5:3] Instruction cache associativity 110 64-way set associative

2 Instruction cache parameters 0 Associativity and size are equal

[21:0] Instruction cache line length 10 Eight words per line

Copyright © 2001 ARM Limited. All rights reserved.
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3.2.2 CP15R1, control register 1

The read/write control register 1.

enables fast interrupts

selectsthe T bit after aload PC operation

selects random or round-robin victim replacement
selects high-address or low-address vector locations
enables the | Cache, DCache, and write buffer
enables branch prediction

enables ROM protection and MMU protection
selects big-endian or little-endian operation

enables fault checking of address alignment
enables the MMU.

Use a read-modify-write sequence to access control register 1. For both reading and
writing, the CRm and opcode_2 fields should be zero. Table 3-6 shows the instructions
for using control register 1.

Table 3-6 Control register 1 instructions

Operation Data Instruction

Read configuration  Configuration data  MRC p15, @, Rd, cl, c@, 0

Write configuration  Configuration data  MCR p15, @, Rd, c1, c0, 0

All defined control bits are cleared on reset except:

TheV bitiscleared at reset if the HIVECSINIT signal isLOW, or set if the
HIVECSINIT signal isHIGH.

TheB bit iscleared at reset if the BIGENDINIT signal isLOW, or set if the
BIGENDINIT signal is HIGH.

ARM DDI 0237A
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Figure 3-5 showsthe control register 1 bit fields.

222120 16 15 14 131211 10 9 8 7 6 4 3 2 1 0

SBz Fl SBZ L4 RR|V|I|Z|SBZ|R|S|B|SBO W|C|A M

Reset:

00 0000 0000 0 0 0000 0O 0000 O OOO 1M 1 00O

Figure 3-5 Control register 1

Using a read-modify-write sequence when changing control register 1 provides the
greatest future compatibility. Table 3-7 describes the control register 1 bit fields.

Table 3-7 Encoding of control register 1

Bits

Name

Meaning

[31:22]

Reading returns an UNPREDICTABLE value. When written, SHOULD BE ZERO, or avalue read from bits
[31:18] on the same processor.

21

Fl

Fast interrupt bit. Disables HUM and reduces write buffer to half depth, or four doublewords.
Reset clears Fl.

1 = write buffer isfour slots, HUM disabled, streaming disabled, coreis blocking

0 = write buffer is eight slots, HUM and streaming enabled, core is nonblocking

[20:16]

SHOULD BE ZERO

15

L4

When using an LDR instruction to load the PC, setting the L4 bit enables software written for ARM
architecture version 4 to be used. Reset clearsL4.

1=PChit0isT hit

0=T bitin CPSRisT hit

14

RR

| Cache and DCache round-robin replacement bit. Reset clears RR.
1 = round-robin replacement enabled
0 = random replacement

13

Exception vector location bit. Reset clears V.

1= vectors start at 0xFFFF 0000
0 = vectors start at 9x0000 0000

12

Instruction cache enable bit. Reset clears|.
1 =ICache enabled
0 = ICache disabled

n

Branch prediction enable bit. Reset clears Z.
1 = branch prediction enabled
0 = branch prediction disabled

10

SHOULD BE ZERO

3-10
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Table 3-7 Encoding of control register 1 (continued)

Bits Name Meaning

9 R ROM protection enable bit. Reset clears R.
1=ROM protection enabled
0=ROM protection disabled

8 S System protection enable bit. Reset clears S.
1=IMMU and DMMU protection enabled
0=IMMU and DMMU protection disabled

7 B Big-endian bit. Reset clears B.
1 = big-endian operation
0 = little-endian operation

[6:4] - Reading returns 111. When written, SHOULD BE ONE.

3 W Write buffer enable bit. Reset sets W.

1 = write buffer enabled
0 = write buffer disabled

2 C DCache enable bit. Reset clears C.

1 = DCache enabled
0 = DCache disabled

1 A Address alignment fault checking enable bit. Reset clears A.

1 = fault checking of address alignment enabled
0 = fault checking of address alignment disabled

0 M MMU enable bit. Reset clears M.

1=IMMU and DMMU enabled
0=1IMMU and DMMU disabled

Note

Be careful with the address mapping of the code sequence used to enablethe MMU (see
Enabling the MMU on page 4-33).

See DCache and write buffer enable/disable on page 5-8 for restrictions, and for effects
of having caches enabled when the MMU is disabled.
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3.2.3

3.24

CP15 R2, translation table base register

31

The Trandation Table Base Register, TTBR, contains the Translation Table Base
(TTB) of thelevel 1 trandlation table.

When read, bits[31:14] return the pointer to thelevel 1 tranglation table, and bits[13:0]
return an UNPREDICTABLE value.

Writing to TTBR updates the pointer to the level 1 trandation tablein bits[31:14]. Bits
[13:0] SHOULD BE ZERO.

The CRm and opcode_2 fields SHOULD BE ZERO when writing to TTBR.

Table 3-8 showstheinstructions for using TTBR.

Table 3-8 Translation table base register instructions

Operation Data Instruction

Read TTB TTB address MRC p15, @, Rd, c2, c0, 0

Write TTB TTB address MCR p15, 0, Rd, c2, c0, 0

Figure 3-6 showsthe TTBR bhit fields.

14 13 0

Translation table base SBZ

Figure 3-6 Translation table base register

CP15 R3, domain access control register

The Domain Access Control Register, DACR, contains 16 discrete 2-bit domain access
control fields, each of which defines the access permissions for one of the 16 domains,
D15-DO0.

Reading DACR returns the value of the domain access contral bit fields. Writing to
DACR writes the value of the domain access control hitfields.

The CRm and opcode_2 fields SHOULD BE ZERO when writing to DACR.

3-12
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Table 3-9 shows the instructions for using DACR.

Table 3-9 Domain access control register instructions

Operation Data Instruction

Read domain access Domain 15 to O access control ~ MRC p15, @, Rd, c3, c0, 0

Write domain access Domain 15 to 0 access control ~ MCR pl15, @, Rd, ¢3, c0, 0

Figure 3-7 shows the DACR bit fields.

313029 28 27 26 2524 232221201918 1716151413121110 9 8 7 6 5 4 3 2 1 0

D15 | D14 | D13 | D12 | D11 D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | DO

Figure 3-7 Domain access control register

Table 3-10 describes the DACR hit fields.

Table 3-10 Encoding of the domain access control register

Bits Meaning

D15-DO Domain access control:
00 = no access; access generates domain fault.
01 = client access; access permissions are checked.
10 = reserved; behaves as no access domain.
11 = manager; access permissions are not checked.

Any writeto DACR causes all unlocked TLB entries to be invalidated. If you change
the domain access control field corresponding to alocked TLB entry, you must
invalidate that entry in the TLB using the invalidate single entry operation and rel oad
it. Ideally, a program that locks entries in the TLB maps those locked entries to
unmodified DAC fields.

3.25 CP15R4

Reading or writing CP15 R4 is UNDEFINED.
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3.2.6  CP15 R5, fault status register

The Fault Satus Register (FSR) contains the source of the last data fault. It indicates
the domain and type of access being attempted when an abort occurred.

Table 3-11 shows the instructions for using the FSR.

Table 3-11 Fault status register instructions

Operation Data Instruction
Read data FSR FSR data MRC p15, @, Rd, c5, c0, 0
Write data FSR FSR data MCR p15, 0, Rd, c5, c0, 0

Read instruction FSR ~ FSRinstruction  MRC p15, @, Rd, c5, c0, 1

Writeinstruction FSR ~ FSRinstruction  MCR p15, @, Rd, c5, c0, 1

Figure 3-8 shows the FSR hit fields.

31 8 7 4 3 0

SBz Domain Status

Figure 3-8 Fault status register

Table 3-12 describes the FSR bit fields.

Table 3-12 Encoding of the fault status register

Bits Meaning

[31:8]  SHOULD BE ZERO

[7:4] Domain selector that caused the abort. Specifieswhich of the 16 domains(D15-D0)
was being accessed when afault occurred.

[3:0] Type of fault generated (see Table 3-13 on page 3-15).
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Table 3-13 Priority of fault types

Priority Source Status Domain FAR
Highest Alignment 0001 Invalid valid
TLB miss 0000 Invalid Valid
External abort on trandlation 1st level 1100 Invalid Valid
External abort on trandlation 2nd level 1110 valid valid
Translation section 1110 Invalid valid
Trandation page 0111 Valid Valid
Domain section 1001 Valid Valid
Domain page 1011 Valid Valid
Permission section 1101 Valid Valid
Permission page 111 Valid Valid
External abort 1010 Valid Valid
Lowest Debug event 0010 Valid Valid

Reading FSR returns the value of the FSR.

Writing to FSR changes the FSR to the value of the data written. Thisis useful for a
debugger to restore the value of the FSR. The register must be written using a
read-modify-write sequence. Bits[31:8] should be zero.

The CRm field should be zero when reading or writing FSR.

The design includes both adata FSR and an instruction FSR. The data FSR is used to
check all Data Aborts and watchpoints. The data FSR maps the debug event to a
watchpoint. The instruction FSR is used to check all prefetch aborts and breakpoints.
Theinstruction FSR maps the debug event to a breakpaint.

ARM DDI 0237A
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3.2.7 CP15 R6, fault address register

31

The Fault Address Register (FAR) holdsthe VA of the access that was attempted when
afault occurred.

Table 3-14 shows the instructions for using the FAR.

Table 3-14 Fault address register instructions

Operation Data Instruction

Read data FAR FAR data MRC pl5, @, Rd, c6, c0, 0
Write data FAR FAR data MCR p15, 0, Rd, c6, c0, 0
Read instruction FAR FAR data MRC p15, @, Rd, c6, c0, 1
Write instruction FAR FAR data MCR p15, @, Rd, 6, c0, 1

Reading FAR returns the value of either the data FAR or the instruction FAR as
specified by the opcode_2 value.

Writing to FAR changes the FAR to the value of the data written. Thisis useful for a
debugger to restore the value of the FAR.

The CRm fields should be zero when reading or writing FAR.
Figure 3-9 shows the FAR hit field.

Fault address

Figure 3-9 Fault address register

The data FAR contains the address of the memory access which caused the Data Abort.
Theinstruction FAR contains the address (PC + 8) of the memory access which caused
either awatchpoint or Data Abort.

3-16
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3.2.8 CP15R7,index and VA cache operations registers

Theindex and VA cache operations registers are write-only registers for managing the
| Cache and DCache.

Table 3-15 shows the instructions for performing index and VA cache operations.

Table 3-15 Cache operations register instructions

Function Data Instruction

Invalidate caches SHOULD BE ZERO MCR p15, @, Rd, c7, c7, 0
Invalidate |Cache SHOULD BE ZERO MCR p15, @, Rd, c7, c5, 0
Invalidate | Cache single entry using VA Virtual address MCR p15, @, Rd, c7, c5, 1
Prefetch ICache line Virtual address MCR p15, @, Rd, c¢7, cl13, 1
Invalidate DCache SHOULD BE ZERO MCR p15, @, Rd, c7, c6, 0
Invalidate DCache single entry using VA Virtual address MCR p15, @, Rd, c7, c6, 1
Clean DCache single entry using VA Virtual address MCR p15, @, Rd, c7, cl0, 1
Clean and invalidate DCache single entry using VA Virtual address MCR p15, @, Rd, c7, cl4, 1
Clean DCache single entry using index Index, segment format  MCR p15, 0, Rd, c7, cl0, 2
Clean and invalidate DCache entry using index Index, segment format  MCR p15, 0, Rd, c7, cl4, 2
Empty write buffer SHOULD BE ZERO MCR p15, @, Rd, c7, clo, 4
Wait for interrupt SHOULD BE ZERO MCR p15, @, Rd, c7, c0, 4

The opcode_2 and CRm fields in the MCR instruction select the cache operation. Writing
opcode_2 or CRm values other than those shown in Table 3-15 is UNPREDICTABLE.

Reading the index and VA cache operations registers iS UNPREDICTABLE.
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Table 3-16 describes the cache operations in more detail .

Note
Dirty datais datathat has been modified in the cache but not yet copied back to main
memory.

Table 3-16 Cache operation descriptions

Function

Description

Invalidate cache

Invalidates all cache data, including any dirty data.
Use with caution.

Invalidate single entry using VA Invalidates a single cache line, including any dirty data.

Use with caution.

Clean single DCache entry using Writes the specified cache line to main memory if the lineis marked valid and

either index or VA

dirty and is from awrite-back memory region and marks the line as not dirty.
The valid bit is unchanged.

Clean and invalidate single DCache Writes the specified cache line to main memory if the lineis marked valid and
entry using either index or VA dirty, and is from awrite-back memory region.

Thelineis marked not valid.

Prefetch cache line

Performs an |Cache lookup of the specified address.
If the cache misses, and the region is cachable, alinefill is performed.

Index cache operation register

The operations that act on a single cache line identify the line using the contents of Rd
as the address, passed in the MCR instruction. Figure 3-10 shows the index cache
operation register.

31 26 25 9 8 54 3 2 0

Index SBzZ Sg Wd SBZ

Figure 3-10 Index cache operations register
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Table 3-17 describes the bit fields of the index cache operation register.

Table 3-17 Encoding of the index cache operations register

Bits Meaning

[31:26] Index in segment being accessed
[25:9] SHOULD BE ZERO

[8:5] Segment being accessed

[4:3] 64-bit double word being accessed
[2:0] SHOULD BE ZERO

Theindex tag format of Example 3-1 isfor accessing a specific line in the cache.
Example 3-1 shows the command clean D single entry (using index).

Example 3-1 Clean D single entry (using index)

;code is specific to the ARM1022E macrocell with 16KB caches

MOV RO, #0:SHL:5 ;select segment
seg_Tloop
MOV R1, #0:SHL:26 ;select index
Tine_Toop
ORR R2,R1,R0
MCR p15,0,R2,c7,c10,2
ADD R1,R1,#1:SHL:26 ;increment index
CMP R1,#0 ;check for index overflow
BNE Tine_Toop
ADD RO,RQ,#1:SHL:5 ;increment segment
CMP RO,#1:SHL:8 ;check for segment overflow

BNE seg_Toop

ARM DDI 0237A
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VA cache operations register

The VA cache operationsregister isuseful for invalidating a particular address or range
of addressesin the caches. Figure 3-11 shows the bit fields of the VA cache operations
register.

31 9 8 5 4 3 2 0

Virtual CAM tag Sg wd SBZ

Figure 3-11 VA cache operations register

Table 3-18 describes the bit fields of the VA cache operations register.

Table 3-18 Encoding of the VA cache operations register

Bits Meaning

[31:9] Virtual Content Addressable Memory (CAM) tag
[8:5] Segment being accessed

[4:3] 64-hit double word being accessed

[2:0] SHOULD BE ZERO

Note

| Cache prefetch operations and DCache clean operations are performed
reguested-word-first.

3.29 CP15RS8, TLB operations register
The TLB operations register is awrite-only register for managing theinstruction TLB
and the data TLB. Reading from the TLB operations register is UNPREDICTABLE.
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Table 3-19 shows the instructions for performing TLB operations.

Table 3-19 TLB operations register instructions

Operation Data Instruction
Invalidate instruction and data TLBs SHOULD BE ZERO  MCR p15, 0, Rd, c8, c7, @
Invalidate instruction TLB SHOULD BE ZERO  MCR p15, 0, Rd, c8, c5, @

Invalidate instructionTLB single entry (using VA)  Virtual address  MCR p15, @, Rd, 8, 5, 1

Invalidate data TLB SHOULD BE ZERO  MCR pl15, 0, Rd, c8, c6, 0

Invalidate data TLB single entry (using VA) Virtual address  MCR p15, @, Rd, c8, c6, 1

The opcode_2 and CRm fieldsin the MCR instruction select the TLB operation. Writing
opcode_2 or CRm values other than those shown in Table 3-19 is UNPREDICTABLE.

Figure 3-12 showsthe TLB operations register bit fields.

31 5 4 0

Virtual CAM tag SBZ

Figure 3-12 TLB operations register

—  Note
Invalidating the full TLB invalidates all the unlocked entriesin the TLB. Invalidating

TLB single entry functionsinvalidates any TLB entry corresponding to the VA givenin
Rd, regardless of itslocked state (see CP15 R10, TLB lockdown register on page 3-23).
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3.2.10 CP15R9, cache lockdown register

The cache lockdown register enables software to:

. control which line ICache or DCache line isloaded for alinefill by changing the
base value or the victim counter value respectively

. prevent | Cache or DCache lines from being replaced during alin€fill, locking
them into the cache.

Table 3-20 shows the instructions for using the cache lockdown register.

Table 3-20 Cache lockdown register instructions

Operation Data Instruction

Read DCache lockdown base Base MRC p15, @, Rd, 9, c0, @
Write DCache victim and lockdown base  Victim = base MCR p15, 0, Rd, c9, c0, 0
Read |Cache lockdown base Base MRC p15, @, Rd, <9, c0, 1
Write |Cache victim and lockdown base Victim = base MCR p15, 0, Rd, <9, c0, 1

31

Reading the cache lockdown register returns the value of the cache lockdown register,
which is the base pointer for all cache segments. Reset clears the cache lockdown
register.

Note
Only bits[31:26] are returned. Bits[25:0] are zero.

Figure 3-13 shows the bit fields of the cache lockdown register

26 25 0

Base value UNP/SBZ

Figure 3-13 Cache lockdown register

Writing to the cache lockdown register updates the base pointer and the current victim
counter value for all cache segments. Bits[25:0] SHOULD BE ZERO. The next linefill uses
the victim counter value, then increments the victim counter. The victim counter
continues incrementing on linefills and wraps around to the base pointer. For example,
setting the base pointer to 0x3 prevents the victim counter from selecting entries 0x0 to
0x2, locking them into the cache.

3-22
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Thevictim counter specifiesthe cache line to be used as the victim for the next linefill.
The counter isincremented using either arandom or round-robin replacement policy,
determined by the state of the RR bit in control register 1, CP15 R1. Thevictim counter
generates values from base to base + 63. This locks lines with index values from 0 to
base — 1, with an upper limit of 63 locked entriesin the DCache. If base = O there are
no locked lines.

Example 3-2 shows how to load a single entry into line 0 and lock it down.

Example 3-2 Updating the base pointer and current victim pointer

MCR to CP15 r9, Victim=Base=0x0

MCR to cause an I prefetch, LDR/LDM, depending on whether it is ICache or
DCache. Assuming the appropriate cache misses, a Tinefill occurs to 1ine 0.
MCR to CP15 r9, Victim=Base=0x1

Further linefills now occur into lines 1 to 63.

3.2.11 CP15R10, TLB lockdown register

ThereisaTLB lockdown register for each TLB. Reading the TLB lockdown register
returnsthe value of the TLB lockdown counter base register, the current victim counter
value, and the preserve hit. The TLB lockdown register is cleared at reset.

Writing to the TLB lockdown register updatesthe TLB lockdown counter baseregister,
the current victim counter value, and the state of the preserve bit. Bits[19:1] SHOULD BE
ZERO. Table 3-21 shows theinstructions for using the TLB lockdown register.

Table 3-21 TLB lockdown register instructions

Operation Data Instruction

Read data TLB lockdown TLB lockdown MRC p15, @, Rd, c10, c0, 0
Write data TLB lockdown TLB lockdown MCR pl15, @, Rd, c10, c0, 0
Read instruction TLB lockdown  TLB lockdown MRC p15, @, Rd, c10, c0, 1
Writeinstruction TLB lockdown  TLB lockdown MCR p15, @, Rd, c10, c0, 1
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31

Figure 3-14 shows the bit fields of the TLB lockdown register.

26 25

20 19

Base value

Current victim

SBzZ

3.2.12 CP15R11

3.2.13 CP15R12

Figure 3-14 TLB lockdown register

The entriesin the TLBs are replaced using a round-robin replacement policy. Thisis
implemented using avictim counter that counts up continuoudly from entry O at the base

value to entry 63, wrapping back from 63 to the base value each time.

There are two mechanisms to ensure that entries are not removed from the TLB:

. Locking an entry down prevents it from being selected for overwriting during a
table walk. Thisis achieved by programming the base value to which the victim
counter reloads. For example, if the bottom three entries (0 to 2) areto be locked
down, the base counter must be programmed to 3.

. An entry can also be preserved during an invalidate all instruction. Thisis done

by ensuring the P bit is set when the entry isloaded into the TLB.

Example 3-3 shows how to |oad asingle entry into location 0, make it immuneto

invalidate all, and lock it down.

Example 3-3 Ensuring an entry is not removed from the TLB

MCR to CP15 rl10, Base Value = 0, Current Victim = @, Preserve = ‘1’
MCR to cause prefetch, assuming a miss occurs in the TLB then entry @ is loaded.
MCR to CP15 r10, Base Value = 1, Current Victim = 1, Preserve = ‘0’

Reading or writing R11 takes the UNDEFINED instruction trap.

Reading or writing R12 takes the UNDEFINED instruction trap.

3-24
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3.2.14 CP15 R13, process ID and context ID registers

Theprocess|D and context I D registersareread/write registers. Reset clearsthe process
ID register.

Table 3-22 shows the instructions for using the process ID and context 1D registers.

Table 3-22 Process ID and context ID register instructions

Operation Instruction

Read process ID MRC p15, @, Rd, c13, c0, @
Write process ID MCR p15, @, Rd, c13, c0, 0
Read context ID MRC p15, @, Rd, c13, c0, 1
Write context ID MCR p15, @, Rd, c13, c0, 1

Reading the process ID register returns the value of the process ID.

Writing to the process ID register updates the process ID. Bits [24:0] should be zero.
Figure 3-15 shows the bit fields of the process ID register.

31 25 24 0

Process ID SBZ

Figure 3-15 Process ID register

The context ID register is a holding register for storing the current context of the
program. Reading the context ID register returns the context 1D. Writing to the context
ID register updates the context ID.

Figure 3-16 shows the bit fields of the context ID register.

31 0

Context 1D

Figure 3-16 Context ID register
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Using the process ID

Addressesissued by theinteger unitintherange 0to 32M B aretranslated by the process
ID. Address A becomes A + (process ID x 32MB). Thistrandated addressis used by

both the cachesand MMU. Addresses above 32MB are not translated. Thisisshownin
Figure 3-17. The process ID is aseven-hit field, enabling 128 x 32MB processes to be

mapped.

Note
If the process ID iszero, asit ison reset, then aflat mapping exists between theinteger
unit, the caches, and the MMU.

Address issued by ARM10E Address input to caches and MMU

4GB 4GB
Process ID No 128
P
rocess ID No 2 64MB
32MB Process ID No 1
32MB
0 Process ID No 0 0

Figure 3-17 Address mapping using CP15 R13

A fast context switch is performed by writing to the context I D register. The contents of
the caches and TLBs do not have to be invalidated after afast context switch because
they still hold valid address tags. From two to five instructions can be fetched with the

old process ID after the MCR that writes to the process ID:
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Example 3-4 Changing the process ID and performing a fast context switch

{procID = 0}

MOV r@, #1; Fetched with procID = 0
MCR p15,0,r0,c13,c0,0 ;

Ao
Al
A2
A3
A4
A5

; Fetched with procID =
(any instruction) ; Fetched with procID =
(any 1instruction) ; Fetched with procID = 0

(any instruction) ; Fetched with procID = 0/1

SIS

(any instruction) Fetched with procID = 9/1
(any instruction) ; Fetched with procID = 0/1
(any instruction) ; Fetched with procID = 1

Reading or writing CP15 R14 is UNDEFINED.

CP15 R15 is used for test purposes. Reading or writing CP15 R15 in normal operation
iS UNPREDICTABLE.

R15 functions are described in:

PLL configuration register on page 3-28

Power manager status register on page 3-29

Power manager receive data register on page 3-30
Power manager transmit data register on page 3-31
Transmission protocol on page 3-32

Control register 2 on page 3-33.
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PLL configuration register

ThePLL configuration register isfor reprogramming the core clock frequency or AHB
bus frequency. The register has a defined reset value as shown in Figure 3-18. Refer to
Chapter 14 Clock Generator for more details.

Table 3-23 shows the instructions for using the PLL configuration register.

Table 3-23 PLL configuration register instructions

Operation Instruction
Read status MRC p15, @, Rd, c15, cl12, 0
Write configuration MCR p15, @, Rd, c15, c12, 0

Figure 3-18 shows the bit fields of the PLL configuration register.

312524 23 22 17 16 15 141312 11 4 3 0

SBZ | PCONFIGOUT[1:0] | PCONFIGIN[5:0] |POWERDN | BYPASS[1:0] | SBZ |MDIV[7:0] | HDIV[3:0]

00 00 0000 1 11 0000 0000 1111
Figure 3-18 PLL configuration register

Table 3-24 describes the bit fields of the PLL configuration register.

Table 3-24 Encoding of the PLL configuration register

Bits Meaning

[31:25] SHOULD BE ZERO

[24:23] Bit 24 isfor apartner-defined PLL function. Bit 23 isfor alock-detect signal.

[22:17] Partner-specific PLL functions

16 POWERDN PLL draws only minimum leakage current due to VCO being
clamped. Lock islost.

[15:14] BYPASS[1:0] Controls the selects for the GCLK, HCLK, and VCO
multiplexors. See Chapter 14 Clock Generator.

[13:12] SHOULD BE ZERO
[11:4] PLL feedback divider (M CLK) MDIV[7:0]
[3:0] AHB clock divider (HCLK) HDIV[3:0]
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Power manager status register

The Power Manager Satus Register, PM SR, contains the version number of the power
manager. It also indicates when the receive channel is available to check the last state
of the system, and when the transmit channel is available to send new data.

Table 3-25 shows the instructions for using PMSR.

Table 3-25 Power manager status instructions

Operation Instruction

Read status MRC p15, @, Rd, c15, cl4, 0

Check receivechannel  MRC p15, 0, Rd, c15, c14, 1

Write transmit channel ~ MCR p15, @, Rn, c15, cl4, 1

Figure 3-19 shows the PM SR hit fields.

31

28 27 210

Version

SBZ WIR

Figure 3-19 Power manager status register

Table 3-26 describes the PM SR bit fields.

Table 3-26 Encoding of the power manager status register

Bits Meaning

[31:28] Version = 0x0001

[27:2] SHOULD BE ZERO

1 Denotes transmit channel is ready:
1=Ide
0=Busy

0 Denotes receive channd isfull:
1=Full
0 = Empty

ARM DDI 0237A
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Power manager receive data register

When the R flag in power manager statusregister is set, valid data can be read from the
Power Manager Receive Data Register, PMRDR. An acknowledgement is sent to the
power manager to indicate data acceptance. When the R flag is clear, reading PMRDR
iSUNPREDICTABLE. Writing to PMRDR iSUNPREDICTABLE. Figure 3-20 showsthe PMRDR
bit fields.

31 30

SBZ

State

SBZ

Figure 3-20 Power manager receive data register

Table 3-27 describes the PMRDR bit fields.

Table 3-27 Encoding of the power manager receive data register

Bits

Meaning

31

Emulation flag. When exiting areset sequence, E reflects the last programmed

state of the system.
1 = power manager issued a command in emulation mode
0 = power manager issued a command in norma mode

[30:8]

Reserved. Reads as zero.

[7:4]

System power state. When exiting a reset sequence, thisfield reflects the last

programmed state of the system.
1111 = TURBO

1110 = NORMAL

110x = SLOW

100x = IDLE

01xx = NAP

0011 = SLEEP

0010 = COMA

0001 = HIBERNATE

0000 = OFF

[3:0]

Reserved. Reads as zero.

3-30
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Power manager transmit data register

When the W flag in power manager statusregister is set, new data can be written to the
Power Manager Transmit Data Register, PMTDR. An acknowledgement following the
write is sent to the power manager to indicate that new datais available. Writing to
PMTDR clears W. Writing to PMTDR when W is clear is UNPREDICTABLE. Reading
PMTDR is UNPREDICTABLE. Figure 3-21 showsthe PMTDR hit fields.

31 30 8 7 4 3 0

E SBZ State SBZ

Figure 3-21 Power manager transmit data register

Table 3-28 describes the PMTDR bit fields.

Table 3-28 Encoding of the power manager transmit data register

Bits Name Meaning

31 E 1 = power manager issued a command in emulation mode
0 = power manager issued a command in normal mode

[30:8] - SHOULD BE ZERO

[7:4] State System power state. When exiting a reset sequence, this value reflects the last
programmed state of the system.
1111 = TURBO
1110 = NORMAL
110x = SLOW
100x = IDLE
01xx = NAP
0011 = SLEEP
0010 = COMA
0001 = HIBERNATE
0000 = OFF

[3:0] - SHOULD BE ZERO
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Transmission protocol
When issuing commands to the power manager, a specific protocol must be followed:

1. By reading the W and R flags, software checks to see that both transmit data and
receive data data bit fields are empty.

2. When transmitting, software must write acommand to the transmit data register.
This clears the W flag. Hardware then performs a handshake with the power
manager, waiting for acceptance of the command using a double-ended
handshake.

3. When the handshake for the transmit data is done, hardware sets the W flag.

When receiving data, software must wait until the R flag is set. When set, new datais
valid in the receive data register.

Data Transmit Code

To transmit data to the power manager, software must always perform the code
sequence shown below. The command is sent using register ARM register R1, while
ARM register RO reflects the status register contents:

tx_command:

MRC CP15, @, R@, C15, C14, 0
TST RO, #W_flag
BNE tx_command
MCR CP15, @, R1, C15, C14, 1

check for outstanding commands

‘W flag clear indicates active command
if command active, loop again

write new command to controller

Note

TheW flagis polled until it isone. When W is set, the command can be sent to the
power manager.

Data Receive Code

To wait until data has been received in the receive data register, software must always
perform the code sequence shown below. The command is received into register ARM
register R1, while ARM register RO reflects the status register contents:

rx_status:

MRC CP15, 0, RO, C15, C14, 0
TST RO, #R_flag

BNE rx_status

MRC CP15, 0, RO, C15, C14, 1

check for incoming data

‘R” flag clear indicates no data
if no data, loop again

read in ‘previous-state’

3-32
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TheR flagis polled until it is cleared. When R is cleared, the command can be read.

Control register 2

The read/write control register 2 is primarily useful when in debug mode. When not in
debug mode, it is also useful to define the behavior of accesses when the caches are on

and the DMMU is off.

Table 3-29 shows the instructions for using control register 2.

Table 3-29 Control register 2 instructions

Operation Instruction
Read status MRC p15, 0, Rd, c15, cll, @
Write MCR p15, 0, Rd, c15, cll, @
Figure 3-22 shows control register 2.
31 5 43210
SBZ ST|IC|B |DC|DB
Reset: 000 0000 0000 0000 0000 0000 0000 0000 O

Figure 3-22 Control register 2

Table 3-30 describes the bit fields of control register 2.

Table 3-30 Encoding of control register 2

Bits Meaning

[3L:5]  SHOULD BE ZERO

4 ST, CP15 soft TLB enable bit. Reset clears ST.

1 = soft TLB enabled
0 = soft TLB disabled

3 IC, CP15 instruction cachable bit; used only in debug mode with the |Cache on.

Reset clearsIC.
1 = instructions cachable
0 = instructions not cachable

ARM DDI 0237A Copyright © 2001 ARM Limited. All rights reserved.
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Table 3-30 Encoding of control register 2

Bits Meaning

2 IB, CP15 ingtruction bufferable bit. Used only in debug mode with the |Cache on.
Included for compatability with the B bit in the MMU descriptors. Reset clears |B.
1 =instructions bufferable
0 = instructions not bufferable

1 DC, CP15 data cachable bit. Used in debug mode or when the DMMU is off and the
DCacheison. Reset clears DC.
1 = datacachable
0 = data not cachable

0 DB, CP15 data bufferable bit; used in debug mode or when the DMMU is off and
the DCacheison. Reset clears DB.
1 = data bufferable
0 = data not bufferable
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Chapter 4
Memory Management Units

This chapter describes the ARMv5 Memory Management Units (MMUS). It contains

the following sections:

About the MMUs on page 4-2

MMU software-accessible registers on page 4-3

Address trandation on page 4-5

MMU memory access control on page 4-21

MMU cachable and bufferable information on page 4-23
MMU and write buffer on page 4-24

MMU aborts on page 4-25

MMU fault checking sequence on page 4-26

CPU aborts on MMU faults on page 4-29

Fault priority on page 4-30

External aborts on page 4-31

Interaction of the MMU, caches, and write buffer on page 4-33
Soft page table support on page 4-34.
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4.1

About the MMUs

The MMUSs control external memory accesses and trandate Virtual Addresses (VAS) to
Physical Addresses (PAS).

The Instruction MMU (IMMU) and Data MMU (DMMU) provide address translation
and access permission checks for theinstruction and data ports of the integer unit. They
control the descriptor fetch hardware that accesses page table descriptorsin main
memory. To support sectionsand pages, there aretwo level sof pagetables. Thefinished
VA-to-PA translations are put into separate instruction-side and data-side Translation
Lookaside Buffers (TLBs).

MMU features include:

standard MM U mapping sizes, domains, and access protection
1KB, 4KB, 64KB, and 1IMB mapping sizes
access permissions for IMB sections

separate access permissions for one-quarter page subpages of 64KB large pages
and 4KB small pages

16 domains

separate 64-entry instruction and data TLBs
independent lockdown of instruction and data TLBs
hardware page table descriptor fetches

round-robin replacement algorithm

support for soft page tables.

4-2
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4.2 MMU software-accessible registers

The CP15 registers shown in Table 4-1, along with the page table descriptors stored in
memory, control MMU operation.

Table 4-1 CP15 register MMU functions

CP15 register Bits

Register description

R1 M
Control register 1

Bit 0, MMU enable hit:

1=IMMU and DMMU enabled
0=1IMMU and DMMU disabled

A Bit 1, address alignment fault checking enable bit:
1 = fault checking of address alignment enabled
0 = fault checking of address alignment disabled
S Bit 8, system protection enable hit:
1=IMMU and DMMU protection enabled
0=1MMU and DMMU protection disabled
R Bit 9, ROM protection enable hit:
1=ROM protection enabled
0= ROM protection disabled
R2 [31:14] Holds PA of base of trand ation table in main memory. Base must resideon
Translation table base register a16KB boundary and is common to both IMMU and DMMU.
R3 [31:0] Has 16 2-hit fields. Each field defines the access control attributesfor one
Domain access control register of 16 domains (D15-D0). See Table 4-5 on page 4-21
R5 Indicates domain number and cause of Data Abort.
Fault status register [31:8] SHOULD BE ZERO
[7:4] Indicate domain (D15-DO0) in which fault occurred.
[3:0] Indicate type of access attempted. See Table 4-8 on page 4-30.
R6 [31:0] Holds VA associated with access that caused Abort. See CP15 R6, fault
Fault address register addressregister on page 3-16 for FAR access instructions. See Table 4-8

on page 4-30 for details of the address stored for each type of fault.
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Table 4-1 CP15 register MMU functions (continued)

CP15 register Bits Register description

R8 [31:5] Writing to R8 causes the MMU to perform TLB maintenance operations,
TLB operations register invalidating one or al unpreserved TLB entries.

R10 [31:20],0 Allows specific page table entries to be locked intoaTLB and the TLB
TLB lockdown register victim counter to be read/written.

Locking entriesin a TLB guarantees that accesses to the locked page or
section can proceed without incurring thetime penalty of aTLB miss. This
enables the execution latency for time-critical pieces of code such asIRQ
handlers to be minimized.

R15 [4] Allowsthe MMU to be configured for soft TLB support.
Control register 2

Note

All the CP15 MMU registers, except CP15 R8, contain state and can be read using MRC
instructions and written to using MCR instructions. CP15 R5 and CP15 R6 are also
written by the MMU. Reading CP15 R8 is UNPREDICTABLE.
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43.1

Memory Management Units

Address translation

TLBs

The address trand ation process begins when the integer unit requests access to an
address that has no VVA-to-PA translationin the TLB, causing a TLB miss. The MMU
then fetches a page table descriptor.

Each TLB caches 64 trandated entries. If, during amemory access, the TLB containsa
tranglated entry for the VA, the MMU reads the protection data to determine if the
access is permitted:

. If the access is permitted, and off-chip accessisrequired, the MMU producesthe
PA.

. If the access is permitted, and off-chip accessis not required, the cache services
the access.

. If the access is hot permitted, the MMU signals the CPU to abort.

If aTLB miss occurs, the page table descriptor fetch hardware retrieves the trandation
information from a translation table in main memory. The retrieved information is
written into the TLB, possibly overwriting an existing value.

The entry to be written is usually chosen by cycling sequentially through the TLB
locations. To enable use of TLB locking features, the location to be written can be
specified using the TLB lockdown register, CP15 R10.

When the MMU is turned off, as happens at reset, no address mapping occurs, and all
regions are marked as noncachable and nonbufferable.

ARM DDI 0237A
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4.3.2

4.3.3

Page table descriptor fetches

A pagetable descriptor fetch occurs whenever thereisaTLB miss. The descriptor fetch
begins with the formation of alevel 1 descriptor.

Note

If the DMMU is performing an external memory operation for the |oad/store unit, the
write buffer is emptied before the descriptor fetch. This guarantees that memory
remains coherent. The DMMU then performs the operation as noncachable and
nonbufferable.

IMMU activity does not cause the write buffer to be emptied.

Translation routes for sections and pages

The MMU trandates VAs from the integer unit to PAs for an external memory access.

The two types of memory blocks, sections and pages, require a specific translation
process to occur.

Figure 4-1 on page 4-7 shows the trandation process. A section requiresonly alevel 1
descriptor fetch. A page requires both alevel 1 and level 2 descriptor fetch.

4-6
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Level 1 Level 2 Pages/sections
Level 1 Base address 64KB large page
page table Level 2 coarse from L2D[31:16] | 7 0
descriptors page'table 16KB subpagd
16KB des1c'2|gtors Indexed by | | 16KB subpaga
Translation 31 0 Base address VA[15:0] 16KB subpagd
table base from L1D[31:10]731 0 16KB subpage
00
Indexed b Invalid 00
C/AT?S%Z{ 01 Base address 4KB small page
’ 0 from L2D[31:12] , 7 0
1KB
invalid 11 subpage
Indexed by | | 1KB subpage
VA[11:0] | | 1KB subpage
01— 1KB subpage
Base address
from L1D[31:20] , 7 0
Indexed by .
Indexed by VA[19:0] 1MB section
VA[31:20] 10
Base address 64KB large page
from L2D[31:16] | 7 0
Level f ETe 16KB subpage
11 geagceri;tori Indexed by | | 16KB subpage
4KB VA[15:0] | |16KB subpage
Base address T6KE subpand
from L1D[31:12] 31 0 pag
Indexed by Invalid 00 Base address 4KB small page
v VA[19:10] 01l from L2D[31:12] | 7 0
104 1KB subpage
11— Indexed by | | 1KB subpage
VA[11:0] | | 1KB subpage
1KB subpage
Base address
from L2D[31:10] , 7 0
Indexed by .
VA[9:0] 1KB tiny page

Figure 4-1 Translating pages and section addresses
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4.3.4  Level 1 descriptor address

Figure 4-2 shows how the MMU uses the translation table base field in CP15 R2 and
the VA from the integer unit to create the level 1 descriptor address.

31 1413 0
Translation table base SBZ Translation
table base
31 2019 0
Virtual Level 1 table index Not used
address
31 1413 210
Level 1
Translation table base Level 1 table index 0|0| descriptor
address

Figure 4-2 Translating a level 1 descriptor address

4.3.5 Level 1 page table descriptors

Thelevel 1 descriptor indicates whether the accessis:
. atrandation fault

. an accessto alevel 2 coarse pagetable

. an access to a IMB section of external memory
. an accessto alevel 2 fine page table.

Bits[1:0] of thelevel 1 descriptor determine the type of access. Figure 4-3 on page 4-9
shows the level 1 descriptor formats for the three access types.
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31 20 19 121110 9 8 543210

Translation fault Ignore 00
Coarse page table Level 2 coarse page table base address SBZ| Domainselector| 1| SBZ|0 |1
1MB section Section base address SBzZ AP | SBZ| Domainselector|1|C|B| 1|0

Fine page table Level 2 fine page table base address SBZ Domainselector| 1| SBZ |1 |1

Figure 4-3 Level 1 descriptor formats

Using thelevel 1 descriptor address, the MMU makes a request to external memory.
Thisreturnsthelevel 1 descriptor. Bits[1:0] of the level 1 descriptor indicate the access

type as Table 4-2 shows.

Level 1 translation fault

Table 4-2 Access types from level 1 descriptor

Bits [1:0] Access type

00 Trandation fault

01 Coarse page table base address
10 Section base address

11 Fine page table base address

If bits[1:0] of thelevel 1 descriptor are 00, atranslation fault is generated. This causes
either a Prefetch Abort or Data Abort in theinteger unit. A Prefetch Abort occursin the

IMMU. A Data Abort occursin the DMMU.

Level 1 coarse page table address

If bits[1:0] of the level 1 descriptor are 01, then a descriptor fetch from a coarse page
tableisrequired. Figure 4-6 on page 4-12 shows how the MMU generates a coarse page

table address.
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Level 1 section base address

If bits[1:0] of thelevel 1 descriptor are 10, arequest to access a IMB memory section
is requested. Figure 4-4 shows the trandlation process for a 1M B section.

31 1413 0
Translation table base SBzZ Translation
table base
31 2019 0
Virtual Level 1 table index Sectionindex
address
31 1413 210
Level 1
Translation table base Level 1 table index 0|0| descriptor
address
31 2019 1211109 8 543210
Level 1 fetch s ]
Level 1| L =S¥ 0% ] gection base address SBZ AP || Pomainiyialglqlg
descriptor 7| selector
31 2019 0
PhySI(:aI Section base address Sectionindex
address

Figure 4-4 Translating a section address

Following the level 1 descriptor trand ation, the the MMU uses the PA to transfer the
reguested data between external memory and the integer unit. Thisis done only after
the domain and access permission checks are performed on thelevel 1 descriptor for the
section. These checks are described in MMU memory access control on page 4-21.

Level 1 fine page table base address

If bits[1:0] of thelevel 1 descriptor are 11, then adescriptor fetch from afine pagetable
isrequired. Thisis shown in Figure 4-9 on page 4-16.
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4.3.6 Level 2 descriptor

Translation fault

64KB large page

4KB small page

1KB tiny page

31

If thelevel 1 descriptor pointsto apagetable, the MMU determinesthe page tabletype,
coarse or fine, and fetches alevel 2 descriptor. The level 2 descriptor indicates whether
the accessis:

. atranglation fault
. an access from a coarse page table to alarge page with 64K 8-bit entries
. an access from a coarse page table to a small page with 4K 8-hit entries

. an access from afine page table to alarge page, asmall page, or atiny page with
1K 8-bit entries.

Figure 4-5 shows the level 2 descriptor formats for selecting page types.

16 15 1211109 8 7 6 5 4 3 2 1 0

Ignore 0|0

Large page base address SBz AP3| AP2| AP1|APO|C|B|0 |1
Small page base address AP3| AP2| AP1|APO(C|B|1/|0

Tiny page base address SBZ AP |(C|B|1|1

Figure 4-5 Level 2 descriptor formats

Bits[1:0] of the level 2 descriptor indicate the page type. A large page can be divided
four 16K B subpages with different access permissions. Bits [15:14] of the VA page
index select the subpages of alarge page.

A small page can bedivided into four 1KB subpageswith different access permissions.
Bitg[11:10] of the VA page index select the subpages of asmall page.
Level 2 coarse page table descriptor fetch

When the level 1 descriptor bits [1:0] indicate a descriptor fetch from a coarse page
table isrequired, the MMU requests the address of the level 2 coarse page table from
external memory. Figure 4-6 on page 4-12 shows how the address is generated.

ARM DDI 0237A
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31 1413 0
Translation table base
Translation table base SBz .
register, CP15 R2
31 2019 1211 0
Virtual ) Level 2
address Level 1 table index table index Not used
31 1413 210
Level 1
Translation table base Level 1 table index 0|0 descriptor
address
31 109 8 543210
Level 1 fetch S : S
Level 1 Page table base address B Domain B (01
descriptor 2| selector| | >
31 109 210
Level 2 Lovel 2
. evel
descrlptor Page table base address table index 1
address
Figure 4-6 Translating a coarse page table address
When the coarse page table address is generated, arequest is made to external memory
for the level 2 coarse page table descriptor. Bits[1:0] of the level 2 coarse page table
descriptor indicate the access type as shown in Table 4-3.
Table 4-3 Access types from level 2 descriptor
Bits[1:0] Access type
00 Trandation fault
01 64K B large page base address
10 4KB small page base address
1 Tranglation fault
4-12 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0237A
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Level 2 coarse translation fault

If bits[1:0] of the level 2 coarse page table descriptor are 00 or 11, then atranslation
fault isgenerated. Thisgenerates an abort to the integer unit, either a Prefetch Abort for
the instruction side or a Data Abort for the data side.

Level 2 coarse large page base address

If bits[1:0] of the level 2 coarse page table descriptor are 01, then a descriptor fetch
fromacoarselarge pagetableisrequired. Figure 4-7 on page 4-14 showsthetranslation
process for a 64K B large page or a 16K B subpage of alarge page.
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31 14 13 0
Translation table base
Translation table base SBZ .
register, CP15 R2
31 20 19 16 15 12 11 0
Virtual Level 1 table index Level 2 Page index
address table index
31 14 13 210
Level 1
Translation table base Level 1 table index 0(0 descriptor
address
Level1 31 109 8 543210
fetch s . s
Level. 1 Page table base address B Domain B |01
descriptor 7| selector | 1| >
31 109 210
Level 2 Lovel 2
. eve
descriptor Page table base address table index 00
address
Level2 31 16 15 1211109876 543210
fetch AlA|A|A
Level. 2 Page base address SBZ P|P|P| P |CB|OI
descriptor 312110
31 16 15 0
Physical
Page base address Page index
address g g

Figure 4-7 Translating a large page or subpage address from a coarse page table

The 64K B large page is generated by setting al of the AP bit pairs to the same values,
AP3 = AP2 = AP1 = APO. If any one of the pairsisdifferent, then the 64K B large page
is converted into four 16KB subpages.
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Level 2 coarse small page base address

If bits[1:0] of the level 2 coarse page table descriptor are 10, then a descriptor fetch
from a coarse small page table isrequired. Figure 4-8 shows the trandation process for
a4KB small page or a 1KB subpage of asmall page.

31 14 13 0
Translation table base
Translation table base SBZ .
register, CP15 R2
31 20 19 12 11 0
Virtual . Level 2 .
address Level 1 table index table index Page index
1 14 1 21
3 3 0 Level 1
Translation table base Level 1 table index 0|0 descriptor
address
Level1 31 109 8 543210
fetch s . S
Level. ! Page table base address B Domain B [0[1
descriptor 7| selector | "} >
31 10 9 210
Level 2 Lovel 2
. eve
descriptor Page table base address table index 00
address
Level2 31 1211109876 543210
fetch A|lA]AIA
Level.2 L Page base address P|P|P|P |CBI1|0
descriptor 312110
31 12 11 0
Physical
Page base address Page index
address 9 9

Figure 4-8 Translating a small page or subpage address from a coarse page table
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The 4KB small page is generated by setting all of the AP bit pairs to the same values,
AP3 = AP2 = AP1 = APOQ. If any one of the pairsare different, then the 4K B small page
is converted into four 1KB small page subpages.

Level 2 fine page table descriptor fetch

When the level 1 descriptor bits [1:0] indicate that a descriptor fetch from afine page
table isrequired, the MMU requests the level 2 fine page table address from external
memory. Figure 4-9 shows how the address is generated.

31 1413 0
Translation table base
Translation table base SBz .
register, CP15 R2
31 2019 109 0
Virtual ) Level 2
address Level 1 table index table index Not used
31 1413 210
Level 1
Translation table base Level 1 table index 0(0 descriptor
address
31 1211 9 8 543210
Level 1 fetch i S
Leve.” Page table base address SBzZ Domain B |1]1
descriptor selector | | >
31 12 11 210
Level 2 Lovel 2
. eve
descriptor Page table base address table index 00
address

Figure 4-9 Translating a fine page table address
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When the fine page table addressis generated, arequest is made to external memory for
thelevel 2 fine page table descriptor. Bits[1:0] of the level 2 fine page table descriptor
indicate the access type as shown in Table 4-4.

Table 4-4 Access types from level 2 descriptor

Bits [1:0] Access type

00 Trandation fault

o1 Large page table base address
10 Small page base address

1 Tiny page table base address

Level 2 fine translation fault

If bits[1:0] of the level 2 fine page table descriptor are 00, then atranslation fault is
generated. This causes either a Prefetch Abort or a Data Abort in the integer unit. A
Prefetch Abort occurs on the instruction side, while a Data Abort occurs on the data
side.

Level 2 fine large page base address

If bits[1:0] of thelevel 2 fine page table descriptor are 01, then adescriptor fetch from
afine large page tableis required. Figure 4-10 on page 4-18 shows the tranglation
process for a 64KB large page or a 16KB subpage of alarge page.
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31 14 13 0
Translation table base
Translation table base SBzZ .
register, CP15 R2
31 2019 1615 109 0
Virtual Level 1 table index Level 2 Page index
address table index
31 14 13 210
Level 1
Translation table base Level 1 table index 0|0 descriptor
address
Level1 31 1211 98 543210
fetch . S
Level.1 Page table base address SBZ Domain 1B [1]1
descriptor selector | | >
31 1211 210
Level 2 Lovel 2
. eve
descriptor Page table base address table index 0/0
address
Level 2 31 1615 121110987 6543210
fetch AlA|A|A
Level. 2 Page table base address SBZ P|P|P | P |CB|O[1
descriptor 3|2 0
31 16 15 0
PhyS|caI Page table base address Page index
address

Figure 4-10 Translating a large page or subpage address from a fine page table

The 64K B large page is generated by setting al of the AP bit pairs to the same values,
AP3=AP2 = AP1 = APQ. If any of the pairsis different, then the 64KB large page is
converted into four 16K B subpages.
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Level 2 fine small page base address

If bits[1:0] of the level 2 fine page table descriptor are 10, then adescriptor fetch from
afinesmall pagetableisrequired. Figure 4-11 showsthe translation processfor a4KB
small page or a 1KB subpage of asmall page.

31 14 13 0
Translation table base
Translation table base SBzZ .
register, CP15 R2
31 2019 1211 109 0
Virtual Level 1 table index Level 2 Page index
address table index
31 14 13 210
Level 1
Translation table base Level 1 table index 0|0 descriptor
address
Level1 31 1211 98 543210
fetch i S
Leve|.1 Page table base address SBz Domain B |1]1
descriptor selector| | >
31 12 11 210
Level 2 Lovel 2
. eve
descriptor Page table base address table index 0/0
address
Level2 31 1211109876 543210
fetch AlA|A A
Leve|.2 L Page table base address P|P|P|P|CB|1|0
descriptor 312|110
31 12 11 0
Physical Page table base address Page index
address

Figure 4-11 Translating a small page or subpage address from a fine page table
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Level 2 fine tiny page base address

If bits[1:0] of the level 2 fine page table descriptor are 11, then a descriptor fetch from
afinetiny page table isrequired. Figure 4-12 shows the translation process for a 1KB

tiny page.
31 14 13 0
Translation table base
Translation table base SBZ .
register, CP15 R2
31 20 19 109 0
Virtual Level 1 table index Level 2 table index Page index
address
31 14 13 210
Level 1
Translation table base Level 1 table index 0/0 descriptor
address
Level1 31 1211 98 543210
fetch . s
Leve|.1 Page table base address SBZ Domain B [1[1
descriptor selector | *| -
31 12 11 210
Level 2 Lovel 2
. eve
descnptor Page table base address table index 0(0
address
Level2 31 109876543210
fetch
Level. 2 Page table base address SBZ |AP|C|B|1|1
descriptor
31 10 9 0
Physical Page table base address Page index
address

Figure 4-12 Translating a tiny page address
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4.4 MMU memory access control

Memory domains support multiuser operating systems. All regions of memory have an
associated domain. Domains are the primary memory access control mechanism and
define the conditionsin which an access can proceed. Each domain determines whether:

. access is qualified to proceed as shown in Table 4-6 on page 4-22
. access is unconditionally enabled to proceed
. access is unconditionally aborted.

In the latter two cases, the access permission attributes are ignored. There are 16
domains, D15-DO0, that are configured in the domain access control register.

The domain definition provides access for two types of users, manager and client. The
two-bit D15-DO fieldsin CP15 R3 control access to both the IMMU and the DMMU
domains. Table 4-5 shows the encoding for of the domain access control fields.

Table 4-5 Domain access encoding

D15-DO  User Notes

00 Noaccess  Access generates a domain fault.

01 Client Access permissions are checked.

10 Reserved  Behaves as ano access domain.

11 Manager Access permissions are not checked.

A manager access hasto be checked only against the access permissionsfor the domain.
A client access hasto be checked against the access permissions for the domain and the
system protection hit, S, and the ROM protection bit, R, in CP15 R1. Table 4-6 on
page 4-22 shows the effect of the Sand R bits.
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Table 4-6 S and R bit encoding

Supervisor User
D15-DO R permissions permissions Notes
00 0 Noaccess No access Any access generates a permission fault.
00 0 Read-only No access Supervisor read-only permitted.
00 1 Read-only Read-only Writing generates a permission fault.
00 1 Reserved - -
01 - Read/write No access Supervisor mode access only
10 - Read/write Read-only Writesin User mode cause permission fault.
1 - Read/write Read/write All access types permitted in both modes.
- 1 Reserved - -

4-22
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Memory Management Units

The Cachable (C) and Bufferable (B) bitsin the level 1 and level 2 descriptors control
the operation of memory accesses to external memory. Table 4-7 indicates how the

MMU and cache interpret the C and B hits.

Table 4-7 C and B bit access control

Notes

Uncached, unbuffered

Uncached, buffered

Write-through cached, buffered

C B
0 O
0 1
1 0
1 1

Write-back cached, buffered

Refer to Cache coherence on page 5-16 for information on how cache coherenceis

maintained.
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4.6 MMU and write buffer

During any descriptor fetch, the IMMU or DMMU has access to external memory. The
integer unit is stalled during any descriptor fetch.

Before a DMMU descriptor fetch, the write buffer has to be emptied to preserve
memory coherency. If the write buffer contains any page table entries that have been
modified, those entries are forced to external memory as aresult of the descriptor fetch.

When either the IMMU or DMMU containsvalid TLB entriesthat are being modified,
these TLB entries must be invalidated before the new section or page is accessed. This
also appliesto any datathat residesin the | Cache or DCache. The | Cache lines must be
invalidated, and the DCache line or lines must be cleaned and invalidated (see Cache
coherence on page 5-16).
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4.7 MMU aborts

During any translation process, the integer unit stops executing instructions whenever
an MMU fault is generated or an external abort occurs:

. If the abort is from the IMMU, a Prefetch Abort isindicated to the integer unit.
. If the abort isfrom the DMMU, then aData Abort isindicated to the integer unit.

The fault status and fault address registers in CP15 log both the status and address for
any fault that occurs.

In the case of an external abort, the Bus Interface Unit (BIU) ignores the abort unless
one of the following istrue:

. it was caused by awrite to a NonCached NonBuffered (NCNB) region

. it was caused by aread from a Noncached Buffered (NCB) region

. it occurred during a descriptor fetch.
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4.8 MMU fault

checking sequence

During the processing of a section or page, the MMU behaves differently whileitis
checking for faults. This section describes the following conditions:

. Alignment fault

. Trandlation fault

. Domain fault on page 4-28

. Permission fault on page 4-28.

Figure 4-13 on page 4-27 shows the fault checking sequence.

4.8.1  Alignment fault

An alignment fault occurs whenever theinteger unit indicates a particular data memory
access size and the address does not comply with that size. If MAS[1:0] = 10indicating
a 32-bit access, and the VA bits[1:0] # 00, then an alignment fault occurs. If
MAS[1:0] = Olindicating a16-bit access, and the VA hit 0 # 0, then an alignment fault
occurs. No check is performed for MAS[1:0] = 00.

Alignment checks are performed with the MMU both on and off.

4.8.2 Translation fault

Two types of translation faults occur:
. section
. page.

A section tranglation fault results from an invalid level 1 descriptor. Bits[1:0] of the
descriptor are 00.

A pagetrandlation fault resultsfrom aninvalid level 2 descriptor. Bits[1:0] of the coarse
page table descriptor are 00 or 11, or bits [1:0] of the fine page table descriptor are 00.

4-26
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Virtual address \

Alignment
fault
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Section
translation
fault

Section
domain
fault
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or page?
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Figure 4-13 Fault checking flowchart
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4.8.3 Domain fault

Three types of domain faults occur:

. section
. coarse page
. fine page.

For each type, the level 1 descriptor indicates which domain to select in the domain
access control register, CP15 R3. If bit 0 of the selected domain is zero, indicating either
No access or Reserved, then adomain fault occurs. A section domain fault occurswhen
the level 1 descriptor is returned. Both the coarse and fine page domain faults are
checked whenever the level 2 descriptor is returned.

The MMU empties any unlocked TLB entry following awrite to the domain access
control register. To guaranteethe behavior, all locked TLB entries must not modify their
DACR entry. If the DACR entry is modified, it must be unlocked and invalidated.

4.8.4 Permission fault

There are three types of access permission faults:

. section
. coarse page
. fine page.

Whenever the domain indicatesthat a client has accessed aregion of memory, an access
permission check follows. If the access does not comply with the access permission
table, then afault corresponding to the access type occurs. A section permission fault
check occurswhen the level 1 descriptor is returned and is designated as aclient. Both
the coarse and fine page permission faults are checked whenever the level 2 descriptor
isreturned and is designated as a client.
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49 CPU aborts on MMU faults

The MMU generates an abort on the following types of faults:
. alignment faults (data accesses only)

. trandation faults

. domain faults

. permission faults.

In addition, an external abort can be raised on some types of external data access.

Alignment fault checking isenabled by the A bitin CP15 R1. Alignment fault checking
isindependent of the MMU being enabled. Translation, domain, and permission faults
are only generated when the MMU is enabled.

The access control mechanisms of the MMU detect the conditions that produce these
faults. If afault is detected asthe result of amemory access, the MMU abortsthe access
and signals the fault condition to the CPU. The MMU retains status and address
information about faults generated by the data accesses in the fault status register and
fault address register. The MMU does not retain status about faults generated by
instruction fetches.

An access violation for a given memory access inhibits any corresponding external
access, with an abort returned to the integer unit.

4.9.1 Fault address registers and fault status registers

Both the IMMU and DMMU have afault address register and afault status register. In
the IMMU, a Prefetch Abort updates bits [3:0] of the IMMU fault status register andis
pipelined to the Execute stage. Thisisonly used if the Prefetch Abort exception istaken.

The DMMU updates bits [3:0] of the DMMU fault status register with the domain
number. It also loadsthe VA of the Data Abort into the data fault address register. If an
access violation simultaneously generates more than one source of abort, they are
encoded in the priority given in Table 4-8 on page 4-30. The DMMU fault address
register and DMMU fault status register are not updated by faults caused by instruction
fetches.
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4.10 Fault priority
Table 4-8 lists MMU faultsin order of priority, from highest to lowest.
Table 4-8 Priority encoding of MMU faults
Priority ~ Source Status Domain FAR
Highest ~ Alignment 0001 Invalid valid
TLB miss 0000 Invalid valid
External abort on level 1 translation 1100 Invalid Vaid
External abort on level 2 translation 1110 Valid Vaid
Trandation section 0101 Invalid Valid
Trandation page 0111 Valid valid
Domain section 1001 Valid valid
Domain page 1011 Valid valid
Permission section 1101 Valid Valid
Permission page 1111 Valid valid
External abort 1010 Valid Vaid
Lowest Debug event 0010 Valid valid
Thevaluesinthe domain field are invalid when the fault occurs before the MM U reads
the domain field from a page table description. Any abort masked by the priority
encoding can be regenerated by fixing the primary abort and restarting the instruction.
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411 External aborts

The smallest page sizethe MMU TLB supportsis 1KB. This page sizeis used to filter
external aborts.

For an LDM or STM access that does not cross a 1KB page boundary, an external abort is
indicated only during the first access of the LDM or STM. For an LDM or STM access that

crosses a 1K B page boundary, an external abort can beindicated during the first access
of the LDM or STM aswell as during the first access that crosses the 1KB page boundary.

In this example, an external abort is possible only on the first access. Table 4-9 shows
the sequence:

STMIA/LDMIA r@, {rl-r10} r0=0x000000FC

Table 4-9 First-access-only external abort

Time  Address Contents Comments

t1 0x000000FC  R1 External abort accessis possible only on first access.
t2 0x00000100 R2, R3 -
t3 0x00000108 R4, RS -
t4 0x00000110 R6, R7 -
t5 0x00000118 R8, R9 -
t6 0x00000120 R10 -

In the next example, external aborts are possible on the first access and on page
boundary crossings. Table 4-10 shows the sequence:

STMIA/LDMIA r@, {rl-r10} r0Q=0x000003F8

Table 4-10 First-access and page-boundary external aborts

Time Address Contents Comments

t1 0x000003F8  R1, R2 External abort is possible on first access

t2 0x00000400 R3, R4 External abort is possible on page boundary crossing
t3 0x00000408  R5, R6 -

t4 0x00000410 R7, R8 -

t5 0x00000418  R9, R10 -
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In the next example, external aborts are possible on the first access and on page cross
access (last access). Table 4-11 shows the sequence:

STMIA/LDMIA r@, {rl-r10} r0@=0x000003E0Q

Table 4-11 First-access and last-access external aborts

Time Address Contents Comments

t1 0x000003E0 R1, R2 External abort is possible on first access

t2 0x000003E8 R3, R4 -

t3 0x000003F0  R5, R6 -

t4 0x000003F8 R7, R8 -

t5 0x00000400 R9, R10 External abort is possible on page cross access (last access)

In addition to the MM U-generated aborts, the AMBA bus can externally abort the
ARM 10 processor, which can be used to flag an error on an external memory access.
However, not all accesses can be aborted in this way, and the BIU ignores externa
aborts that cannot be handled.

The following accesses might be aborted:

. anoncached read

. an unbuffered write

. a page table descriptor fetch

. aread-lock-write sequence to noncachable memory.

In the case of aread-lock-write (SWP) sequence in which the read aborts, the writeis
always canceled.
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4.12 Interaction of the MMU, caches, and write buffer

Bit 0 of CP15 R1 enables and disables the MMU.

4.12.1 Enabling the MMU

To enable the MM U:

1. Program the trandation table base and domain access control registers.
2. Program level 1 and level 2 descriptor page tables as required.

3. Enablethe MMU by setting bit 0 in CP15 R1.

Note

You must take care if the trand ated address differs from the untranslated address
because several instructions following the enabling of the MMU might have been
prefetched with the MMU off (using PA = VA flat trandlation), and enabling the MM U
might be considered as a branch with delayed execution. A similar situation occurs
when the MMU is disabled. Consider the following code sequence:

MRC p15, @, R1, c1, C0, @ ; Read control register
ORR R1, R1, #0x1

MCR p15, @, R1, cl, c@, @ ; Enable MMUs

Fetch Flat

Fetch Flat

Fetch Translated

The | Cache DCache can be enabled simultaneously with the MMU using a single MCR
instruction (see CP15 R1, control register 1 on page 3-9).

4.12.2 Disabling the MMU

To disablethe MMU, clear bit 0in CP15 R1. The data cache must be disabled prior to,
or at the sametime asthe MMU being disabled, by clearing bit 2 for the control register
(see Enabling the MMU regarding prefetch effects).

— Note

If the MMU is enabled, then disabled and subsequently reenabled the contents of the
TLBsare preserved. |f these are now invalid, you must invalidate the TLBs before the
MMU is reenabled (see CP15 R8, TLB operations register on page 3-20).
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4.13 Soft page table support

31

The soft TLB structure of the MMU requires that TLB entries be written from within

the Prefetch Abort handler or Data Abort handler. Because the ARM processor contains
both an IMMU and DMMU, there are separate instructions for writing entries into the
instruction TLB and the data TLB. The instructions for writing to the instruction TLB

are asfollows:

MCR p15, @, r2, c15, c8, 1 ;
MCR p15, @, r3, c15, c8, 4 ;
MCR p15, @, r4, c15, c8, 6 ;
MCR p15, @, rl, c15, c@, 3 ;

Theinstructions for writing into the data TLB are as follows:

MCR p15, @, r2, c15, clo, 1 ;
MCR p15, @, r3, cl15, clo, 4 ;
MCR pl5, 0, r4, cl5, cle, 6 ;
MCR p15, @, rl, c15, c0, 5 ;

write r2 into I-TLB CAM holding reg

write r3 into I-TLB protection RAM holding reg
write r4 into I-TLB phys.address RAM holding reg

write r2 into D-TLB CAM holding reg

; write holding regs into I-TLB at index rl

write r3 into D-TLB protection RAM holding reg
write r4 into D-TLB phys. address RAM holding reg
write holding regs into D-TLB at index rl

Figure 4-14 shows the instruction TLB bit fields.

28 27 26 25 22 21

SBzZ V| L | Mask bits

Tag bits

Figure 4-14 Instruction TLB bit fields
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Table 4-12 describes the instruction TLB bit fields.

Table 4-12 Encoding of instruction TLB bit fields

Bits Name Meaning
[31:28] - SHOULD BE ZERO
27 \Y, Valid bit:
1=vdidentry
0 =invalid entry
26 L Lock hit:
1= locked
0 = not locked

[25:22] Mask bits Mask bits[3:0]:
0111 = 64K B page (check CAM tag bits [31:16] against new address)
0011 = 16K B page (check CAM tag bits [31:14] against new address)
0001 = 4KB page (check CAM tag bits [31:12] against new address)
0000 = 1KB page (check CAM tag bits [31:10] against new address)

[21:0] Tag bits Tag bits[31:10]

Figure 4-15 shows the protected RAM hit fields.

31 1312 9 8 7 4 3 2 1 0

SBZ Domain select |DFI| AP select | C | B [NCB|NCNB

Figure 4-15 Protected RAM bit fields
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Table 4-13 describes the protected RAM bit fields.

Table 4-13 Protected RAM bit field values

Name Meaning
- SHOULD BE ZERO
Domainselect Domain select bits
DFI Domain fault indicator hit:
1 ="fault
0 =nofault
AP select Accessindex bits[3:0] (2-to-4 encoded):
0000 if not aclient of the domain
0001 if client and AP =00
0010 if client and AP =01
0100 if client and AP =10
1000 if client and AP =11
C Cachable bit
B Bufferable bit
NCB Noncachabl e bufferable bit
NCNB Noncachable nonbufferable bit

Figure 4-16 shows the physical address RAM hit fields.

31

26 25

4 3 0

SBzZ

Physical address bits

Size bits

Figure 4-16 Physical address RAM bit fields
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Table 4-14 describes the physical address bit fields.

Table 4-14 TLB physical address bit fields and meanings

Bits Meaning
[31:26] SHOULD BE ZERO
[25:4] Physical address bits[31:10]:

1111 = IMB page (address constructed by PA RAM[31:20] + VA[19:0])
0111 = 64K B page (address constructed by PA RAM[31:16] + VA[15:0])
0011 = 16KB page (address constructed by PA RAM[31:14] + VA[13:0])
0001 = 4KB page (address constructed by PA RAM[31:12] + VA[11:0])
0000 = 1KB page (address constructed by PA RAM[31:10] + VA[ 9:0])

[3:0] Size bits
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4.13.1 Locked entry requirements

To properly servicethe IMMU and DMMU aborts when using soft TLB support, the
MMUs must have the following entries |ocked prior to being enabled to guarantee that
an infinite abort loop is not entered:

all exception handler entry points

any support code for the exception handlers

any exception handler literal pool accessed areas

all soft TLB abort handling routines

any support code for the soft TLB abort handling routines
any literal pool accessed areas required by soft TLB routines.

4.13.2 Prefetch Abort and Data Abort handling routines

This section gives examples of:

aPrefetch Abort handler
aData Abort handler.

Example 4-1 is a Prefetch Abort handler routine.

Example 4-1 Prefetch Abort handler routine

I_softTLB_abort_handler

< other abort code here >

MRC p15, @, r6, c5, c0, 1

AND r6, r6, #0Oxf
CMP ro6, #0x0

read instruction FSR
mask out all but bits 3:0
; should be 0b0000 if soft TLB abort

BEQ I_softTLB_abort_handler_fix

< other abort code here >

B I_softTLB_abort_handler_fix_end

LTORG

I_softTLB_abort_handler_fix

MRC p15, 0, rll, 1,
BIC r6, rll, #0Ox1

MCR p15, @, r6, cl, co, 0

MOV r6, rl4, lsr #10

ORR r6, r6, #0x08000000

MCR p15, @, r6, cl5,

MOV r6, #0x08c

co, 0 ; read CP15 register 1
disable the MMU
reprogram CP15 register 1

rl4 contains VA
mark valid, map to 1KB page
write I-TLB CAM holding register

c8, 1

domain @, cachable, bufferable
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MCR pl5, @, r6, cl5, c8, 4

MOV r6, rl4, 1sr #6
BIC r6, r6, #0x0f
MCR pl5, @, r6, cl5, c8, 6

MRC p15, @, r4, c10, c0, 1
MOV r6, r4, 1s1 #6
MCR p15, 0, r6, cl5, c0, 3

TST r6, #0x03f00000

MOVEQ r6, r4, Tsr #6

ADDNE r6, r6, #0x00100000

BIC r4, r4, #0x03f00000

ORR r4, r4, ré6

MCR p15, @, r4, cl10, co0, 1

MCR p15, @, rll, cl, c0, O
I_softTLB_abort_handler_fix_end

< other abort code here >

SUBS pc, rl4, #4

Memory Management Units

; write I-TLB protection RAM holding register

; rl4 contains PA
; map to 1KB page
; write I-TLB physical address RAM holding register

; read I-TLB lockdown register
; shift victim into position
; write holding regs into I-TLB entry

; check for Tast entry in victim (0 to 63)
; if last entry, victim=base

otherwise increment victim pointer
clear out old victim

insert new victim

write I-TLB Tockdown register

; restore CP15 register 1

; return to aborted instruction

Example 4-2 is a Data Abort handler routine.

Example 4-2 Data Abort handler routine

D_softTLB_abort_handler
< other abort code here >
MRC p15, @, r6, c5, co, 0

AND r6, r6, #0Oxf
CMP r6, #0x0

; read data FSR
; mask out all but bits 3:0
; should be 0b0000 if soft TLB abort

BEQ D_softTLB_abort_handler_fix

< other abort code here >

B D_softTLB_abort_handler_fix_end

LTORG

D_softTLB_abort_handler_fix
MRC p15, @, rll, cl, c0, 0
BIC r6, rll, #0x1
MCR p15, @, r6, cl, c0, @

; read CP15 register 1
; disable the MMU
; reprogram CP15 register 1

ARM DDI 0237A
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MRC p15, @, r7, c6, c0, O

MOV r6, r7, 1sr #10
ORR r6, r6, #0x08000000
MCR p15, @, r6, c15, c8, 1

MOV r6, #0x08c
MCR pl5, @, r6, cl5, c8, 4

MOV r6, r7, 1sr #6
BIC r6, r6, #0x0f
MCR pl5, @, r6, cl5, c8, 6

MRC p15, @, r4, cl0, c0, 1
MOV r6, r4, 1s1 #6
MCR pl5, @, r6, cl5, c0, 3

TST r6, #0x03f00000

MOVEQ r6, r4, Tsr #6
ADDNE r6, r6, #0x00100000
BIC r4, r4, #0x03f00000
ORR r4, r4, r6

MCR pl5, 0, r4, cl0, co, 1

MCR p15, @, rll, cl, c0, 0

D_softTLB_abort_handler_fix_end

< other abort code here >

SUBS pc, rl4, #8

read the data fault address

r7 contains VA
mark valid, map to 1KB page
write D-TLB CAM holding register

domain @, cachable, bufferable
write D-TLB protection RAM holding register

r7 contains PA
map to 1KB page
write D-TLB physical address RAM holding register

read D-TLB Tlockdown register
shift victim into position
write holding regs into D-TLB entry

check for last entry in victim (0 to 63)
if last entry, victim=base

otherwise increment victim pointer
clear out old victim

insert new victim

write D-TLB Tockdown register

restore CP15 register 1

return to aborted instruction
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Chapter 5
Caches and Write Buffer

This chapter describes the Instruction Cache (1Cache), the Data Cache (DCache), and
the write buffer. It contains the following sections:

. About the caches and write buffer on page 5-2
. | Cache on page 5-3

. DCache and write buffer on page 5-7

. Cache coherence on page 5-16

. Portability issues on page 5-18.
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Caches and Write Buffer

5.1 About the caches and write buffer

The ARM processor includes:

an |Cache

aDCache

awrite buffer

a Hit-Under-Miss (HUM) buffer.

The 16KB ICache and 16K B DCache have the following features:

Eight segments, each containing 64 lines.
Virtually-addressed 64-way associativity.

Eight words per line (32 bytes per line) with one valid bit, one dirty bit, and one
write-back bit per line.

Write-through and write-back (copy-back) DCache operation, selected per
memory region by the C and B bitsin the MMU trand ation tables.

Pseudorandom or round-robin replacement, selectable by the RR bit in CP15 R1.
Low-power CAM-RAM implementation.

Independently lockable caches with granularity of Yg4th of the cache, that is
64 words (256 bytes) to a maximum of 63/g,4ths of the cache.

For compatibility with Microsoft WindowsCE, and to reduce interrupt latency,
the physical address corresponding to each DCache entry is stored in the DCache
PA tag RAM for use during cache line write-backs, in addition to the VA tag
stored in the cache CAMs. This means that the MMU is not involved in cache
write-back operations, removing the possibility of MMU misses related to the
write-back address.

Cache maintenance operationsto provide efficient cleaning of the entire DCache,
and to provide efficient cleaning and invalidation of small regions of virtual
memory. The latter enables | Cache coherency to be efficiently maintained when
small code changes occur, for example, self-modifying code and changesto
exception vectors.

The write buffer can hold eight 64-bit packets of data, each with an associated address
element.

5-2
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5.2 ICache

Caches and Write Buffer

The 16KB |Cache has 512 lines of 32 bytes. It is arranged as a 64-way set-associative
cache and uses virtual addresses from the integer unit.

ThelCache uses allocate-on-read-misslinefills. The RR bit in CP15 R1 selectsrandom
or round-robin replacement. After reset, replacement is random.

You can also lock instructionsin the |Cache so that they cannot be overwritten by a
linefill. Lockdown operates with a granularity of /g4t of the cache, which is 64 words
(256 bytes), to a maximum of 83/g4ths of the cache.

All instruction accesses are subject to MMU permission and translation checks.
Instruction fetches that are aborted by the MMU do not cause linefills or instruction
fetches to appear on the AHB.

The following sections describe the | Cache:
. | Cache enable/disable

. | Cache operation on page 5-4
. | Cache cachable control on page 5-5
. | Cache replacement algorithm on page 5-5

. | Cache lockdown on page 5-6.

5.21 ICache enable/disable

Reset invalidates all 1Cache entries and disables the | Cache. Setting the | bit in CP15
R1 enables the ICache. Clearing | disablesit.

When the | Cache and the MMU are enabled, the C bit in the relevant MMU trandation
table descriptor indicates whether an area of memory is cachable (C). If the ICacheis
enabled and the MMU disabled, all instruction fetches are treated as cachable.

When the | Cache is disabled, the cache contents are ignored and all instruction fetches
appear on AHB as separate nonsequential accesses. Reenabling the | Cache does not
changeits contents. If the contents are no longer coherent with main memory, you must
invalidate the |Cache before enabling it (see CP15 R7, index and VA cache operations
registers on page 3-17).

You can enable the | Cache and MM U simultaneously by setting bits | and M in CP15
R1 with asingle MCR instruction.
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5.2.2 ICache operation

Enable the | Cache as soon as possible after reset.

When the ICache is disabled, each instruction fetch results in a separate nonsequential
memory access on AHB, giving very low performance to burst memory such as page
mode DRAM or synchronous DRAM. When the | Cache is enabled, an 1Cache lookup
is performed for each instruction fetch regardless of the setting of the C bit in the
relevant MMU trandlation table descriptor. If the required instruction is found in the
cache, the lookup result is called a cache hit. If the required instruction is not found in
the cache, the lookup result is called a cache miss.

If the instruction fetch is a cache hit and is being fetched from a cachable region of
memory, then the instruction is returned from the cache to the integer unit. If the
instruction fetch is a cache miss, then an 8-word cache linefill is performed, possibly
replacing another entry. The entry to be replaced, the victim, ischosen by either random
or round-robin replacement from the entries that are not locked.

If an instruction fetch is from a noncachable (NC) region of memory, then asingle
nonsequential memory access appears on the AHB. Thisaccessto the AHB is
independent of the |Cache being enabled.

Note

If aprogram is fetching from a noncachable region of memory, then the cache lookup
resultsin a cache miss. The only way that it can result in a cache hit isif software has
changed the value of the cachable bit in the MMU trandlation table descriptor without
invalidating the cache contents. Thisis a programming error and the behavior in this
case is architecturally unpredictable.

5-4
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5.2.3 ICache cachable control

Inthe MMU trandlation table descriptors, the C bit defines cachabl e regions of memory.
In CP15 R1, control register 1, the | bit enables the ICache, and the M hit enables the
IMMU. Table 5-1 shows how to select cachable instructions.

Table 5-1 Selection of cachable instructions

CP15R1 CP15R1 MMU

M bit | bit C bit Indebug Memory region type
0 0 - 0 NC flat mapped

0 1 - 0 C

1 0 - 0 NC

1 1 0 0 NC

1 1 1 0 C

- - - 1 NC

The following sections describe the | Cache behavior when accessing cachable and
noncachable memory.
Cachable (C)
Readsthat hit in the cache read instructionsfrom the cache. Readsthat missin the cache
cause alinefill and cannot be externally aborted. The linefill performs an AHB access.
Noncachable (NC)
Reads not cached always perform an AHB access and can be externally aborted. Cache
hits never occur.

5.2.4  ICache replacement algorithm

The RR bit in CP15 R1 selects the | Cache and DCache replacement algorithm. Reset
sel ects random replacement. Setting the RR bit selects round-robin replacement.
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5.2.5 ICache lockdown

Instructions can be locked into the | Cache, guaranteeing an | Cache hit and providing
optimum and predictable execution time.

Lock instructionsinto the | Cache by first ensuring that the code to be locked is not
aready in the cache. Do this by flushing either the whole |Cache or specific lines. You
can then use a short software routine to load the instructions into the |Cache. The
software routine can either be noncachable or already in the |Cache, but not in an
|Cacheline that is about to be overwritten. The instructions to be loaded must be from
amemory region that is cachable.

You can perform the prefetch | Cache line by writing to CP15 R9 to force the
replacement counter to a specific |Cache line. Then issue a prefetch |Cache line
operation using CP15 R7. If the prefetch is to a cachable region and missesin the

| Cache, the prefetch is performed. When the prefetch is complete, the replacement
counter increments the pointer to the next |Cache line. This operation can be repeated
for multiple prefetchable ICache lines.

When all theinstructions are |oaded, lock them by writing to CP15 R9 to set the
replacement counter base to be one higher than the number of locked cache lines.

See DCache lockdown on page 5-13 for amore complete explanation of cache locking.
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53 DCache and write buffer

The DCache has 512 lines of 32 bytes, arranged as a 64-way set-associative cache. It
uses virtual addressesfrom theinteger unit. Thewrite buffer can hold up to eight 64-bit
packets of data and four additional 64-bit packets of datain a separate castout buffer.
Each data packet has an associated address packet. The write buffer can hold eight
double words of regular buffered writes and an entire cache line (four double words) in
a separate castout buffer. The operation of the DCache and write buffer are closely
connected.

The DCache supports WT and WB memory regions, controlled by the C and B bitsin
each section and page descriptor within the MMU tranglation tables. For details see
DCache and write buffer operation on page 5-9.

Each DCacheline has:

. one valid bit, one dirty bit, and one write-back bit

. asingle virtual tag address

. eight 32-hit data elements (eight-word line)

. asingle physical address tag, used when writing modified lines back to memory.

A linefill always loads a complete eight-word line starting with the critical 64-bit data.

When a store instruction hits in the DCache, the associated dirty bit is set marking the
appropriate line as modified. If the cache lineisreplaced dueto alinefill, or if theline
isthe target of a DCache clean operation, the dirty bit and write-back bits are used to
decide whether the line is written back to memory. The lineiswritten back to the same
physical address from which it was loaded, regardless of any changes to the MMU
trandation tables.

The DCache uses allocate-on-read-miss linefills. The RR bit in CP15 R1 selects
random or round-robin replacement. Reset selects random replacement.

You can also lock datain the DCache so that it cannot be overwritten by alinefill.
L ockdown operates with a granularity of Yg4th of the cache, which is 64 words (256
bytes), with the maximum lockdown value being 63/g4th of the cache.

All data accesses are subject to MMU permission and translation checks. Data accesses
that are aborted by the MMU do not cause linefills or data accesses to appear on the
AHB.
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The following sections describe the DCache and write buffer:
. DCache and write buffer enable/disable

. DCache and write buffer operation on page 5-9

. DCache cachable and bufferable control on page 5-9

. DCache replacement algorithm on page 5-12

. Swap instructions on page 5-12

. DCache organization on page 5-13

. DCache lockdown on page 5-13

. Hit-Under-Miss on page 5-14.

5.3.1 DCache and write buffer enable/disable

Reset invalidates all DCache entries, disables the DCache, and discards the contents of
the write buffer.

The W bit in CP15 R1 can enable and disable the write buffer during program
execution. Disabling the write buffer forces all stores (writes) to aregion type of
NonCachable NonBufferable (NCNB) regardless of the TLB region definition.

Enable the DCache by setting the C bit in CP15 R1.

The DCache must be enabled only when the MMU is enabled. This is because the
MMU trandation tables define the cache and write buffer configuration for each
memory region.

When the DCache is disabled, the cache contents are ignored and all data accesses
appear on the AHB as separate nonsequential accesses. If the cache is subsequently
reenabled its contents are unchanged. Depending on the software system design, the
cache might haveto be cleaned after it isdisabled, and invalidated beforeit isreenabled
(see Cache coherence on page 5-16.)

TheMMU and DCache can be enabled or disabled simultaneously with asingleMCR that
changesthe M and C bitsin CP15 R1.

5-8

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0237A



Caches and Write Buffer

5.3.2 DCache and write buffer operation

The DCache and write buffer configuration of each memory region is controlled by the
C and B bitsin each section and page descriptor in the MMU trandation tables.

If the DCacheis enabled, a DCache lookup is performed for each data access initiated
by the ARM processor, regardless of the value of the C bit in the relevant MMU
trangdlation table descriptor. If the accessed virtual address matches the virtual address
of an entry in the cache, the lookup result is a cache hit. If the required address does not
match any entry in the cache, the lookup result is a cache miss. In this context a data
access means any type of load (read), store (write), swap, or cache preload instruction.

To ensure that accesses appear on the AHB in program order, the ARM processor waits
for all writesin thewrite buffer to complete on the AHB before starting any other AHB
access. The integer unit can continue executing at full speed reading instructions and
datafrom the caches, and writing to the DCache and write buffer while buffered writes
are being written to memory over the AHB.

5.3.3 DCache cachable and bufferable control

A lin€fill loads eight words, starting with the critical 64-bit dataword, by performing a
four-beat wrapping read burst on the AHB.

A load multiple (LDM) instruction accessing NCNB or NCB regions performs a series of
nonsequential read transfers on the AHB. A store multiple (STM) instruction accessing
NCNB regions a so performs the writes as a series of nonsequential transfers.
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Inthe MMU trandation table descriptors, the | bit and the C bit define cachable and
bufferable regions of memory. In CP15 R1, control register 1, the C bit enables the
DCache, and the M bit enablesthe DMMU. Table 5-2 shows how to sel ect cachableand

bufferable data.
Table 5-2 Selection of cachable and bufferable data
CP15R1 CP15R1 MMU MMU
M bit C bit C bit B bit Memory region type
0 - - - NCNB flat-mapped
1 0 - - NCNB
1 1 0 0 NCNB
1 1 0 1 NCB
1 1 1 0 WT
1 1 1 1 WB

Thefollowing sections describe the DCache and write buffer behavior for each memory
region type.

NonCachable, NonBufferable (NCNB)

Swaps are atomic operations that lock the AHB for both the read and write.
Reads and writes are not cached, use the AHB, and can be externally aborted.
Writes are not buffered.

The LSU halts on reads and writes until the operation completes on the AHB.
Cache hits should never occur.

NonCachable, Bufferable (NCB)

Swaps to a NCB region behave like a swap to an NCNB region
Reads are not cached, use the AHB, and can be externally aborted.
Cache hits should never occur.

Writes are placed in the write buffer and cannot be externally aborted.
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Cachable, Write-Through (WT)

. Reads that hit in the cache read the data from the cache.
. Reads that missin the cache cause alingfill.

. All writes are placed in the write buffer.

. Writes that hit in the cache update the cache.

. Reads and writes cannot be externally aborted.

Cachable, Write-Back (WB)

. Reads that hit in the cache read the data from the cache.

. Reads that miss in the cache cause a linefill.

. Writes that miss in the cache are placed in the write buffer.

. Writes that hit in the cache update the cache and mark the cache line as dirty.
. Cache write-backs and castouts are buffered.

. Reads and writes (write-misses and write-backs) cannot be externally aborted.

It is an operating system software error if a cache hit occurs when reading or writing a
region of memory marked as NCNB or NCB. This can occur only if the operating
system changes the value of the C and B bitsin a page table descriptor while the cache
contains data from the area of virtual memory controlled by that descriptor. The cache
and memory system behavior resulting from changing the page table descriptor in this
wal is UNPREDICTABLE. If the operating system has to change the C and B bits of a page
table descriptor, it must ensure that the caches do not contain any data controlled by that
descriptor. In some circumstances, the operating system might have to clean and flush
the caches to ensure this.

A read that triggers alinefill performs an eight-word burst read from the AHB and
placesit asanew entry inthe cache, possibly replacing another line at the samelocation
within the cache. Thelocation that isreplaced, the victim, is chosen from the nonl ocked
entries using either random or round-robin replacement. If the cacheline being replaced
ismarked as dirty, indicating that it has been modified and that main memory has not
been updated to reflect the change, a cache write-back occurs. The write-back datais
placed in the castout buffer at the sametimethat linefill datais placed inthevictimline.
The CPU can then continue immediately following the request issued to the DCache.

Load multiple (LDM) instructions accessing NCNB or NCB regions perform sequential
bursts on the AHB. Store multiple (STM) instructions accessing NCNB regions also
perform sequentia bursts on the AHB.

A cache preload (PLD) instruction behaves like aload (read) single. If theregiontypeis
WT or WB, the cache preload performs alin€fill. If the region typeisNCNB or NCB,
the cache prel oad stallsthe memory system for one cycle and does not request anything
on AHB.
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Thesequential burstissplit into two burstsif it crossesa1KB boundary. Thisisbecause
the smallest MMU protection and mapping sizeis 1KB, so the memory regions on each
side of the 1KB boundary might have different properties.

This means that no sequential access generated by the ARM processor crosses a 1KB
boundary. You can explait this feature to simplify memory interface design. For
example, asimple page-mode DRAM controller can perform a page-mode access for
each sequential access, provided the DRAM page sizeis 1KB or larger (see also Cache
coherence on page 5-16).

5.3.4 DCache replacement algorithm

The DCache replacement algorithm is selected by the RR bit in CP15 R1. Random
replacement is selected at reset. Setting the RR bit selects round-robin replacement.

5.3.5 Swap instructions

Swap instruction (SWP or SWPB) behavior is dependent on whether the memory
region is cachable or noncachable:

. Swap instructions to cachable regions of memory are useful for implementing
semaphores or other synchronization primitives in multithreaded uniprocessor
software systems.

. Swap instructionsto noncachable memory regions are useful for synchronization
between two bus masters in a multimaster bus system. This can be two
processors, or aprocessor and a DMA controller.

When a swap instruction accesses a cachable region of memory (WT or WB), the
DCache and write buffer behavior isthe same as having aload followed by astore. The
AHB does not assert the HLOCK pin to swap instructions that access a cachable region
and hit in the DCache. It isguaranteed that no interrupt can occur between the load and
store portions of the swap.

When a swap instruction accesses a noncachable (NCB or NCNB) region of memory,
the write buffer is emptied, and a single word or byte isread from the AHB. The write
portion of the swap isthen treated as nonbufferable, with the LSU stalled until thewrite
is completed on the AHB. The HLOCKD pin is asserted to indicate that the read and
write must be treated as an atomic operation on the bus.

Like all other data accesses, a swap to a noncachable region that hitsin the cache
indicates a programming error.
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5.3.6  DCache organization

The DCacheis organized as eight segments, each containing 64 lines, and each line
containing eight words. The position of the line within its segment is anumber from 0
to 63 which is called the index. A linein the cache can be uniquely identified by its
segment and index. Theindex isindependent of the virtual address of theline. The
segment is selected by bits[8:5] of the virtual address of the line.

Bits[4:3] of the virtual address specify which 64-bit word within a cachelineis
accessed. Bit 2 specifies which 32-bit word in a 64-bit word is accessed. For halfword
operations, bit 1 of the virtual address specifies which halfword is accessed within the
word. For byte operations, bits[1:0] specify which byte within the word is accessed.

Bits[31:9] of the virtual address of the each cache lineis called the tag. The virtual
address tag is stored in the cache, with the eight words of data, when the lineisloaded
by alinefill.

Cache lookups compare bits [31:9] of the virtual address of the access with the stored
tag to determine whether the accessis a hit or miss. The cache istherefore said to be
virtually addressed.

5.3.7 DCache lockdown

Data can be locked into the DCache causing the DCache to guarantee a hit, and
providing optimum and predictable execution time.

When no dataislocked in the DCache, and alinefill occurs, the replacement algorithm
chooses a victim cache line to be replaced by selecting an index in the range 0 to 63.
The segment is specified by bits[8:5] of the virtual address of the data access that
missed.

Dataislocked into the DCache by restricting the range of victim numbers produced by
the replacement algorithm, so that locked down cache lines are never selected as
victims. You can set the base pointer for the DCache victim generator by writing to
CP15 R9. The replacement algorithm chooses a victim cache line in the range (base to
63), locking in the cache the lines with index in the range (O to base - 1).

Datais loaded and locked into the DCache by first ensuring that the data to be locked
isnot already in the cache. This can be ensured by cleaning and flushing either the
whole DCache or specific lines. A short software routine can then be used to load the
data into the DCache.
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The software routine to load the data operates by writing to CP15 R9 to force the
replacement counter to a specific DCache line and then executing aload instruction to
perform a cache lookup. This misses and alinefill is performed, bringing eight words
of datainto the cacheline specified by the replacement counter, in the segment specified
by bits[8:5] of the virtual address accessed by the |oad.

To load further lines into the cache, the software routine can loop performing one load
from each line to be loaded. As each line contains eight words, each loop adds 32
(bytes) to the load address. When alinefill isacknowledged in aparticular segment, the
replacement increments to point to the next DCache line.

When all the data has been loaded, it is locked by writing to CP15 R9 to move the
replacement counter base to be one higher than the highest index of the locked cache
lines.

The software routine that |oads and locks the data in the DCache can be located in a
cachable region of memory providing it does not contain any loads or stores other than
the loads that are used to bring the data to be locked into the DCache. The datato be
loaded must be from a memory region that is cachable.

5.3.8 Hit-Under-Miss

The ARM processor supports HUM operation. Clearing the fast interrupt bit, Fl, in
CP15 R1 with aread-modify-write operation enables HUM operation. Reset clears Fl,
enabling HUM by default. Software can change the state of FI dynamically. Any
pending load or storeinthe L SU pipeline completes beforethe CP15 R1 operation takes
effect.

When the FI bit is set, all load missesin the data cache stall the LSU pipeline until
completion of the linefill. This prevents multiple linefill requests from accumulating
and so reduces the amount of activity that must complete prior to servicing an interrupt
reguest. Setting FI also reduces the write buffer from eight entriesto four entries.

When the FI bit is cleared, HUM activity occurs as described in this section. Briefly,
setting FI enables|oad/store instructions to execute while alinefill is being serviced. If
aload request missesin the DCachewhile alinefill for aprior request isin progress, the
LSU pipeline halts. Thisis referred to as a second load miss.
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There are two scenarios that can arise from the second load miss:

. The second load missisto the cache line that is currently being filled. The data
cache returns the second load miss data during anidle ARM load/store cycle
following thereturn of the critical word from the first load miss while the linefill
isstill being performed. The ability to return datafor the second load miss before
the linefill completesis referred to as data streaming or load streaming. When
data for the second load missis returned, the LSU pipeline activity can resume.

. The second load missisto a different cache line than the line currently being
filled. The data cache completes the linefill for the first load miss before
triggering any activity for handling the second miss. On completion of the first
linefill, the data cache then triggers alinefill for the second load miss, promoting
the second load miss to the first load miss position. Then the LSU pipeline can
resume execution.

If an NCNB load, NB store, or data MM U page table walk occurs at any time during a
linefill, the LSU pipeline stalls until the linefill completes. On completion of the first
linefill, the transfer request that caused an NCNB load, NB store, or data MMU page
table walk is enabled to advance.

During alinefill, astore can al so be executed. There are also two scenariosthat can arise
for astore:

. The store hitsin the cache line being filled. If this occurs, the store is merged or
folded into the cache linefill so that coherency is maintained. That is, the data
cache always has the latest copy of data. If the store region iswrite-through, and
the write buffer is enabled, the store is placed in the write buffer. If the store
region iswrite-back, the storeis not placed in the write buffer because it has been
merged with the line being filled.

. The store does not hit in the cache line being filled. If this occurs, the store is
simply placed in the write buffer if the region type iswrite-through. If the region
type iswrite-back and the store hits, the store updates the data cache. If the store
misses, the storeis placed in the write buffer.
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5.4 Cache coherence

ThelCache and DCache contain copies of information usually held in main memory. If
these copies of memory information get out of step with each other because oneis
updated and the other is not updated, they are said to have become incoherent. If the
DCache contains aline that has been modified by a store or swap instruction, and the
main memory has not been updated, the cache line is said to be dirty. Clean operations
force the cache to write dirty lines back to main memory.

Software is responsible for maintaining coherency between main memory, the ICache,
and the DCache.

CP15 R7, index and VA cache operations registers on page 3-17 describes facilitiesfor
invalidating the entire |Cache or DCache or individual 1Cache or DCache lines, and for
cleaning the entire DCache or individual DCache lines.

To clean the entire DCache efficiently, software must loop through each cache entry
using the clean D single entry (using index) operation or the clean and invalidate D
entry (using index) operation. Thismust be performed by atwo-level nested loop going
though each index value for each segment (see DCache organization on page 5-13).

DCache, |Cache, and memory coherence is generally achieved by:
1.  cleaning the DCache to ensure memory is up-to-date with all changes
2. invalidating the ICacheto force it to reload instructions from memory.

Software can minimize performance penalties of cleaning and invalidating caches by:

. cleaning only small portions of the DCache when only a small area of memory
must be made coherent, for example, when updating an exception vector entry

. invalidating only small portions of the | Cache when only a small number of
instructions are modified, for example, when updating an exception vector entry

. not invalidating the | Cache in situationswhere it is known that the modified area
of memory cannot be in the cache, for example, when mapping a new page into
the currently running process.

The I Cache needs to be made coherent with a changed area of memory after any
changes to the instructions that appear at avirtual address, and before the new
instructions are executed.

Dirty datain the DCache can be pushed out to main memory by cleaning the DCache.

Cache cleaning and invalidating are necessary when:
. writing instructions to a cachable area of memory using STR or STM instructions:
—  salf-modifying code
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—  JIT compilation
—  copying code from another location
— downloading code using the EmbeddedI CE JTAG debug features
—  updating an exception vector entry.
. another bus master modifies a cachable area of main memory
. turning the MMU on or off
. changing the virtual-to-physical mapping in the MMU page tables
. turning the |Cache or DCache on, if its contents are no longer coherent.

The DCache must be cleaned, and both caches invalidated, before the cache and write
buffer configuration of an area of memory is changed by modifying the C bit or B bit
in the MMU trandlation table descriptor. Thisis not necessary if the caches cannot
contain any entries from the area of memory whose translati on table descriptor isbeing
modified.

Changing the process ID in CP15 R13 does not change the contents of the cache or
memory, and does not affect the mapping between cache entries and physical memory
locations. It only changesthe mapping between addresses and cache entries. Thismeans
that changing the process ID does not lead to any coherency issues. Changing the
process ID does not requirecache cleaning or cache invalidation.

Reset invalidates and disables the DCache and | Cache.

The pipelined design of theinteger unit meansthat it fetchesthree instructions ahead of
the current execution point. So, for example, before an MCR that invalidates the |Cache
executes, the ARM processor reads from three to five instructions following the MCR.

5.4.1 Cache cleaning when lockdown is in use

The clean D single entry (using index) operation only modifies the victim for that
operation, not the victim pointer. Thevictimis set back to its previous val ue on the next
cycle. Clean D single entry (using VA) and clean and invalidate D entry (using VA)
operations do not move the victim pointer, so thereis no need to reposition the victim
pointer after using these operations.
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5.5 Portability issues

This section describes the behavior of the ARM processor in this implementation that
is architecturally UNPREDICTABLE. For portability to other ARM implementations,
software must not depend on this behavior.

A read from anoncachable (NCB or NCNB) region that unexpectedly hitsin the cache
still reads the required data from the AHB. The contents of the cache are ignored and
unchanged. Thisincludes the read portion of a swap (SWP or SWPB) instruction.

A write to a noncachable (NCB or NCNB) region that unexpectedly hitsin the cache,
updates the cache and till causes an access on the AHB.
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Chapter 6
Prefetch Unit

This chapter describes how the prefetch unit fetches instructions to feed to the integer
core (and to coprocessors), aswell as how it locates branchesin the instruction stream
for predicting potential changesin sequential instructionissue. It also describesthe SWI
functions useful for flushing the prefetch buffer. It contains the following sections:

. About the prefetch unit on page 6-2

. Branch prediction activity on page 6-3

. Branch instruction cycle summary on page 6-6
. Instruction memory barriers on page 6-8.
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6.1 About the prefetch unit

The prefetch unit is responsible for fetching instructions from the memory system as
required by the integer core (and coprocessors). The prefetch unit fetches instructions
at up to twice the rate that the core requires them, and the prefetch buffer holds up to
three instructions. The prefetch buffer enables the prefetch unit to:

. detect branch instructions ahead of the Fetch stage
. predict those branches that are likely to be taken
. remove those branches that are not likely to be taken.

The bus from the memory system to the prefetch unit is 64 bits wide. It can supply two
instruction words from a doubleword-aligned address every clock cycle.

Branch prediction enables the prefetch unit to provide the branch target instruction to
the Execute stage earlier than if no prediction mechanismis used. Branch prediction
increases processor performance by minimizing the cycle time of branch instructions.
When the prefetch unit predicts a branch as taken, it calcul ates the target address and
fetchesinstructions from the new address. Depending on how full the prefetch buffer is
at the time the prediction is made, the predicted branch can be reduced to two, one, or
zero cycles. When the prefetch unit predictsabranch as not taken, it removesthe branch
from theinstruction stream passed to the core. It still cal culatesthe target address of the
branch in case the prediction isincorrect. The prediction mechanismisstatic. It usesno
history information. Conditional forward branches are predicted as not taken and
conditional backward branches are predicted as taken.

The prefetch unit performs branch prediction only when the Z bit in CP15 R1 is set.
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6.2 Branch prediction activity

The prefetch unit does not predict al branches. It can predict only abranch that is
relative to the PC, not a branch with an absol ute target address. The integer unit
executes branch instructions that are left in the instruction stream passed to the core.
The branch prediction logic only optimizes one branch at atime.

When the prefetch unit predicts a branch as taken, it speculatively prefetches from the
target address. In speculative prefetching, all cache hits result in an instruction fetched
into the prefetch buffer. Cache misses and noncachable accessesin speculative
prefetching do not initiate alinefill from memory until the core has resolved the flags
and the prediction is confirmed.

6.2.1  Branch folding

Depending on how many instructions are in the prefetch buffer at the time abranchis
predicted, the branch may be completely removed from the instruction stream. This
means:

. A branch is pulled from the instruction stream based on a prediction.

. The predicted next instruction is substituted in the place of this branch.

. No empty instruction issue slots results in the process.

Under these circumstances the branch itself takes zero cycles because it is removed
altogether from the instruction stream to the core. This type of branch removal
involving the direct substitution of another instruction is called branch folding. The
condition codes of the predicted branch are folded onto the predicted next instruction,
and only asingleinstruction isissued to the core. The condition codes of the predicted
branch are called the branch phantom. The substituted instruction is the folded
instruction.

ARM DDI 0237A Copyright © 2001 ARM Limited. All rights reserved. 6-3



Prefetch Unit

6.2.2  Flushing the prefetch buffer

The prefetch buffer is flushed in all the following cases:

entry into an exception processing sequence
aloadto PC

an arithmetic manipulation of the PC
execution of an unpredicted branch
detection of an erroneoudy predicted branch.

Theonly changeto sequential instruction fetching that does not automatically flush the
prefetch buffer isthe case of a predicted taken branch.

6.2.3  Branch penalty

Mispredicted branches and unpredicted taken branches have a three-cycle penalty
(assuming instruction cache hit). Here penalty means the number of cyclesinwhich no
useful Execute stage pipeline activity can occur due to an instruction flow differing
from that assumed or predicted. Table 6-1 illustrates this penalty for the case of an
erroneously predicted branch. Cycles 2, 3, and 4 have nothing valid in Execute stage.
Theactivity issimilar for an unpredicted branch that istaken. Unpredicted branchesthat
are not taken just consume their normal Execute stage and have no branch penalty.

Table 6-1 Penalty for an erroneously predicted branch

Cycle Pipe stage Activity

Execute Branch phantom, probably with afolded instruction.
Condition code evaluation results in mispredict. All
instructionsin earlier pipeline stages are canceled. Folded
instructions are canceled.

2 Fetch Instruction fetch from saved opposite instruction stream.
3 Issue Correct instruction in Issue stage.

4 Decode Correct instruction in Decode stage.

5 Execute Correct instruction in Execute stage.

6-4
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6.2.4  Optimization of branch instructions

Thisisacomplete list of the branch optimizations performed by the branch prediction

unit:

ARM and Thumb conditional branches are predicted taken and potentially
reduced to zero cyclesif they branch backwards.

ARM and Thumb conditional branches are predicted not taken and potentially
reduced to zero cyclesif they branch forward.

ARM and Thumb unconditional branches are predicted taken and potentially
reduced to zero cycles.

ARM unconditional BL and BLX instructions are predicted taken and potentially
reduced to one cycle.

A Thumb BL pair (always unconditional) is predicted taken and potentially
reduced to one cycle. The pair of instructions must be consecutive in memory for
them to be predicted.

A Thumb BLX pair (always unconditional) is predicted taken and potentially
reduced to one cycle. The pair of instructions must be consecutive in memory for
them to be predicted.

When BLs and BLXs are predicted, theinstruction is changed into alink instruction and a
branch instruction. The link part of the instruction is passed to the integer unit asa
special MoV LR instruction. The branch part is predicted taken.

Branches are not predicted in any of the following cases:

the Z bitin CP15 Rl isclear
a Prefetch Abort occurred when fetching the instruction
abreakpoint is set on the instruction address.

ARM DDI 0237A
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6.3 Branch instruction cycle summary

The number of cycles taken by the ARM 10 processor to execute branch instructions
depends primarily on:

. Whether or not the branch is predicted.
. Whether or not the predicted branch is correct.
. What direction the predicted branch takes, forward or backward.

. The number of instructions in the prefetch buffer ahead of the branch at the time
the prediction is made. The prefetch buffer continues to issue instructions while
apredicted branch target instruction is being fetched.

Table 6-2 shows the instruction cycle counts for all ARM and Thumb branches. The
cycle counts are based on | Cache hits, because the cycle counts of 1Cache misses and
noncachabl e accesses vary widely as a function of system and implementation
characteristics.

Instructions are listed here by their ARM Architecture Reference Manual name. Some
instructions have multiple variations that distinguish unique characteristics among a
common instruction, for example Thumb B(1) and Thumb B(2).

Table 6-2 ARM and Thumb branch instruction cycle counts

Unpredicted
condition code Predicted correctly Predicted incorrectly

Instruction Fail Pass Backward/taken Forward/not taken Backward/taken Forward/not taken

ARM instructions

B uncond a 4 0-2 Qb c c
B cond 1 4 0-2 ob 4 4
BL uncond a 4 1-2d 1-2d.e c c
BL cond 2 4 e e e e
BLX(1) uncond a 4 1-2d 1-2de c c
BLX(2) uncond a 4 f f f f
BLX(2) cond 2 4 f f f f
BX uncond a 4 f f f f
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Table 6-2 ARM and Thumb branch instruction cycle counts

Unpredicted

condition code Predicted correctly Predicted incorrectly
Instruction  Fail Pass Backward/taken Forward/not taken Backward/taken Forward/not taken
BX cond 2 4 f f f f
Thumb instructions
B(1) cond 1 4 0-2 ob 4 4
B(2) uncond a 4 0-2 Qb c c
BL uncond a 59 1-2d 1-2d.e c c
BLX(1) uncond @ 59 1-2d 1-2d. e c c
BLX(2) uncond @ 4 f f f f
BX uncond a 4 f f f f
a.  Unconditional branches (either unconditional by instruction definition or
by using cond code AL, always, cannot fail condition codes.
b. All forward branches are only predicted when prefetch buffer contains
at least 2 instructions (the branch being predicted and its preceding instruction).
¢. Unconditional branches, when predicted, can never be erroneously predicted.
d. BL and BLX (ARM and Thumb) can never be reduced to O cycles by prediction
because the link operation necessarily consumes acycle.
e. BL and BLX (ARM and Thumb) are only predicted if unconditional, in which case
they are predicted taken irrespective of direction (guaranteed to be
correct).
f. BXand BLX(2) instructions, ARM and Thumb, are not pc-relative. They cannot
be predicted.
g. Thumb BL and BLX(1) instructions are encoded astwo Thumb instructions. Thefirst of theseisadata processing instruction that

puts an immediate into R14 then fetches from that address. This second instruction takes 4 cycles (before the next instruction
isin Execute).
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6.4

6.4.1

6.4.2

Instruction memory barriers

Generic IMB

The prefetch unit performs speculative prefetching of instructions. In some
circumstancesit islikely that the prefetch buffer contains out-of-date instructions. In
these circumstances the prefetch buffer must be flushed. An Instruction Memory
Barrier (IMB) sequence provides a means to do this.

You can include processor-specific code in the SWI handler to implement thetwo IMB
sequences:

IMB The IMB sequence flushes all information about all instructions.

IMBRange When only asmall area of code is altered before being executed, the
IMBRange sequence can efficiently and quickly flush any stored
instruction information from addresseswithin asmall range. By flushing
only the required address range information, the rest of the information
remains to provide improved system performance.

ThelMB and |MBRange sequences are implemented as callsto specific SWI numbers.

use

Use SWI functions to provide a well-defined interface between code that is:
. independent of the ARM processor implementation on which it is running
. specific to the ARM processor implementation on which it is running.

The implementation-independent code is provided with afunction that is available on
all processor implementations through the SWI interface, and that can be accessed by
privileged and, where appropriate, nonprivileged (User mode) code.

Using SWIisto implement the IMB instructions means that code that is written now
remains compatible with future ARM processors, even if those processors implement
IMB in different ways. Thisis achieved by changing the operating system SWI service
routines for each of the IMB SWI numbers that differ from processor to processor.

IMB implementation

Executing the SWI instruction is sufficient to cause IMB operation. Also, boththeIMB
and the IMBRange sequencesflush all stored information about the instruction stream.

This means that all IMB instructions can be implemented in the operating system by
returning from the IM B/IM BRange service routine and that the service routines can be
exactly the same. The following service routine code can be used:

6-8
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IMB_SWI_handler
IMBRange_SWI_handler

MOVS PC, R14_svc ; Return to the code after the SWI call

— Note —

In new code, you are strongly encouraged to use the M BRange sequence whenever the
changed area of codeis small, even if there is no distinction between it and the IMB
sequence. Future ARM processors might implement afaster and more efficient
IMBRange sequence, and code migrated from this ARM processor can benefit when
executed on future ARM processors.

6.4.3  Execution of IMB sequences

This section gives examplesthat show what should happen during IMB sequences. The
pseudocode in the square brackets shows what should happen in the SWI routine.

Loading code from disk

Code that loads a program from a disk and then branches to the entry point of that
program must use an IMB sequence after |oading the program and before executing it:

IMB EQU 0xF00000
; code that loads program from disk

SWI IMB
[branch to IMB service routine]

[perform processor-specific operations to execute IMB]
[return to code]

MOV PC, entry_point_of_loaded_program
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Running BitBlt code

Compiled BitBlIt routines optimize large copy operations by constructing and executing
acopying loop that has been optimized for a particular operation. When writing such a
routine, an IMB is required between the code that constructs the loop and the execution
of the constructed loop:

IMBRange EQU 0xF00001

; code that constructs Toop code
; Toad RO with the start address of the constructed Toop
; Toad R1 with the end address of the constructed loop
SWI IMBRange
[branch to IMBRange service routine]
[read registers RO and Rl to set up address range parameters]
[do processor-specific operations to execute IMBRange within address range]
[return to code]
; start of loop code

Self-decompressing code

When writing aself-decompressing program, an IMB should beissued after theroutine
that decompresses the bulk of the code and before the decompressed code starts to be
executed:

IMB EQU 0xF00000

; copy and decompress bulk of code
SWI IMB

; start of decompressed code

6-10
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Chapter 7
Bus Interface

The ARM 10 processor is designed to be used within larger chip designs using the
Advanced Microcontroller Bus Architecture (AMBA). The ARM 10 processor uses the
AMBA High-performance Bus (AHB) asitsinterface to memory and peripherals.

This chapter describes the features of the bus interface not covered in the AMBA
Soecification. It contains the following sections:

. Bus features on page 7-2

. AMBA AHB signals on page 7-3
. Arbiter signals on page 7-6

. AHB control signals on page 7-7
. Timing on page 7-9

. Bus interface on page 7-10.
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7.1 Bus features

The ARM 10 processor uses separate AHB bus interfaces for instructions and data:
. Instruction Bus Interface Unit (1BIU)
. Data Bus Interface Unit (DBIU)

Separate bus interfaces enhancesthe ability to fetch and execute instructionsin parallel
with adata cache miss. There is no sharing of any AHB signals between the two
interfaces.

The ARM10 AHB interfaceisaways driven. When either bus master isnot granted the
bus, that master drives zeros onto the bus to prevent bus contention. The ARM10
processor has unidirectional inputs, outputs, and control signals.

For a complete description of AMBA, including the AHB bus and the AMBA test
methodology see the AMBA Specification.

7-2
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7.2 AMBA AHB signals
Table 7-1 liststhe AMBA AHB signals.

Table 7-1 AMBA AHB signals

Name

Direction

Description

HADDRI[31:0]

Output

IBIU address bus.

HADDRDI[3L:0]

Output

DBIU address bus.

HBURSTI[2:0]

Output

IBIU burst transfer type:
000 = single transfer
010 = four-beat wrapping burst

HBURSTD[2:0]

Output

DBIU burst transfer type:

000 = single transfer

010 = four-beat wrapping burst
011 = four-beat incrementing burst

HCLK

Input

Clock source. This clock timesall bustransfers. All signal timings are related to the
rising edge of HCLK.

HPROTI[3:0]

Output

IBIU protection control. Transfers are always opcode fetches:
xxx0 = opcode fetch

xxx1 = data access

XX0x = user access

xx1x = privileged access

X0xx = not bufferable

x1Ixx = bufferable

Oxxx = not cachable

Ixxx = cachable

HPROTD[3:0]

Output

DBIU protection control. Transfers are aways data accesses:
xxx0 = opcode fetch

xxx1 = data access

XX0X = user access

xx1x = privileged access

X0xx = not bufferable

x1xx = bufferable

Oxxx = not cachable

Ixxx = cachable

HRDATAI[63:0]

Input

Read IBIU data bus. Transfers data and instructions from bus slaves to instruction
side bus master in read operations.

HRDATAD[63:0]

Input

Read DBIU data bus. Transfers data from bus slaves to data side bus master in read
operations.

ARM DDI 0237A
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Table 7-1 AMBA AHB signals (continued)

Name

Direction

Description

HREADY!I

Input

Slave ready. HIGH means transfer finished. Can be driven LOW to extend transfer.

HREADYD

Input

Slave ready. HIGH means transfer finished. Can be driven LOW to extend transfer.

HRESETN

Input

Busreset. Thisisthe only active-L OW AHB signal.

HRESPI[1:0]

Input

Slave response to IBIU. Reflects status of transfer:

00 = OKAY
01 = ERROR
10=RETRY
11=SPLIT

HRESPD[1:0]

Input

Slave response to DBIU. Reflects status of transfer:

00 = OKAY
01 = ERROR
10=RETRY
11=SPLIT

HSIZEI[2:0]

Output

Size of IBIU transfer:

000 = byte (8 hits)

001 = halfword (16 bits)
010 = word (32 hits)

011 = doubleword (64 bits)
100 = 4 words (128 hits)
101 = 8 words (256 bits)
110 = 16 words (512 hits)
111 = 32 words (1024)

HSIZED[2:0]

Output

Size of DBIU transfer:

000 = byte (8 hits)

001 = halfword (16 bits)
010 = word (32 bits)

011 = doubleword (64 bits)
100 = 4 words (128 hits)
101 = 8 words (256 hits)
110 = 16 words (512 hits)
111 = 32 words (1024)

HTRANSI[1:0]

Output

Selects type of IBIU transfer:

00=IDLE

01 =BUSY (Thissigna is not used.)
10 =NONSEQUENTIAL

11 = SEQUENTIAL
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Table 7-1 AMBA AHB signals (continued)

Name Direction Description
HTRANSD[1:0] Output Reflects type of DBIU transfer:

00=IDLE

01 =BUSY (Thissignal isnot used.)

10 = NONSEQUENTIAL

11 = SEQUENTIAL
HWDATADI[63:0] Output DBIU write data bus. Transfers data from master to slaves in write operations.
HWRITEI Output IBIU transfer direction. HIGH means write transfer. LOW means read transfer.
HWRITED Output DBIU transfer direction. HIGH means write transfer. LOW means read transfer.

ARM DDI 0237A
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7.3 Arbiter signals
Table 7-2 lists the arbiter signals.
Table 7-2 Arbiter signals
Name Direction Description
HBUSREQD  Output Request line from DBIU.
HBUSREQI Output Request line from IBIU.
HGRANTD Input AHB mastership granted to DBIU.
HGRANTI Input AHB mastership granted to IBIU.
HLOCKD Output Indicates sequence of locked DBIU transfersin SWP operations.
HLOCKI Output For AMBA compliance. Never asserted.
7.3.1  Arbiter interface
Figure 7-1 shows the connections between the arbiter and the BIUs.
HBUSREQI |
Instruction =
cache HGRANTI
IMMU 1BIU
HLOCKI
g
Integer .
Arbiter
Core
HBUSREQD
HGRANTD
DMMU DBIU
Data
cache HLOCKD .
Ladl
Write buffer
Figure 7-1 Arbiter-bus interface connections
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7.4 AHB control signals

This section describes the ARM 10 processor signals that control the AHB:
. HTRANSI[1:0], H-TRANSD[1.0]

. HSIZEI[2:0], HSIZED[2:0]

. HBURSTI[2:0], HBURSTD[2:0]

. HPROTI[3:0], HPROTD[3:0].

The descriptions in these sections apply to both versions of the signals listed above.

7.41  HTRANS[1:0]

TheIBIU and DBIU use:

. 10 NONSEQ

. 11 SEQ (for linefills and bufferable STM instructions)
. 00 IDLE.

— Note
01 BUSY isnot used.

7.42  HSIZE[2:0]

HSIZE cannot be greater than 64 bitsfor avalid transfer. Table 7-3 liststypical transfer

sizes.
Table 7-3 Transfer sizes
Type of transfer Size of transfer Comment
Linefills 64-bit -
IBIU noncachable reads Depends on processor state 16-hit, 32-hit, or 64-hit
DBIU noncachable reads Depends on load instruction  Byte, halfword, word, or doubleword

DBIU noncachable, nonbufferable writes  Depends on store instruction  Byte, halfword, word, or doubleword

Buffered writes Depends on store instruction  Castouts are 64-hit
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7.4.3 HBURST[2:0]
Burst lengths are shown in Table 7-4.

Table 7-4 BURST lengths

Encoding Name Description
000 SINGLE Single nonsequential transfer
001 INCR Incrementing burst of unspecified length
010 WRAP4 Four-beat wrapping burst
Note

Inthe case of aRETRY or SPLIT response during alinefill or castout, the remainder of
the linefill or castout completesin nonsequential SINGLE transfers.

7.4.4 HPROTI[3:0]
The values of the HPROT bits can be used in level 2 caches as shown in Table 7-5.

Table 7-5 Transfer attributes

Value Meaning

HPROTO 0 = |Cache lin€fill, core instruction fetch, or IMMU table walk
1 = DCachel linefill, core load/store operation, or DMMU table walk

HPROT1 0 = User mode
1 = privileged mode

HPROT2 Depends on memory configuration:

0 = nonbufferable
1 = bufferable

HPROT3 Depends on memory configuration:

0 = noncachable
1 = cachable
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7.5 Timing
The overall clocking scheme for the ARM 10 processor is as follows:
. HCLK and GCLK must have coincident rising edges.

. GCLK canrun at higher frequenciesthan HCLK if it isan integer multiple of
HCLK.

. Theinteger unit, caches, MMUSs, and any coprocessorsrun at GCLK speed.

. The AHB interfacerunsat HCLK speed, where HCLK = GCLK/(1, 2, 3,4, ...)
or HCLK:GCLK =1:N(N=1,2,3,4,..).
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7.6 Bus interface

The bus interface is described in the following sections:
. Topology on page 7-11
. Write buffer on page 7-12.

The bus interface handles all data transfers and instruction transfers between the core
clock domain and the AMBA bus clock domain. Any request from the prefetch unit or
the LSU that hasto go outside the ARM10 processor is handled by the businterfacein
away that is transparent to the prefetch unit and the L SU.

The following requests from the caches and MMUSs drive the bus interface:

. page table walks (generated by the MM Us)

. noncachabl e reads

. nonbuffered writes

. linefills

. buffered writes

. CP15 write-buffer-related operations (empty write buffer and clean index).

In lin€fills, buffered writes are allowed to run underneath if there is room in the write
buffer. Table 7-6 describes the request types.

Table 7-6 Blocking and nonblocking request types

Request type Blocking or nonblocking
Page table walks (generated by the MMUs) Blocking
Noncachable reads Blocking
Nonbuffered writes Blocking
Buffered writes Blocking

CP15 write-buffer-related operations (empty and index clean) Blocking

Linefills Nonblocking

All of the request types except linefills are blocking requests. No other request can
happen until the bus interface has acknowledged completion of the request. Thereisno
priority assignment for these requests because no more than one blocking regquest can
be asserted at any onetime. It is possible for arequest to the IBIU to be asserted
simultaneously with arequest to the DBIU. The AHB system arbiter determines priority
in such cases.

7-10
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Topology

Bus Interface

For all requests, the businterface registers the request and the associated data bits,
protection bits, and address bits. The businterface requests ownership of the AHB and,
when it is granted ownership, it performs the appropriate transfer. When the transfer
completes, the bus interface drops its request line and gives up ownership of the AHB.

Internal bandwidth between the bus interface and the caches and MMUSs is 64 bits.
Typical sizes of requests are listed in Table 7-7. (See also Table 7-3 on page 7-7.) On
the AHB, HWDATA and HRDATA are 64 bits wide.

Table 7-7 Typical bus interface request sizes

Bus interface Page walk Linefill Noncachableread Write
IBIU 32 64 16, 32, 64 -
DBIU 32 64 8, 16, 32, 64 8, 16, 32, 64

The bus interface consists of two completely separate blocks:
. TheIBIU handles all instruction fetches and linefills.
. The DBIU performs all dataloads and stores.

Both the IBIU and DBIU perform page table walks for their respective MMUs when
required.

Figure 7-2 on page 7-12 shows the structure of the businterface. The DBIU ison the
left with control, read, write, and address data-path. The IBIU on the right has aread
and an address data-path only because no writes ever happen on the instruction side.
Both the IBIU and the DBIU have asimilar layer for transferring data or instructionsto
and fromthe HCL K domain and further on to therest of the AMBA system. Thearrows
illustrate the flow of requests and data or instructions.

ARM DDI 0237A
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DCache, HUM, DMMU ICache, IMMU
A A A A
DBIU IBIU
h 4
Write
buffer GCLK domain
v l h 4 h 4 h 4
Control Read Write Address Control Read Address
datapath | datapath | datapath datapath | datapath
A A A A
h 4 A 4 h 4 h 4 h 4
AHB HCLK domain

7.6.2

Write buffer

Figure 7-2 Bus interface block diagram

The DBIU and the IBIU are independent of each other. There is no efficient way of
communicating between the data and the instruction side of the ARM processor,
making self-modifying code difficult to accommodate.

The write buffer is the part of the DBIU used for capturing buffered writes sent from
theLSU at GCLK speed and then writing the databack to main memory at HCLK speed
at alater time.

The write buffer also buffers castout victims from the DCache.

The write buffer has two logical blocks:
. The circular queue write buffer
. The FIFO castout buffer.

Figure 7-3 on page 7-13 showsthe structure of the circular queue write buffer and FIFO
castout buffer.

Each entry in the circular queue write buffer and the FIFO castout buffer has 64 bits of
data, including a32-bit address and six protection bits. No merging of writestakesplace
during data insertion. Two bytes written to successive addresses take up two entries.

7-12

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0237A



Bus Interface

Write data Read data

0 —%

1 —%

2 —{>—

Circular queue write buffer ’ _{}
4 —%

5 —%

6 —%

7 —%

8 —%

FIFO castout buffer 190 g
11 —{>—

Figure 7-3 Write buffer and castout buffer

Circular queue write buffer
Two pointers are required for the write buffer:
. The front of queue pointer points to the next entry to write.

. The back of queue pointer points to the next location to read when emptying the
write buffer.

The back of queue pointer always chasesthe front of queue pointer. The write buffer is
empty when both point to the same location.

To minimizeinterrupt latency, the size of the write buffer can be halved. Thischangein
sizeistransparent to the DBIU. It is controlled by the fast interrupt bit, FI, in control
register 1in CP15.
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Inthe MMU trandl ation tabl e, three combinations of the cachable and bufferablebits, C
and B, produce a buffered write, as Table 7-8 shows.

Table 7-8 Cachable and bufferable bits in buffered writes

C B Description

0 1 Noncachable buffered write

1 0 Write-through, considered a buffered write

1 1 Write-back, considered a buffered write

A noncachable, nonbufferable writeisthe only type of nonbuffered write that bypasses
the write buffer.

Noncachable, nonbufferable writes are always single nonsequential writes to memory.
The DBIU empties the write buffer dynamically when either:

. it samples a blocking request and, to maintain memory coherency, must empty a
number of entries prior to this request before servicing the blocking request

. it detects that the write buffer is no longer empty.

Note

Even with dynamic emptying, the write buffer can become full and stall the LSU. The
conditions for this occurring are a combination of HCLK:GCLK ratio and the
frequency with which buffered writes are inserted into the write buffer.

FIFO castout buffer

The castout buffer contains victims from the data cache. The castout buffer isa FIFO
because the amount of data, four doublewords, is known, and the order of the datais
fixed. It is always afour-beat wrapping order, where the address wraps on 32-byte
boundaries. Datafor the castout buffer is alwaysinserted from location 11 to location
8. Thisisalsothe order in which datais read back out when emptying the castout buffer.

Victims from the data cache are always 64-hit aligned and take up four entries, which
is exactly the size of the castout buffer.
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Chapter 8
Coprocessor Interface

This chapter contains information about the coprocessor interface. It contains the
following sections:

. About the coprocessor interface on page 8-2
. Coprocessor interface signals on page 8-3
. Design considerations on page 8-5

. Parallel execution on page 8-7

. Rules for the interface on page 8-8

. Pipeline signal assertion on page 8-9

. Instruction issue on page 8-10

. Hold signals on page 8-18

. Instruction cancelation on page 8-37

. Bounced instructions on page 8-44

. Data buses on page 8-49.
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8.1

8.11

About the coprocessor interface

CP pipeline

ARM10 pipeline Fetch Issue Decode Execute Memory Write

CP pipeline Fetch Issue Decode Execute Memory Write

The coprocessor interface enables you to attach multiple coprocessors (CPs) to the
ARM 10 processor. To limit the number of connections required by the interface, each
CP tracks the progress of instructions in the ARM 10 pipeline.

To enable optimum performance from CPs, the ARM 10 processor issues CP
instructions as early as possible. This means that the instructions are issued
speculatively, and they can be canceled later in the pipelineif, for example, an exception
or branch misprediction occurs. Asaresult, CPs must be able to cancel instructionsin
late stages of the ARM 10 pipeline.

Simple CPs only track the ARM10 pipeline until it is certain that a given instruction
does not get canceled. At this point the CP starts to execute the instruction. More
complex CPs make extensive use of the early issue of the instruction.

At certain pointsin the pipeline, a CP sends back signals to the ARM 10 processor.
These can indicate that the CP requires more time to execute or to indicate that the
undefined instruction exception must be taken.

The CP pipelinerunsone cyclebehind the ARM 10 pipeline. Thisenables pipeline holds
from the ARM 10 processor to be registered before they are sent to the CPs. Figure 8-1
shows the ARM 10 and CP pipeline stages.

Figure 8-1 ARM10 and CP pipeline stages

8-2
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8.2 Coprocessor interface signals

This section divides the CP signals according to function:
. ARM10 instruction progression signals

. ARM10 instruction cancelation signals

. CPBOUNCEE on page 8-4

. Busy-waiting instruction on page 8-4

. CP data buses on page 8-4

. CP control signals on page 8-4.

8.2.1 ARMI1O0 instruction progression signals

The signals that indicate instruction progression are:

CPINSTRV
CPVALIDD
ASTOPCPD
ASTOPCPE

Valid CPinstruction in ARM 10 Issue stage
Valid CPingtruction in ARM 10 Decode stage
ARM10 stalled in Decode stage in previous cycle

ARM10 stalled in Execute stage in previous cycle

LSHOLDCPE ARM10 LSU stalled in Execute stage in previous cycle

LSHOLDCPM ARM10 LSU stalled in Memory stage in previous cycle.

8.2.2  ARMI1O0 instruction cancelation signals

Two signalsindicate ARM 10 instruction cancel ation:

ACANCELCP

AFLUSHCP

Cancels only the instruction that wasin ARM 10 Execute stage in the
previous cycle.

Cancels all the instructions back from the one that wasin ARM 10
Execute stage in the previous cycle. AFLUSHCP overrides STOP and
VAL D signalsfrom the ARM 10 processor and causes BUSY signalsto
be deasserted in the following cycle.

ARM DDI 0237A
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8.2.3 CPBOUNCEE
The signal that indicates whether a CP can execute an instruction is:
CPBOUNCEE Takes the undefined instruction trap for the instruction that isin
the ARM 10 Execute stage.
8.2.4  Busy-waiting instruction
The signal that indicates whether a CP requires more time to process an instruction is:

CPBUSYE Busy-wait (stall) the ARM10 Execute stage.

Note

The ARM 10 processor has CPBUSY D1 and CPBUSY D2 inputs. These are reserved
for future expansion. Tie these off to alogic 0.

8.2.5 CP data buses

There are two 64-bit CP data buses:
. STCMRCDATA carries data from a CP to the ARM 10 processor
. LDCMRCDATA carries data from the ARM 10 processor to a CP.

8.2.6  CP control sighals

CPLSLEN, CPLSSWP, and CPL SDBL are signals driven by a CP to the ARM10
processor on load/store CP instructions. They carry additional information about:

. the length of the transfer
. if upper and lower half of the data bus must be swapped before being written
. if the load/store request is for double word data.
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8.3 Design considerations

This section outlines CP interface design considerations for single and multiple CPs.

8.3.1 Input and output timing

Almost all the signals on both sides of the interface must be driven straight out of
registers. Thisis necessary because there is very little timing slack in the interface.
Thereis very little timing slack because as few cycles as practical have been used to
process a given CP instruction. This enables very high performance CPs to be built. If
performance is not an issue, then timing across the interface can be greatly simplified
by stalling all CP instructions in situations where timing is an issue.

8.3.2 ARMI10 processor inputs and outputs

Outputs driven from the ARM 10 processor go to al the CPsin the system. The inputs
to the ARM 10 processor from all the CPsare ANDed or ORed together before they are
used. As aresult, the ARM 10 processor cannot tell which CP isdriving itsinputs. The
problem of multiple CPs driving asignal at the sametimeis avoided, because there can
only be one CPinstruction in each ARM 10 pipeline stage. So only one CP can own the
instruction in that stage and can drive the associated signals.

8.3.3 CPinputloadings

When a CP does not own theinstruction associated with an ANDed signal it must drive
the signal HIGH. When a CP does not own the instruction associated with an ORed
signal it must drivethesignal LOW. The ARM 10 processor drivesinstruction, data, and
control outputsto all CPs, so the loading on these signals might become an issuein
multiple-CP systems. Keep CP input loadings low, and buffer these signals where
appropriate.

8.3.4  Combining outputs from multiple CPs

Outputs from all the CPs are ANDed or ORed together before they are used in the
ARM 10 processor. The AND and OR gates can be placed in the level of the design
instantiating the ARM10 processor and the CPs. To aid timing for control signals, there
isonelevel of ANDing and ORinginsidethe ARM 10 processor. The ARM 10 processor
implements the ANDing and ORing necessary on the control signals of up to two
external CPs. For morethan two CPs, external gates must be used to OR the hold signals
from the external CP into the existing inputs.

Although the ARM 10 processor implements the necessary inputsfor only two external
CPs, this does not have to be the limiting factor in a system with three or more CPs. In
such a system, the wire delays from the farthest CP probably balance the time required

ARM DDI 0237A
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to AND or OR the control signal from the closer CPs. For systems with more than one
CP, external gates are always required for the CP STCMRCDATA bus. These are not
included inthe ARM 10 design as thiswould have forced the entire bus to be duplicated
on the interface. Also, the freedom to place the gates anywhere in the top-level design
helps with floor planning of the bus route.

8.3.5 CP ID number

The ARM 10 processor issues all CPinstructionsto all the CPs. Each CP in the system
has a unique, hardwired ID number from 0 to 15. Every CP instruction includes a CP
number.

Only the CP whose ID number corresponds to the number in the CP instruction can
accept theinstruction. To accept an instruction, aCP must pull CPBOUNCEE LOW at
the right time. If no CP pulls CPBOUNCEE LOW, then the instruction is bounced.
That is, the ARM 10 processor takes the undefined instruction trap. This enables error
trapping or software emulation of a CP not present in the system.

A CP does not haveto accept an instruction evenif itsID correspondsto the CP number
in theinstruction. Thisis used in cases where some of the CP instructions are handled
in hardware and some are handled in software.

8-6
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8.4 Parallel execution

Initially, instructions progress along the ARM 10 pipeline and CP pipeline in lockstep.
A CPinstruction moves along the ARM10 pipeline as if it were asingle-cycle
instruction. When thefirst cycle of the instruction traverses the entire length of the
ARM 10 pipeline, one of three things can occur:

If theinstructioniscompletein the CP pipelin,ethenitisretired in both pipelines.

If the CP instruction is a multicycle data processing type, then the ARM 10
processor and CP pipelines are decoupled. Theinstruction continuesto iteratein
the CP but isretired in the ARM10 pipeline. Once the pipelines are decoupled,
the ARM10 processor cannot cancel the instruction, and the CP must complete
the instruction. While the CP is working, the ARM 10 processor continues to
execute the following instruction stream and issues any CP instructionsit hits.
The CP can hold up any following CP instructions as necessary. The ARM 10
processor is not explicitly signaled when the CP completes the instruction. The
CP usually holds up any following instruction that is dependent on a prior
instruction.

If the CPinstruction isamulticycle load or store type, then the ARM10 ALU
pipeline and CP pipelines are decoupled, but the ARM 10 L SU pipeline and CP
pipeline remain coupled. The instruction continuesto iterate in the CP and the
ARM10 LSU pipelines but isretired in the ARM10 ALU pipeline. When the
ARM10 ALU pipelineis decoupled, the ARM10 processor cannot cancel the
instruction, and the CP must complete the instruction. Whilethe CPand LSU are
working, the ARM10 ALU pipeline continues to execute the following
instruction stream and issues any CP instructionsit hits. Load and store
instructions stall in Decode, but data processing instructions execute if possible.
Even the CP doing the load or store can run a data processing instruction in
paralld if it supportsthisfunctionality. If it does not, then it must hold up the data
processing instruction until the load or store instruction is complete.

Simple CPsonly haveto usethefirst of these mechanisms. They can execute multicycle
instructions by holding up the ARM 10 pipeline until they complete. In some systems
this has a significant impact on performance.

ARM DDI 0237A
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8.5 Rules for the interface

The following rules apply to the CP pipeline and CP interface:

. No two CPs can have an instruction in the same ARM 10 pipeline stage. That is,
aCPinstructionin aparticular ARM 10 pipeline stage is associated with one, and
only one, CP.

. Each CP output signal is associated with one ARM 10 pipeline stage. The CP that
owns the instruction in that stage drives the signal.

. Outputs from the ARM 10 processor must enable the CPs to track the ARM10
pipeline well enough for them to detect:

— whento assert hold and bounce signalsto ARM 10 processor
— which CPinstruction that a cancel or flush signal appliesto
— whentheinstruction is committed and can no longer be canceled or flushed.

. A signal stalled by ahold signal becomesvalidinthelast cycle of the hold signal.
Signalsthat override hold signal s can be asserted at any time, and their effect must
not be masked by the hold.

Internal design features of CPs might or might not conform to these rules.
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8.6 Pipeline signal assertion
Table 8-1 shows where in the pipeline the coprocessor interface signals are active.

Table 8-1 Pipeline stages and active signals

ARM10 pipeline CP pipeline
Driven by ARM10 Driven by CP Driven by ARM10 Driven by CP

CPVALIDD Decode - Issue -
CPLSLEN - Decode - Issue
CPLSSWP - Decode - Issue
CPLSDBL - Decode - Issue
CPINSTR Issue - Fetch -
CPINSTRV Issue - Fetch -
ASTOPCPD Execute - Decode -
CPBUSYE - Execute - Decode
CPLSBUSY - Execute - Decode
CPBOUNCEE - Execute - Decode
ASTOPCPE Memory - Execute -
ACANCELCP Memory - Execute -
AFLUSHCP Memory - Execute -
LSHOLDCPE Memory - Execute -
LSHOLDCPM Write - Memory -
STCMRCDATA - Execute - Decode
LDCMCRDATA  Write - Memory -
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8.7

8.7.1

Instruction issue

CPINSTR

CPINSTR, CPINSTRV, and CPVALIDD are the signals that control the issue of CP
instructions from the ARM 10 processor. These instructions go to all CPs at the same
time. Only the CP that ownstheinstruction can drive control signalsfor that instruction
back to the ARM 10 processor.

The following sections describe these signals:

. CPINSTR

. CPINSTRV on page 8-12

. CPVALIDD on page 8-13

. Example of instruction issue on page 8-14

. CPLSLEN, CPLSSWP, and CPLSDBL on page 8-15.

Instructions are issued to all CPs during the ARM 10 Issue stage, which isin the CP
Fetch stage. The instructions are sent over a dedicated 26-bit bus, CPINSTR.

Usually, CPINSTR is only driven when thereisavalid CP instruction in the ARM 10
Issue stage. Occasionally, it might be driven in error because of an instruction that
causesaPrefetch Abort or abranch that isincorrectly predicted. Inthese casesthevalue
driven onto CPINST R might decode to anything, including a CP instruction. However
the instruction is still not valid because it was fetched erroneously.

CPINSTRYV and CPVALIDD give more information about the validity of the
instruction. Table 8-2 on page 8-11 showsinteractions of CPINST R with other signals.

The ARM 10 processor drives CPINSTR in the ARM10 Issue stage and the CP Fetch
stage.

8-10
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Table 8-2 CPINSTR interactions with other signals

Signal

Interactions with CPINSTR

ASTOPCPD

Treat CPINSTR asinvalid thiscycle. Useitsvalue only in the last
interlocked cycle, that is, the cyclein which ASTOPCPD and all other
relevant holds go LOW. The value of CPSINTR might change while
ASTOPCPD is asserted if an exception or mispredicted branch occurs.
Also, the prefetch unit might place avalid instruction in the I ssue stage
under an interlock, causing an invalid instruction on CPINSTR and
CPINSTRYV to changeto avalid one while ASTOPCPD is asserted.

ASTOPCPE

Treat CPINSTR asinvalid thiscycle. Useitsvalue only in the last
interlocked cycle, that is, the cyclein which ASTOPCPE and all other
relevant holds go LOW. The value of CPSINTR might change while
ASTOPCPE is asserted if an exception or mispredicted branch occurs.
Also, the prefetch unit might place avalid instruction in the I ssue stage
under an interlock, causing an invalid instruction on CPINSTR and
CPINSTRYV to changeto avalid one while ASTOPCPE is asserted.

LSHOLDCPE

None.

CPBUSYE

Treat CPINSTR asinvalid thiscycle. Useits value only in the last
interlocked cycle, that is, the cyclein which CPBUSYE and all other
relevant holds go LOW. The value of CPSINTR might change while
CPBUSYE is asserted if an exception or mispredicted branch occurs.
Also, the prefetch unit might place avalid instruction in the I ssue stage
under an interlock, causing an invalid instruction on CPINSTR and
CPINSTRYV to changeto avalid one while CPBUSYE is asserted.

LSHOLDCPM

None.

ACANCELCP

None.

AFLUSHCP

Invalidates instruction on CPINSTR.

CPBOUNCEE

None.
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8.7.2

CPINSTRV

CPINSTR and CPINSTRYV are the only CP interface signals that are driven in the
ARM10 Issue stage. CPINSTRYV indicatesthat CPINSTR carries an instruction worth
decoding. The fact that CPINSTRYV is asserted is not a guarantee that CPINSTR
carriesavalid CP instruction. CPINSTRYV going LOW is a guarantee the CPINSTR
does not carry avalid CP instruction.

CPINSTRYV isauseful hint. It can be used to save power by not decoding bad
instructions. To save power al bitsof CPINSTR arealso drivento Owhen CPINSTRYV
is LOW. This behavior must not be relied upon for correct function.

If CPINSTR carriesavalid CPinstruction, CPINSTRV does not guarantee that it will
be executed. There are some cases where CPINSTRYV is asserted for instructions that
turn out to be invalid. Prefetch aborted instructions and instructions following
mispredicted branches are examples of this. Not enough is known about the instruction
in the ARM 10 Issue stage to make CPINSTRV a definite indicator of avalid
instruction. More is known in the ARM 10 Decode stage and the signal CPVALIDD is
used to confirm that aninstructionisvalid. Table 8-3 showsinteractionsof CPINSTRV
with other signals.

The ARM 10 processor drives CPINSTRYV inthe ARM 10 | ssue stage and the CP Fetch
stage.

Table 8-3 CPINSTRYV interactions with other signals

Signal Interactions with CPINSTRV

ASTOPCPD Treat CPINSTRYV asinvalid thiscycle. Useits value only in the last
interlocked cycle, that is, the cycle in which ASTOPCPD and al other
relevant holds go LOW. The value of CPSINTRYV might change while
ASTOPCPD is asserted if an exception or mispredicted branch occurs.
Also, the prefetch unit might place avalid instruction in the Issue stage
under an interlock, causing an invalid instruction on CPINSTR and
CPINSTRYV to changeto avalid one while ASTOPCPD is asserted.

ASTOPCPE Treat CPINSTRYV asinvalid thiscycle. Useits value only in the last
interlocked cycle, that is, the cycle in which ASTOPCPE and all other
relevant holds go LOW. The value of CPSINTRYV might change while
ASTOPCPE is asserted if an exception or mispredicted branch occurs.
Also, the prefetch unit might place avalid instruction in the Issue stage
under an interlock, causing an invalid instruction on CPINSTR and
CPINSTRYV to changeto avalid one while ASTOPCPE is asserted.

LSHOLDCPE  None.

8-12
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Table 8-3 CPINSTRYV interactions with other signals (continued)

Signal Interactions with CPINSTRV

CPBUSYE Treat CPINSTR asinvalid thiscycle. Useits value only in the last
interlocked cycle, that is, the cyclein which CPBUSYE and all other
relevant holds go LOW. The value of CPSINTRYV might change while
CPBUSYE is asserted if an exception or mispredicted branch occurs.
Also, the prefetch unit might place avalid instruction in the I ssue stage
under an interlock, causing an invalid instruction on CPINSTR and
CPINSTRYV to changeto avalid one while CPBUSYE is asserted.

LSHOLDCPM  None.

ACANCELCP  None.

AFLUSHCP Invalidates instruction.

CPBOUNCEE None.

8.7.3 CPVALIDD

Not enough is known about the instruction in the ARM 10 Issue stage to make
CPINSTRYV adefinite indicator of avalid instruction. More is known in the ARM10
Decode stage, and the signal CPVAL DD can confirm that an instruction is valid.
CPVALIDD goesHIGH during the ARM 10 Decode stage to confirm aninstructionis
valid. CPVALIDD does not guarantee execution of the instruction, because the
instruction might get canceled or flushed (see ACANCELCP on page 8-37 and
AFLUSHCP on page 8-41). Table 8-4 on page 8-14 showsinteractions of CPVALIDD
with other signals.

The ARM 10 processor drives CPVAL IDD in the ARM 10 Decode stage and the CP
| ssue stage.
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8.7.4

Table 8-4 CPVALIDD interactions with other signals

Signal Interactions with CPVALIDD

ASTOPCPD Treat CPVALIDD asinvalid thiscycle. Useitsvalue only in the last
interlocked cycle, that is, the cyclein which ASTOPCPD and al other
relevant holds go LOW. The value of CPVALIDD might change while
ASTOPCPD isasserted if an exception or mispredicted branch occurs.
Also, the prefetch unit might place avalid instruction in the I ssue stage
under an interlock, causing an invalid instruction on CPINSTR and
CPINSTRYV to changeto avalid one while CPVALIDD is asserted.

ASTOPCPE Treat CPVALIDD asinvalid thiscycle. Useitsvalue only in the last
interlocked cycle, that is, the cycle in which ASTOPCPE and all other
relevant holds go LOW. The value of CPVALIDD might change while
ASTOPCPE is asserted if an exception or mispredicted branch occurs.
Also, the prefetch unit might place avalid instruction in the Issue stage
under an interlock, causing an invalid instruction on CPINSTR and
CPINSTRYV to changeto avalid one while CPVALIDD is asserted.

LSHOLDCPE None.

CPBUSYE Treat CPVALIDD asinvalid thiscycle. Useitsvalue only in the last
interlocked cycle, that is, the cycle in which CPBUSY E and all other
relevant holds go LOW. The value of CPVAL I DD might change while
CPBUSYE isasserted if an exception or mispredicted branch occurs.
Also, the prefetch unit might place avalid instruction in the I ssue stage
under an interlock, causing an invalid instruction on CPINSTR and
CPINSTRYV to changeto avalid one while CPBUSYE is asserted.

LSHOLDCPM  None.

ACANCELCP  None.

AFLUSHCP Invalidates instruction.

CPBOUNCEE None.

Example of instruction issue

In Figure 8-2 on page 8-15, instructions 1 and 2 drive CPINSTR. CPINSTRYV initialy
indicates that both instructions 1 and 2 are valid, but CPVAL I DD indicates that only
instruction 1 isvalid. After that, instructions 3 and 4 are not valid CP instructions, so
CPINSTRYV and CPVALIDD are kept LOW. The humbers in the waveforms show
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Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0237A



Coprocessor Interface

which instruction ownsthe signal at that time. For example, instruction 1 owns
CPVALIDD at edge T3. Instruction 2 owns CPVALIDD at edge T4. A CPregisters
theinstruction 1 value at T3 and the instruction 2 value at T4.

I 1 12 13 14
D 11 12 13 14
ARM E 11 12 13
M 1 12
w 11 12
F 1
I 11
D 1
CP1 C i
M 1
w 11
F 12
I 12 13
D 12 13
CP2 ¢ 12 13
M
w
T1 T2 T3 T4 T5 T6 T7
CPCLK | \ \ \
CPINSTR 1 2
CPINSTRV /] 1 W\ //2 \\ 3 4
CPVALIDD [] 1 \\ 2 3 4

Figure 8-2 Instruction issue example

8.75  CPLSLEN, CPLSSWP, and CPLSDBL

A CPdrivesthe CPLSLEN, CPLSSWP, and CPL SDBL signalsto the ARM10
processor on load/store CP instructions. They indicate:

. the length of the transfer
. if upper and lower half of the data bus must be swapped before being written
. if the load/store request is for double-precision data.
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CPLSLEN

CPLSLEN indicates the number of 32-bit data items to be transferred for the
corresponding load/store CPinstruction. Driving a1 onthisbusrepresentsasingleload
or store dataitem being transferred. CPL SL EN must be driven with O if the CP is not
processing an instruction. If ASTOPCPD is asserted due to ahold in the ARM 10
Decode stage, the CPL SLEN value is retained by the ARM 10 processor. Table 8-5
describes the interactions of CPL SL EN with other signals.

The CP drives CPL SLEN in the CP Issue stage and the ARM 10 Decode stage.

Table 8-5 CPLSLEN interactions with other signals

Signal interactions with CPLSLEN

ASTOPCPD CPLSLEN isregistered with ASTOPCPD.

ASTOPCPE None.

LSHOLDCPE None.

CPBUSYE None

LSHOLDCPM  None.

ACANCELCP  None.

AFLUSHCP Invalidates instruction.

CPBOUNCEE None.

CPLSSWP

CPL SSWP indicates that the upper and lower datawords on LDCM CRDATA and
STCMRCDATA buses must be swapped by the ARM 10 processor before being
written. If ASTOPCPD is asserted due to a hold in the ARM 10 Decode stage, the
CPL SSWP vaueisretained by the ARM 10 processor. Table 8-6 on page 8-17
describes the interactions of CPL SSW P with other signals.
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The CP drives CPL SSWP in the CP Issue stage and the ARM 10 Decode stage.

Table 8-6 CPLSSWP interactions with other signals

Signal Interactions with CPLSSWP

ASTOPCPD CPL SSWP isregistered with ASTOPCPD.

ASTOPCPE None.

LSHOLDCPE  None.

CPBUSYE None

LSHOLDCPM  None.

ACANCELCP  None.

AFLUSHCP Invalidates instruction.

CPBOUNCEE None

CPLSDBL

CPL SDBL indicatesthat the load/store CPinstruction involves adouble word transfer.
That is, a64-bit quantity is being transferred. If ASTOPCPD is asserted due to a hold
inthe ARM 10 Decode stage, the CPL SDBL valueisretained by the ARM 10 processor.
Table 8-7 describes the interactions of CPL SDBL with other signals.

The CP drives CPL SDBL in the CP Decode stage and the ARM 10 Issue stage.

Table 8-7 CPLSDBL interactions with other signals

Signal Interactions with CPLSSWP

ASTOPCPD CPL SDBL isregistered with ASTOPCPD.

ASTOPCPE None.

LSHOLDCPE  None.

CPBUSYE None

LSHOLDCPM  None.

ACANCELCP  None.

AFLUSHCP Invalidates instruction.

CPBOUNCEE  None.
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8.8 Hold signals
The following sections describe hold signals:
. ASTOPCPD on page 8-20
. ASTOPCPE on page 8-21
. ASTOPCPE example on page 8-22
. LSHOLDCPE on page 8-24
. Example of LSHOLDCPE on page 8-24
. LSHOLDCPM on page 8-26
. CPBUSYE on page 8-28
. CPBUSYE example on page 8-28
. CPBUSYE and ASTOPCPD interaction on page 8-29
. ASTOPCPD with CPBUSYE on page 8-30
. CPBUSYE and ASTOPCPE interaction on page 8-31
. ASTOPCPE with CPBUSYE on page 8-32
. CPLSBUSY on page 8-36.
The pipeline hold signal s from the ARM 10 processor keep the CP pipeline in lockstep
with the ARM 10 processor. Pipeline hold signals from the CPs hold up the ARM 10
processor to give more time to execute an instruction. To avoid adeadlock, it is
important that both sides do not factor their hold inputs back into their hold outputs.
Table 8-8 on page 8-19 summarizes the hold signals.
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Thehold signalsare usually timing-critical. They factor huge fanout termsinto pipeline
holds. In high-performance systems, they must come straight out of registersin the

driving block.
Table 8-8 Hold signals summary
ARM10

Signal From To stage CP stage Comments

ASTOPCPD ARM10 AllCPs Decode + 1 Decode Hold CPin CP Decode because ARM10is
held in ARM 10 Decode.

ASTOPCPE ARM10 AllCPs Execute+1  Execute Hold CPin CP Execute because ARM10is
held in ARM 10 Execute.

LSHOLDCPE ARM10 AllCPs Execute+1  Execute Hold CP data transfersin CP Execute
because LSU is held in ARM 10 Execute.

LSHOLDCPM ARMI10 All CPs Memory +1  Execute Hold CP datatransfersin CP Memory
because LSU isheld in ARM10 Memory.

CPBUSYE EachCP  Other CPs Execute Issue+ 1 Hold ARM10 processor in ARM10

and ARM10 Execute.
CPLSBUSY EachCP  Other CPs - Decode Holds other CPsin CP Issue

ARM DDI 0237A
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8.8.1

ASTOPCPD

ASTOPCPD indicatesthat theinstructioninthe ARM 10 Decode stage did not progress
into the ARM 10 Execute stage in the previous cycle. It is driven out of aregister
following the ARM 10 Decode stage. If ASTOPCPD is asserted, CPs must hold their
Decode, Issue, and Fetch stages. The logic in these stages must keep reevaluating
because CPINSTR, CPINSTRYV, and CPVAL IDD might change. Only the cyclein
which ASTOPCPD is deasserted can be considered avalid cycle. Table 8-9 showsthe
interactions of ASTOPCPD with other signals.

The ARM 10 processor drives ASTOPCPD in the ARM 10 Execute stage and the CP
Decode/CP Decode + 1 stage.

Table 8-9 ASTOPCPD interactions with other signals

Signal Interactions with ASTOPCPD

ASTOPCPE ASTOPCPD isusually asserted when ASTOPCPE is asserted.

LSHOLDCPE ASTOPCPD isasserted with LSHOL DCPE when the pipelines arein
lockstep. Pipelines are in lockstep unless the CP instruction has already
retired from the ARM 10 pipeline and is now transferring data from the
LSU for aload/store multiple.

CPBUSYE The ARM10 processor ignores CPBUSY E if ASTOPCPD is aready
asserted. ASTOPCPD isnot asserted if avalid CPBUSY E (ASTOPCPE
LOW) was received in the previous cycle.

LSHOLDCPM  None.

ACANCELCP  None.

AFLUSHCP Flush invalidates ASTOPCPD.

CPBOUNCEE  None.

In Figure 8-3 on page 8-21 ASTOPCPD isused to indicate that instruction 1 stalled in
the ARM 10 Decode stage for one cycle. The following values of CPINSTR,
CPINSTRV, and CPVALIDD areinvalidin all but thelast cycle that was interlocked.
ASTOPCPD isLOW asinstruction 2 leavesthe Decode stage indicating that it was not
held up. The numbers in waveforms show which instruction owns the signal at that
time.
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Figure 8-3 ASTOPCPD example
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CPLSLEN, CPLSSWP, and CPL SDBL for agiven instruction are driven from a CP
in the cycle before ASTOPCPD is driven from the ARM 10 processor, so the ARM 10
processor must register the value of CPL SL EN and CPL SSWP and CPLSDBL if itis
about to drive an ASTOPCPD.

ASTOPCPE indicates that the instruction in the ARM 10 Execute stage did not
progressin to the ARM 10 Memory stage in the previous cycle. It is driven out of a
register following the ARM 10 Execute stage. If ASTOPCPE is asserted, CPs must
hold their Execute, Decode, I ssue, and Fetch stages. Thelogic in these stages must keep
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reevaluating as CPINSTR, CPINSTRV, and CPVAL DD might change. Only the
cycle where ASTOPCPE isdeasserted isavalid cycle. AFLUSHCP overrides

ASTOPCPE

The ARM 10 processor drives ASTOPCPE in ARM 10 Execute + 1 stage and the CP

Execute stage.

Table 8-10 ASTOPCPE interactions with other signals

Signal

interactions with ASTOPCPD

ASTOPCPD

None.

LSHOLDCPE

ASTOPCPE is asserted with L SHOL DCPE when the pipelines arein
lockstep. Pipelines are in lockstep unless the CP has aready retired from
the ARM 10 pipeline and is now transferring data from the LSU for a
load/store multiple.

CPBUSYE

The ARM10 processor ignores CPBUSYE if ASTOPCPE is aready
asserted. ASTOPCPE is not asserted if CPBUSY E was asserted at the
end of the previous cycle, but ASTOPCPE can be asserted when
CPBUSYE deasserts. In this case, asserting ASTOPCPE continues to
hold the same instruction in ARM 10 Execute that was held by
CPBUSYE.

LSHOLDCPM

ASTOPCPE is asserted with LSHOL DCPM when the pipelines arein
lockstep. Pipelines are in lockstep unless the CP has already retired from
the ARM 10 pipeline and is now transferring data from the LSU for a
load/store multiple.

ACANCELCP

ACANCELCP held by ASTOPCPE.

AFLUSHCP

AFLUSHCP overrides ASTOPCPE. The pipelineis flushed from
Execute back.

CPBOUNCEE

CPBOUNCEE is not used until ASTOPCPE (and other relevant holds)
are deasserted.

8.8.3 ASTOPCPE example

Figure 8-4 on page 8-23 shows the ARM 10 processor holding instruction 1 in its
Execute stage for one cycle. The numbers in the waveforms show which instruction
ownsthe signal at that time.
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Figure 8-4 ASTOPCPE example

* ASTOPCPD is caused by ASTOPCPE and CPBUSYE isignored under
ASTOPCPE. Under an ASTOPCPE, STC isregistered in the ARM 10 processor.
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8.8.4

8.8.5

LSHOLDCPE

L SHOL DCPE indicatesthat theload/store CP instructioninthe ARM 10 L SU Execute
stage, did not progressin to the ARM 10 LSU Memory stagein the previouscycle. Itis
driven out of aregister following the ARM10 LSU Execute stage. If LSHOLDCPE is
asserted, CPs must hold their Execute, Decode, Issue, and Fetch stages. If

L SHOL DCPE isasserted, and astore isin the CP Execute stage, the STCM RCDATA
bus value is retained by the ARM 1010 processor until L SHOL DCPE deasserts.

The ARM 10 processor drives L SHOL DCPE inthe ARM 10 Execute + 1 stage and the
CP Execute stage.

Table 8-11 LSHOLDCPE interactions with other signals

Signal Interactions with LSHOLDCPE

ASTOPCPD None.

LSHOLDCPE None.

ASTOPCPE L SHOL DCPE is asserted with ASTOPCPE when pipelinesarein
lockstep. Pipelines are in lockstep unless the CP instruction has already
retired from the ALU pipédine and is now transferring datato or from the
LSU.

CPBUSYE CPBUSYE indicates an Execute stage hold when the ALU and LSU
pipelines are in lockstep. L SHOL DCPE indicates an LSU execute stage
hold when the ALU and L SU pipelines are not in lockstep.

LSHOLDCPM  If LSHOLDCPM isasserted, LSHOLDCPE is asserted as well.

ACANCELCP  None.

AFLUSHCP Flush invalidates L SHOL DCPE.

CPBOUNCEE None.

Example of LSHOLDCPE

Figure 8-5 on page 8-25 shows the ARM10 LSU holding instruction 1 in its Execute
stage for one cycle. The numbers in the waveforms show which instruction owns the
signal at that time. ASTOPCPD is caused by ASTOPCPE. CPBUSYE isignored
under ASTOPCPE. Under an LSHOL DCPE, STC isregistered in the ARM10
processor.
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Figure 8-5 LSHOLDCPE example
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8.8.6 LSHOLDCPM

LSHOLDCPM indicates that the load CP instruction in the ARM10 LSU Memory
stage did not progress into the ARM 10 LSU Write stage in the previous cycle or that a
load cache miss occurred. It is driven out of aregister following the ARM10 LSU
Memory stage. If LSHOL DCPM is asserted, CPs must hold their Memory, Execute,
Decode, Issue and Fetch stages. If LSHOLDCPM is asserted, and aload isin the CP
Memory stage, the LDCM CRDATA bus valueisignored by the CP until
LSHOLDCPM deasserts.

The ARM 10 processor drives LSHOL DCPM inthe ARM10 Memory + 1 stage and
the CP Memory stage.

Table 8-12 LSHOLDCPM interactions with other signals

Signal Interactions with other signals

ASTOPCPD None.

LSHOLDCPE None.

ASTOPCPE None.

CPBUSYE None.

LSHOLDCPM  |f LSHOLDCPM isasserted, L SHOL DCPE is asserted as well.

ACANCELCP  None.

AFLUSHCP None.

CPBOUNCEE None.
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Figure 8-6 LSHOLDCPM example
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8.8.7

8.8.8

CPBUSYE

From the ARM 10 processor viewpoint, CPBUSY E indicates that the CP that ownsthe
instruction in the ARM 10 Execute stage wantsto hold the instruction in that stage. Itis
asserted in the ARM 10 Execute stage and must come directly out of aregister. It also
holds the instructions in other CP | ssue stages. Table 8-13 shows the interaction of
CPBUSY E with other signals.

The ARM 10 processor drives CPBUSY E in the ARM 10 Execute stage and the CP
Decode stage.

Table 8-13 CPBUSYE interactions with other signals

Signal interactions with CPBUSYE

ASTOPCPD The ARM10 processor ignores CPBUSYE if ASTOPCPD is aready
asserted. ASTOPCPD is not asserted if avalid CPBUSYE (CPBUSY
HIGH, ASTOPCPD LOW) wasreceived in the previous cycle.

ASTOPCPE The ARM10 processor ignores CPBUSYE if ASTOPCPE is already
active. ASTOPCPE is not asserted if avalid CPBUSY E was asserted at
the end of the previous cycle. ASTOPCPE is not asserted if CPBUSYE
is already asserted. ASTOPCPE can be asserted in the cycle that
CPBUSYE deasserts.

LSHOLDCPE None.

LSHOLDCPM  None.

ACANCELCP  None.

AFLUSHCP AFLUSHCP has priority over CPBUSYE.

CPBOUNCEE CPBOUNCEE isnot used until CPBUSYE (and other holds) are
deasserted.

CPBUSYE example

In Figure 8-7 on page 8-29 instruction 1 is held in the ARM 10 Execute stage by
CPBUSY E. Numbers in waveforms show which instruction owns the signal at that
time. In some CPs, instruction 1 might advance into Decode under the CPBUSYE. In
this case instruction 1 spends two cycles in Decode rather than two in Issue. This
depends on the CP implementation. For the interface this makes no difference because
the interface signals till have to be driven depending upon the position of the
instruction in the ARM 10 pipeline.
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Figure 8-7 CPBUSYE example

8.8.9 CPBUSYE and ASTOPCPD interaction

Thereisacomplex interaction between ASTOPCPD and CPBUSYE. If ASTOPCPD
is asserted, the ARM 10 processor ignores CPBUSY E being asserted in the same cycle,
until ASTOPCPD deasserts. Figure 8-8 on page 8-30 shows one possible sequence of
events.
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1 T2 T3 T4 5

cPelk [ ] | | |
CPBUSYE ] W
AsTOPCPD  [] I\
CPBUSYE (internal) FL

Figure 8-8 CPBUSYE ignored due to ASTOPCPD assertion

If CPBUSYE isasserted in the cycle before the ARM 10 processor would have asserted
ASTOPCPD, then ASTOPCPD is suppressed until the cycle after CPBUSYE
deasserts. Figure 8-9 shows this sequence of events.

T T2 T3 T4 5 T6

CPCLK | \ \ \ |
CPBUSYE [] \\
CPBUSYE (internal) | [] \\
HOLDD (internal) | [/ \\
ASTOPCPD /] W

Figure 8-9 CPBUSYE asserted before ASTOPCPD
Theinternal hold signal HOL DD isusually registered to make ASTOPCPD inthe next
cycle, but thisisheld until CPBUSY E goes LOW.
8.8.10 ASTOPCPD with CPBUSYE

In Figure 8-10 on page 8-31, instruction 1 isheld up by CPBUSYE and instruction 2 is
held up by ASTOPCPD. Aninstruction in ARM 10 Decode is always held up behind
an instruction held by ARM10 CPBUSYE in Execute, unlessit is flushed.
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Figure 8-10 ASTOPCPD with CPBUSYE

8.8.11 CPBUSYE and ASTOPCPE interaction

There is acomplex interaction between ASTOPCPE and CPBUSYE. CPBUSYE is
asserted in the Execute stage of an instruction, ASTOPCPE is asserted from aregister
at the end of the Execute stage (E + 1). If ASTOPCPE isasserted in the same cycle that
CPBUSYE is asserted then CPBUSY E isignored until ASTOPCPE deasserts. If
CPBUSY E was asserted in the previous cycle then ASTOPCPE cannot be asserted
until the cycle after that in which CPBUSY E deasserts.
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Where ASTOPCPE is asserted at the same time as CPBUSY E, the ARM 10 processor
ignoresCPBUSY E until ASTOPCPE deasserts. InFigure 8-11, CPBUSY E isignored
until ASTOPCPE deasserts.

T T2 T3 T4 5

cPCLK [ ] | | |
cPBUSYE  [] W
ASTOPCPE  [] )
CPBUSYE (internal) FL

Figure 8-11 CPBUSYE ighored due to ASTOPCPE assertion

In Figure 8-12, CPBUSYE is asserted before ASTOPCPE. The ARM 10 processor
does not assert ASTOPCPE until the cycle after CPBUSY E deasserts. ASTOPCPE is
holding up the same instruction, in Execute, that CPBUSY E held up.

T T2 T3 T4 5 T6

cPCLk [ | | | | L
CPBUSYE  [] \\
HOLDE (internal) / y v
ASTOPCPE [ [\
CPBUSYE (internal) /] \\

Figure 8-12 CPBUSYE asserted before ASTOPCPE

8.8.12 ASTOPCPE with CPBUSYE
In Figure 8-13 on page 8-33, instruction 2 is held up by ASTOPCPE and CPBUSYE.
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Figure 8-13 12 held up by ASTOPCPE and CPBUSYE

* Although instruction 3 isresponsiblefor ASTOPCPD at T7, instruction 2 has caused
ASTOPCPE to be asserted and this has to be folded back into ASTOPCPD.

In Figure 8-14 on page 8-34, instruction 1 is held up by ASTOPCPE and instruction 2
isheld up by CPBUSYE.
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Figure 8-14 11 held up by ASTOPCPE and 12 held up by CPBUSYE

* Although instruction 2 isresponsiblefor driving ASTOPCPD at T5, instruction 1 has
caused ASTOPCPE to be asserted and this has to be folded back into ASTOPCPD.

In Figure 8-15 on page 8-35, instruction 1 isheld up by CPBUSYE and instruction 2 is
held up by ASTOPCPD.
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Figure 8-15 11 held up by CPBUSYE and 12 held up by ASTOPCPD

*1n Figure 8-15 although instruction 3 is responsible for driving ASTOPCPE at T7,
instruction 2 has caused ASTOPCPE to be asserted and this hasto be folded back into
ASTOPCPD.
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8.8.13 CPLSBUSY

Thisisdriven out of aregister on the CP Issue/Decode boundary (valid early in the
ARM 10 Execute stage). It signals to other CPs that the sender isinvolved in aload or
store multiple data transfer and is keeping control of the STCMRCDATA bus. Other
CPs must progress to Decode (where they are stalled by ASTOPCPE) but must not
attempt to drive the bus until a cycle after CPL SBUSY deasserts.

CPLSBUSY stallsall other CPswhen along LDC isin progress. CPL SBUSY does not
have to go to the ARM 10 processor because it can only do one load/store operation at
atime because they are held up in any case. CPL SBUSY comes out of flop and goesto

other CPs.

The CP drives CPL SBUSY in the CP Decode stage and the ARM 10 Execute stage.

Table 8-14 CPLSBUSY interactions with other signals

Signal Interactions with CPLSBUSY
ASTOPCPD None
ASTOPCPE None
LSHOLDCPE None
LSHOLDCPM None
ACANCELCP None
AFLUSHCP None
CPBOUNCEE None
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Instruction cancelation signals are described in the following sections:
ACANCELCP

ACANCELCP example

ACANCELCP with ASTOPCPE example on page 8-39
ACANCELCP with CPBUSYE example on page 8-40
AFLUSHCP on page 8-41

AFLUSHCP example on page 8-42.

8.9.1 ACANCELCP

ACANCEL CP indicatesthat the instruction that has just entered the ARM10 Memory
stage must be canceled. ACANCEL CP differsfrom AFLUSHCP. It cancelsasingle
instruction rather than canceling all upstream instructions in the pipeline. It is driven
from register following the ARM 10 Execute stage. Table 8-15 shows ACANCEL CP
the interactions with other signals.

The ARM10 processor drives ACANCEL CP inthe ARM 10 Memory stage and the CP

Execute stage.
Table 8-15 ACANCELCP interactions with other signals
Signal Interactions with CPBUSYE
ASTOPCPD None
ASTOPCPE CPignores ACANCELCP if ASTOPCPE asserted
LSHOLDCPE  None
CPBUSYE ACANCELCP isheld isresponse to an active CPBUSYE
LSHOLDCPM  None
ACANCELCP None
AFLUSHCP AFLUSHCP has priority
CPBOUNCEE  No effect for canceled instructions

8.9.2 ACANCELCP example

ACANCEL CP cancelsoneinstruction (turnsit into aNOP) but does not affect the ones
around it. In this case, three instructions are issued in arow. Instruction 2 is canceled.
Instructions 1 and 3 complete. The numbersin waveformsshow which instruction owns
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the signal at that time. The ARM 10 processor ignores an indication from CP2 that 12
must bounce as the instruction is canceled. Figure 8-16 shows an example with

ACANCELCP.
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Figure 8-16 ACANCELCP example

The ARM 10 processor ignores an indication from CP2 that instruction 2 must bounce
because the instruction is canceled.
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8.9.3 ACANCELCP with ASTOPCPE example

Instruction 1isheld up by the ARM 10 processor with ASTOPCPE. ACANCELCP s
valid in thelast cycle that ASTOPCPE is asserted. Figure 8-17 shows an example of

ACANCEL CP with ASTOPCPE.
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Figure 8-17 ACANCELCP with ASTOPCPE example
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8.9.4 ACANCELCP with CPBUSYE example
Instruction 1 isheld up by CP1 asindicated by CPBUSYE. ACANCELCPisvdidin
the last cycle that CPBUSYE is asserted.
ASTOPCPE might be asserted with CPBUSY E. It can then be deasserted while
CPBUSYE istill active or might have stayed asserted when CPBUSY E is deasserted.
When both CPBUSY E and ASTOPCPE are deasserted the pipeline must progress.
Figure 8-18 shows an example of ACANCEL CP with CPBUSYE.
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Figure 8-18 ACANCELCP with CPBUSYE example
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AFLUSHCP indicates that the instruction that has just entered the ARM 10 Memory
stage and all upstream instructions currently in the pipeline must be canceled.
AFLUSHCP differsfrom ACANCEL CP because it cancels al upstream instructions
in the pipeline rather than just a singleinstruction. It is driven from register following
the ARM 10 Execute stage. This means that there is no time to factor Data Aborts into
the AFLUSHCP signal. As aresult, aborted CP loads complete when a Data Abort
occurs, and then be reexecuted on return from the Data Abort handler routine. It must
be possible to execute any CP load more than once (before the next instruction is
executed) with no noticeable effects on the CP.

The ARM 10 processor drives AFLUSHCP in the ARM 10 Memory stage and the CP
Execute stage.

Table 8-16 AFLUSHCP interactions with other signals

Signal Interactions with CPBUSYE

ASTOPCPD Flush overrides

ASTOPCPE Flush overrides

LSHOLDCPE  Flush overrides

CPBUSYE Flush overrides (deasserted in the following cycle)

LSHOLDCPM  Flush overrides

ACANCELCP  None

CPBOUNCEE  Ignored because instruction canceled by flush

AFLUSHCP supersedesthe ASTOP and VAL I D signals from the ARM 10 processor.
Itisusedtosignal that an interrupt hasflushed the pipeline. Asaresult CPBUSY E must
be deasserted in the following cycle to enable the interrupt to be serviced.
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8.9.6 AFLUSHCP example

AFLUSHCP hasto override ASTOPCPE and ASTOPCPD. Here AFLUSHCP is
asserted for instruction 2. This might be caused by instruction 2 being bounced or a
reason unrelated to the CPs, an interrupt, for example. AFL USHCP hasto kill the
effects of instruction 2 and all following instructions currently in the pipe.

Interrupts can cause flushes at any time. So, even avalid instruction that has been
busy-waited for many cycles can be flushed. When the instruction has reached the
Memory stage of the ARM 10 processor without AFLUSHCP or ACANCEL CP being
asserted it completes (with the exception of instructions that Data Abort). Figure 8-19
on page 8-43 shows an exampl e of thiswith five instructions. CP load or store
instructions that cause a Data Abort are completed by the CP and rerun by the Data
Abort handler. So they must be designed to be rerun with no ill effects.
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Figure 8-19 AFLUSHCP example

The ARM 10 processor ignores an indication from CP2 that 12 might bounce as the
instruction is canceled. Instruction 4 might be in the Issue stage. This must be flushed
by AFLUSHCP but isaso not confirmed by CPVALIDD. Instruction 5isissued after
the flush and is avalid instruction.

AFLUSHCP can be asserted even if hold signals such as ACANCEL CP and/or
CPBUSYE are asserted. In these cases, AFLUSHCP has the highest priority because
the pipeis currently full of instructionsthat do not execute. This might be because of a
mispredicted branch or an exception.
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8.10

Bounced instructions

Thefollowing sections describe what happens when CPs cannot execute an instruction,
and the undefined instruction trap must be taken:

. CPBOUNCEE

. CPBOUNCEE example on page 8-45

. CPBOUNCEE with ASTOPCPE on page 8-46
. CPBOUNCEE with CPBUSYE on page 8-47.

8.10.1 CPBOUNCEE

CPBOUNCEE is used by CPsto acknowledge ownership of CP instructions. Only a
CPwith an ID that matches the CPID field in the instruction can accept an instruction.
If no CP accepts an instruction, the instruction is bounced to an Undefined Instruction
handler, and the undefined instruction trap is taken. A CP does not have to accept al
instructions with an CPID that matchesits ID. This alows a mixture of hardware and
software to be used to implement a CP.

The CPdrives CPBOUNCEE out of aregister at the start of the ARM 10 Execute stage.
When an instruction is bounced, the CP should continue to operate asif it were aNOP.
If the bounced instruction passes its condition code check then the ARM 10 processor
indicates that the CP should flush its pipeline using AFLUSHCP.

The CPthat ownsan instruction on the CPINSTR busdrivesLOW the CPBOUNCEE
signal to the ARM 10 processor in the CP Decode stage. If the instruction is not owned
by a CP, that CP leaves CPBOUNCEE HIGH. The ARM 10 processor ANDs all
individual CPBOUNCEE signalsinternally. If CPBOUNCEE is HIGH across
ARM 10 Execute/Memory boundary, the instruction is deemed to have not been
accepted by any CP, and the UNDEFINED instruction trap is taken. A CP may bounce an
instruction if the CP is unable to process that instruction or is unable to process a prior
instruction and requires software support.

The ARM 10 processor ignores CPBOUNCEE if CPBUSYE is asserted and registers
thevalue of CPBOUNCEE at the end of the cyclethat CPBUSY E deasserts. An active
ASTOPCPE does not prevent the value of CPBOUNCEE from being registered. If a

8-44

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0237A



Coprocessor Interface

CPisdriving CPBUSY E, other CPs must hold CPBOUNCEE HIGH. The CP driving
CPBUSY E must hold its value of CPBOUNCEE until the cycle after CPBUSYE

deasserts.

Table 8-17 CPBOUNCEE interactions with other signals

Signal

Interactions with CPBOUNCEE

ASTOPCPD

None

ASTOPCPE

The ARM10 processor registers CPBOUNCEE even if ASTOPCPE is
active

LSHOLDCPE

CPBOUNCEE isignored until the cycle in which CPBUSY E deasserts

CPBUSYE

Flush overrides

LSHOLDCPM

None

ACANCELCP

A canceled, bounced instruction has no effect

CPBOUNCEE

Ignored as instruction canceled by flush

8.10.2 CPBOUNCEE example

CPBPOUNCEE must only be considered valid in the last cycle where neither of
CPBUSYE or ASTOPCPE are asserted. Usually, AFLUSHCP isasserted following a
CPBOUNCEE. One case where this does not happen is when the bounced instruction
is canceled at the same time using ACANCEL CP.

Here instruction 1 completes but instruction 2 bounces and might cause an
AFLUSHCP that cancelsinstruction 2 and instruction 3.

Aslong as one of themisHIGH at all times, CPBUSY E and ASTOPCPE can be
asserted and deasserted under each other multiple times while an instruction isheld in
Execute. CPBOUNCEE isignored until the first cycle in which both are not asserted.
Figure 8-20 on page 8-46 shows an example with CPBOUNCEE.
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Figure 8-20 CPBOUNCEE example
The flush can occur for a number of reasons. The undefined instruction trap isalow
priority exception.
8.10.3 CPBOUNCEE with ASTOPCPE

In Figure 8-21 on page 8-47 instruction 1 is held in the ARM 10 Execute stage for one
cycle. CPBOUNCEE isonly considered valid in the last cycle that ASTOPCPE is
asserted. So, in this case, instruction 1 does not bounce and instruction 2 does.
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Figure 8-21 CPBOUNCEE with ASTOPCPE example

8.10.4 CPBOUNCEE with CPBUSYE

In Figure 8-22 on page 8-48 Instruction 1 is held in the ARM 10 Execute stage for one
cycle. CPBOUNCEE isonly considered valid in the last cycle that ASTOPCPE is
asserted. So, in this case instruction 1 does not bounce and instruction 2 does.

ARM DDI 0237A Copyright © 2001 ARM Limited. All rights reserved. 8-47



Coprocessor Interface

| I 2
D i 2 2
ARM  E i i 2
M " 2
W i
F i
| i
D i
CP1E I "
M i
W i
F 2
| 2
D 2 2
cP2 ¢ -
M 2
W
T1 T2 T3 T4 T5 T6 T7 T8
cpore | L1 LI L L1 LJ L J |
CPINSTR __ 1 2 ) | | | |
CPINSTRV (7% \) (Zé \\
CPVALIDD Jr W fJz |
ASTOPCPD 1 2
CPLSLEN/SWP/DBL 2 ) |
ASTOPCPE 1 2 |
CPBUSYE [J1 \\ 1
CPBOUNCEE U7 W 2
CPBOUNCEE (internal) \\ 1 []2 \\

Figure 8-22 CPBOUNCEE with CPBUSYE example
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This section describes the 64-bit data buses:
. STCMRCDATA
. LDCMCRDATA on page 8-50.

8.11.1 STCMRCDATA

The 64-bit STCMRCDATA bus carries datafrom a CP to the ARM 10 processor. For a
data transfer from a CP register to an ARM 10 register (MRC) the dataon
STCMRCDATA iswritten into aregister in the ARM10 register bank. For a CP store
to memory (STC), the dataon STCMRCDATA is passed though ARM 10 processor to
the memory system. It is stored at an address generated by the ARM 10 processor.
Table 8-18 describes the interactions between STCMRCDATA and signals.

STCMRCDATA isdriven by a CPin the ARM10 Execute stage.

Table 8-18 STCMRCDATA interactions with signals

Signal Interactions with STCMRCDATA

ASTOPCPD None.

ASTOPCPE The ARM10 processor registers the value on STCM RCDATA when
ASTOPCPE is asserted and the LSU pipeline and ALU pipelinearein
lockstep. If the pipelines are decoupled then ASTOPCPE only affectsthe
data processing operation that may be running under the loads or stores.

LSHOLDCPE If the ALU and LSU pipelines are decoupled then ARM 10 processor
registers the value on STCMRCDATA when L SHOL DCPE is asserted.

CPBUSYE None.

LSHOLDCPM  None.

ACANCELCP  None.

CPBOUNCEE  None.
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8.11.2 LDCMCRDATA

The 64-bit LDCM CRDATA bus carries data from the ARM 10 processor to a CP. For
adatatransfer from an ARM10 register to a CP register (MCR), the dataon

L DCM CRDATA iswritten into aregister in the CP register bank. For a CP load from
memory (LDC), the dataon LDCM CRDATA is passed though the ARM 10 processor
from the memory system. It is loaded from an address generated by the ARM 10
processor. Table 8-19 shows the interactions of LDCM RCDATA with other signals.

LDCMRCDATA isdriven by the ARM 10 processor in the ARM 10 Write stage.

Table 8-19 LDCMRCDATA interactions with signals

Signal Interactions with LDCMRCDATA

ASTOPCPD None.

ASTOPCPE None.

LSHOLDCPE  None.

CPBUSYE None.

LSHOLDCPM LSHOLDCPM indicatesthat thememory systemdid not return valid data
in the previous cycle. In this case there is not valid data on
LDCMCRDATA until LSHOLDCPM goes LOW.

ACANCELCP None.

CPBOUNCEE  None.
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Chapter 9

JTAG Interface

This chapter describes the JTAG interface built into the ARM 10 processor. It contains
the following sections:

. JTAG interface and halt mode on page 9-2
. JTAG instructions on page 9-4
. Scan chain descriptions on page 9-8.
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9.1 JTAG interface and halt mode

JTAG-based hardware debug using halt mode provides access to the integer unit and
debug logic. Accessisthrough scan chains and the IEEE 1149.1 Test Access Port
(TAP). The TAP state machineisillustrated in Figure 9-1.

Test-Logic-Reset \ _
OxF b

tm
A

0xC

tms =0 tms=0 tms =0
tms =1 Capture-DR tms = 1 Capture-IR
0x6 OxE
tms =0 tms =0

Select-DR-Scan

tms =1

Select-IR-Scan

0x7

0x4 tms =1

N Shift-DR Shift-IR
g 0x2 - OxA
tms =1 tms =0
Exit1-DR
0x1
tms =0 tms =1
Pause-DR Pause-IR
0x3 0xB
tms =1 tms =0 tms =1 tms =0
Exit2-DR Exit2-IR
0x0 0x8
tms =1 tms =1
Update-DR Update-IR
0x5 N OoxD h
tms =1 tms =0 tms =1 tms =0

Figure 9-1 JTAG TAP state machine diagram

9-2

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0237A



JTAG Interface

9.1.1 Entering debug state

Halt modeis enabled by writing a 1 to bit 30 of the Debug Status and Control Register
(DSCR). This can only be done by external debug hardware such as Multi-ICE. When
this mode is enabled, the processor halts, instead of taking an exception in software, if
one of the following events occurs:

. A HALT instruction has been scanned in through the JTAG interface. The TAP
controller must pass through Run-Test/Idle to issue the HALT command to the
ARM 10 processor.

. An exception occurs and the corresponding vector catch enable bit is set.

. A register breakpoint hits.

. A watchpoint hits.

. A BKPT instruction reaches the Execute stage of the ARM 10 pipeline.

. EDBGRQ is asserted.

— Note

Software debug must not be used to debug abort and FIQ handlers. Setting avector trap
on FIQ or awatchpoint or breakpoint anywhere in the vector table or handler code for
FIQs or aborts can lead to the abort handler being reentered before it has saved state.
Thevaluein the abort mode link register and SPSR are overwritten and theinformation
required to return from the handler islost.

The core halted bit in the DSCR is set when debug state is entered. At this point, the
debugger determines why the integer unit was halted and preserves the machine state.
TheMSR instruction can be used to change modes and gain accessto all banked registers
in the machine. While in debug state:

. the PC is not incremented
. external interrupts are ignored
. all instructions are read from the instruction transfer register (scan chain 4).

9.1.2  Exiting debug state

To exit from debug state, scan inthe RESTART instruction through the JTAG interface.
The debugger might adjust the PC before restarting, depending on the way the integer
unit entered debug state. When the state machine entersthe Run-Test/Idle state, normal
operations resume. The delay, waiting until the state machine isin Run-Test/Idle,
enables conditions to be set up in other devices in a multiprocessor system without
taking immediate effect. When Run-Test/Idle state is entered, all the processorsresume
operation simultaneously. The core restarted bit is set when the RESTART sequenceis
complete.The core halted bit DSCRO is cleared before the core is restarted.
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9.2 JTAG instructions

Thethe JTAG interface portion of the logic implementsthe IEEE 1149.1 interface and
supports:

. aJTAG ID register
. abypass register
. a4-bit instruction register.

In addition, the public instructions listed in Table 9-1 are defined.

Table 9-1 Defined public JTAG instructions

Instruction Binary code Hexadecimal code
EXTEST 0000 0x0
SCAN_N 0010 0x2
SAMPLE/PRELOAD 0011 0x3
RESTART 0100 0x4
CLAMP 0101 0x5
HIGHZ 0111 0x7
HALT 1000 0x8
CLAMPZ 1001 0x9
INTEST 1100 oxC
IDCODE 1110 0xE
BYPASS 1111 OxF
Note

All unused JTAG instructions default to the BY PASS instruction.

You can access the debug registers through either software, with MCR or MRC
instructions, or through the JTAG interface port. See Chapter 10 Debug for details of
debug registers.

To writethe CP14 registers R1, R4, and R5, use the EXTEST instruction. To read CP14
registers RO, R1, and R5, use the INTEST or EXTEXT instruction.

9-4
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9.21 EXTEST

9.2.2 SCAN_N

JTAG Interface

SAMPLE/PRELOAD, CLAMP, HIGHZ, and CLAMPZ are applicable only to external
scan chains and they are not supported by scan chainsin the ARM 10 processor. These
instructions are not described in this document.

—— Note

The CP14 registers do not have interlocks. If the JTAG interface attemptsto access a
CP14 register while the ARM10 processor iswriting to it, the result is UNPREDICTABLE.

EXTEST connects the selected scan chain between TDI and TDO. Loading the
instruction register with the EXTEST instruction puts al the scan cellsin their test
mode of operation.

In the Capture-DR state, inputsto the system logic are captured by the scan cells. Inthe
Shift-DR state, the previously captured test datais shifted out of the scan chain through
TDO, while new test datais shifted in through the TDI input. Data from the boundary
scan register cell isapplied to the output pinsin the Update-DR state. Typically, thefirst
test stimulus to be applied using the EXTEST instruction is shifted into the boundary
scan register using the SAMPLE/PREL OAD instruction.

Note

For debug, thisinstruction connects the selected scan chain between TDI and TDO.
When the instruction register is loaded with the EXTEST instruction, the debug scan
chains can be written.

Registersin CP14 that can bewritten by the JTAG interface, R1, R4, and R5, are written
using an EXTEST instruction.

SCAN_N connects the scan path select register between TDI and TDO. During the
Capture-DR state, the fixed value 1000 isloaded into the register. During the Shift-DR
state, the ID number of the desired scan path is shifted into the scan path sel ect register.
In the Update-DR state, the scan register of the selected scan chain is connected
between TDI and TDO, and remains connected until asubsequent SCAN_N instruction
isissued. On reset, scan chain 3 is selected by default.

ARM DDI 0237A
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9.2.3

9.2.4

9.2.5

RESTART

HALT

INTEST

RESTART isused to restart the processor on exit from debug state. The scan chain path
register is not affected and the processor exits debug state once the Run-Test/Idle state
is entered.

HALT stops the integer unit and puts it into debug state. The core can only be put into
debug state if debug halt mode is enabled.

INTEST connectsthe selected scan chain between TDI and TDO. When the instruction
register isloaded with the INTEST instruction, all the scan cells are placed in their test
mode of operation.

Thisinstruction enables serial testing of on-chip system logic by applying test stimuli.
Thetest results are captured and examined by shifting out the contents of the boundary
scan register. Inthe Capture-DR state, the value of the data applied from theinteger unit
logic to the output scan cells and the value of the data applied from the system logic to
the input scan cellsis captured.

In the Shift-DR state, the previously captured test datais shifted out of the scan chain
through the TDO pin.

Dataistypically loaded into the parallel output register stages of the boundary scan
chain using the SAMPLE/PREL OAD instruction prior to its use.

Note

Thisinstruction connects the selected scan chain between TDI and TDO. When the
instruction register isloaded with the INTEST instruction, the debug scan chains can be
read. INTEST isan optional instruction and its use is governed by the IEEE
1149.1-1990 standard and must be implemented according to those guidelines. In the
Capture-DR state, the value of the data applied from the integer unit logic to the output
scan cells and the value of the data applied from the system |ogic to the input scan cells
is captured. In the Shift-DR state, the previously captured test datais shifted out of the
scan chain through the TDO pin, while data shifted in through the TDI pin isignored.

Registers RO, R1, and R5 are read with the INTEST instruction.
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9.2.7

IDCODE

BYPASS

JTAG Interface

IDCODE connects the device identification register, or ID register, between TDI and
TDO. The ID register is a 32-bit register that enables the manufacturer, part number,
and version of a component to be determined through the JTAG interface. When the
instruction register isloaded with the IDCODE instruction, all the scan cells are placed
in their normal (System) mode of operation.

In the Capture-DR state, the device identification code is captured by the ID register. In
the Shift-DR state, the previously captured device identification code is shifted out of
the ID register through the TDO pin, while datais shifted in through the TDI pin into
the ID register. In the Update-DR dtate, the ID register is unaffected.

See TAP ID register on page 9-9 for details of selecting and interpreting the ID register
value.

BY PASS connects a 1-bit shift register, the bypass register, between TDI and TDO.
When the BY PASS instruction is loaded into the instruction register, al the scan cells
areplaced in their normal (System) mode of operation. Thisinstruction has no effect on
the system pins.

In the Capture-DR state, alogic O is captured by the bypass register. In the Shift-DR
state, test datais shifted into the bypassregister through TDI and out through TDO after
adelay of one TCK cycle. The bypassregister is not affected in the Update-DR state.

Thefirst bit shifted out is a zero.
All unused JTAG instruction codes default to the BY PASS instruction.

ARM DDI 0237A
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9.3

9.3.1

Scan chain descriptions

This section describes the following scan chains:

BYPASS register

BYPASSregister

TAP ID register on page 9-9

Instruction register on page 9-10

Scan chain select register on page 9-10

Scan chain 0, debug ID register on page 9-11
Scan chain 1, debug status and control register (DSCR) on page 9-11
DSCR readable and writable bits on page 9-14
Scan Chain 2 on page 9-15

Scan Chain 3 on page 9-15

Scan Chain 4 on page 9-15

Scan chain 5, CP14 R5 on page 9-16

Scan chain 6 on page 9-16.

Purpose Bypassesthe device during scan testing by providing apath between TDI

and TDO.

Length 1 bit

Operating
mode When the bypass instruction is the current instruction in the instruction

register, serial dataistransferred from TDI to TDO inthe Shift-DR state
with adelay of one TCK cycle. Thereisno parallel output from the
bypass register. A logic 0 isloaded from the parallel input of the bypass
register in Capture-DR state.

Order TDI-[0]-TDO

9-8
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9.3.2 TAP ID register

Purpose

31 28 27

JTAG Interface

The TAP controller ID of each core typeis unique. The JTAG ID of this
ARM 10 processor isinitially 0x14A20FoF. A JTAG debugger such as
Multi-1CE can easily identify the processor. The JTAG ID register is
routed to the edge of the chip so that partners can create their own 1D
numbers by tying the pinsto HIGH or LOW values. Partner-specific
devices are identified by ID numbers of the form shown in Figure 9-2.

12 11

Version

Part number Manufacturer ID

LSB

Length
Version

Part Number

Figure 9-2 TAP ID register

32 bits
Bitg[31:28]
Bits[27:12]

Manufacturer ID  Bits[11:1]

LSB

Operating mode

Order

BitO

When the IDCODE instruction is current, the TAP ID register is

selected as the serial path between TDI and TDO. Thereisno
parallel output from the TAP ID register. The 32-bit ID codeis

loaded into the register from its parallel inputs during the

Capture-DR state.
TDI-[31, 30]...[1, 0]-TDO

ARM DDI 0237A Copyright © 2001 ARM Limited. All rights reserved.

9-9



JTAG Interface

9.3.3 Instruction register
Purpose
Length

Operating mode

Order

9.3.4  Scan chain select register
Purpose
Length

Operating mode

Order

Holds the current TAP instruction.
4 bits

When in Capture-DR state, the instruction register is selected as
the serial path between TDI and TDO. During the Capture-DR
state, the value b0001 isloaded into thisregister. Thisis shifted
out during Shift-IR, least significant bit first, while a new
instruction is shifted in, least significant bit first. During the
Update-IR state, the value in the instruction register becomes the
current instruction. On reset, IDCODE becomes the current
instruction. Thevalue of the current instruction isreflected on the
IR[3:0] output bus.

TDI-3,2,1,0-TDO

Holds the current active scan chain.
5 bits

After SCAN_N has been selected asthe current instruction, when
in Shift-DR state, the scan chain select register is selected as the
serial path between TDI and TDO. During the Capture-DR state,
binary 10000 isloaded into thisregister. Thisis shifted out during
Shift-DR, least significant bit first, whileanew valueisshiftedin,
least significant bit first. During the Update-DR state, the valuein
the register selects a scan chain to become the currently active
scan chain. All further instructions such as INTEST then apply to
that scan chain. The currently selected scan chain only changes
when a SCAN_N instruction is executed, or areset occurs. On
reset, scan chain 3is selected asthe active scan chain. The number
of the currently selected scan chain is reflected on the
SCREG[4:0] output bus. The TAP controller can be used to
control external scan chainsin addition to those within the
ARM 10 processor. The external scan chain must be assigned a
number and control signals must be generated for it. The number
and control signals can be derived from SCREG[4:0], IR[3:0],
TAPSM[3:0], and TCK.

TDI-4,3,2,1,0-TDO

9-10
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9.3.5 Scan chain 0, debug ID register

Purpose

Length
Order

Debug. This scan chain is CP14 RO, the debug ID register. The
debug ID register value is 0x41006201.

32 bits
TDI-31,30,29,...2,1,0-TDO

9.3.6  Scan chain 1, debug status and control register (DSCR)

Purpose
Length
Defined bits
DSCRO
DSCR1
DSCR[4:2]

DSCR5

Debug. This scan chain is CP14 R1, the DSCR.
32 bits

The following bits are defined for Chain 1:
Core halted.

Core restarted.

Method of debug entry. Table 9-2 shows the method of entry bit
values.

Table 9-2 Method of debug entry bit values

DSCR[4:2] Meaning

000 JTAG HALT instruction occurred
001 Breakpoint occurred

010 Watchpoint occurred

011 BKPT instruction occurred

100 External debug request occurred
101 Vector catch occurred

110 Data-side abort occurred

11 Instruction-side abort occurred

Abort occurred. Thisiswritable only with anMCR to CP14 register
1. Thishit issticky. It is cleared with an MCR to the DSCR where

thisbit iswritten asazero. Reset when NTRST = O or if the TAP
controller isin the reset state.
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DSCR6

DSCRY

DSCR[15:8]
DSCR16

DSCR17

DSCR18

DSCR19

DSCR20

DSCR21
DSCR22

WDTR buffer empty. This bit indicates to the core that thewDTR
buffer is empty, meaning that the core can write more datainto it.
Thisisthe inversion of the bit that the JTAG debugger seesif it
pollsthe DTR by going through Capture-DR with EXTEST. The
debugger must not use this bit to determineif thewDTR isempty
or full because the timing between the JTAG interface signal and
the core signal is different.

rDTR buffer full. This bit indicatesto the core that the rDTR
buffer isfull, meaning that the debugger has written datainto it.
Thisisthe inversion of the bit that the JTAG debugger seesif it
pollsthe DTR by going through CaptureDR with INTEST. The
debugger must not use this bit to determineif the rDTR is empty
or full because the timing between the JTAG interface signal and
the core signal is different.

Reserved.

Vector catch enable, Reset.
Reset when NTRST =0 or if the TAP controller isin the Reset
state.

Vector catch enable, undefined instruction.
Reset when NTRST =0 or if the TAP controller isin the Reset
state.

Vector catch enable, SWI.

Reset when NTRST =0 or if the TAP controller isin the Reset
state.

Vector catch enable, Prefetch Abort.
Reset when NTRST =0 or if the TAP controller isin the Reset
State.

Vector catch enable, Data Abort.
Reset when NTRST =0 or if the TAP controller isin the Reset
state.

Reserved.

Vector catch enable, IRQ.
Reset when NTRST =0 or if the TAP controller isin the Reset
state.
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DSCR23

DSCR[26:24]
DSCR27

DSCR28

DSCR29

DSCR30

DSCR31

JTAG Interface

Vector catch enable, FIQ.
Reset when NTRST = 0 or if the TAP controller isin the Reset
state.

Reserved.

Comms Channel Mode:

1 = comms channel activity.

0 = no comms channel activity

Reset when NTRST = 0 or if the TAP controller isin the Reset
state.

Thumb state indicator (see Table 10-5 on page 10-7).
Thumb instruction:

1 =ITR contains a Thumb instruction.

0=I1TR containsan ARM instruction

Executeinstruction in ITR select:

1=ingructionin ITR issent to prefetch unit if JTAG state
machine passes through Run-Test/Idle.

0=disabled

Set when NTRST =0 or if the TAP controller isin the Reset state.

Halt/Monitor mode sel ect:

1 = halt mode enabled.

0 = monitor mode enabled

Reset when NTRST =0 or if TAP controller isin Reset state.

Global debug enable:

1 = all debugging functions enabled.

0 = all debugging functions disabled (breakpoints and
watchpoints)

Reset when NRESET = 0 (the core Reset line).
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9.3.7 DSCR readable and writable bits

The DSCR can be seen from core and from the JTAG interface. The readable and
writable bits seen from the core and the JTAG debugger are summarized in Table 9-3.

Table 9-3 DSCR bits from the core

DSCR bits  View from core  View from JTAG

[1:0] Reserved Read-only

[4:2] Read-only Read-only

5 Reserved Read-only

[7:6] Read-only Read-only

[15:8] Reserved Reserved

[23:16] Read-only Readable/writable
[26:24] Reserved Reserved

[30:27] Reserved Readable/writable
31 Readable/writable  Read-only

Note
The comms channel bits,  DTRFull and wDTREmpty, are inversions of what the
debugger sees, because these bits are mirrored in the DSCR for the core, not the
debugger.

Order TDI-31,30...1,0-TDO
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9.3.8 Scan Chain 2

Scan chain 2 is the combination of scan chain 4 and scan chain 5. Scan chain 4 isthe
Instruction Transfer Register, ITR, and scan chain 5 isthe Data Transfer Register,
DTR. Theinstruction complete bit, ITRO, isnot included in thiscombination. It appears
only in scan chain 4.

64 63 62 36 35 34 33 32 2 1 0

TDI | ITR32 | ITR31|ITR30 |- - -| ITR3 | ITR2 | ITR1 |DTR32|DTR31|- - -| DTR2 | DTR1 | DTRO | TDO

Figure 9-3 Scan chain 2

9.3.9 Scan Chain 3

Purpose Can be used for external boundary scan testing. Used for
interdevice testing (EXTEST) and testing the core (INTEST).

Length Undetermined

9.3.10 Scan Chain 4

Purpose Debug
Length 33 hits
Purpose This scan chainisthe Instruction Transfer Register (ITR), used to

send instructions to the core through the prefetch unit. This chain
consistsof 32 hits of information, plusan additional bit toindicate
the completion of the instruction sent to the core. Instructions
scanned into the ITR are not executed unless the instruction
transfer execute bit DSCR29 is asserted. Bit O indicates if the
instruction in the ITR has completed execution.

Order TDI-[32, 31, 30]...[1, 0]-TDO
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9.3.11 Scan chain 5, CP14 R5

CP14 isthe Data Transfer Register, DTR. It consists of two separate registers, the
read-only rDTR and the write-only wDTR. The two registers facilitate the creation of a
bidirectional comms channel in software.

TherDTR can beloaded only through the JTAG port and isread-only by the coreusing
an MRC instruction. The rDTR chain contains 32 bits of information plus one additional
bit for the comms channel.

The wDTR can be loaded only by the core through an MCR instruction and is read-only
through the JTAG port. ThewDTR contains 32 bits of information plus one additional
bit for the comms channel. The definition of bit O depends on whether the current JTAG
instruction isINTEST or EXTEST. If the current instruction is EXTEST, the debugger
can writeto the rDTR, and bit O indicates if there is still valid datain the queue. If the
bit is set, the debugger can write new data. When the core performs aread of therDTR,
bit 0 isautomatically asserted. Conversely, if the JTAG instruction is INTEST, bit O
indicatesif thereis currently valid datato read in the wDTR. If the bit is set, the JTAG
interface must read the contents of thewDTR, which inturn, clearsthebit. The core can
then sample its own wDTR empty bit and write new data for the debugger.

The TAP controller see either rDTR or wDTR depending on the instruction only sees
one register through scan chain 5, and the appropriate register is chosen depending on
which instruction isused (INTEST or EXTEST).

Purpose Debug.
Length 33 hits.
Order TDI-rDTR[32]rDTR[31]...rDTR[1]rDTR[O]

WDTR[32]wDTR[31].. wDTR[1]wDTR[0]-TDO

9.3.12 Scan chain 6

Purpose ETM
Length 40 bits
Purpose The ETM scan chain. Refer to Embedded Trace Macrocell

Technical Reference Manual.
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Chapter 10
Debug

This chapter describes the debug unit. These features assist the development of
application software, operating systems, and hardware. This chapter contains the
following sections:

. About the debug unit on page 10-2

. Register descriptions on page 10-5

. Software lockout function on page 10-15

. Halt mode on page 10-16

. Monitor mode on page 10-19

. Valuesin thelink register after aborts on page 10-20
. Comms channel on page 10-21.
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10.1 About the debug unit

Thedebug unit assistsin debugging software. The debug hardware, in combination with
a software debugger program, can be used to debug:

. application software
. operating systems
. ARM10-based hardware systems.

The debug unit enables you to:

. stop program execution

. examine and alter processor and coprocessor state

. examine and alter memory and input/output peripheral state
. restart the processor core.

The debug unit provides several ways to stop execution. The most common is for
execution to halt when aparticular memory addressis accessed, either for aninstruction
fetch (abreakpoint), or a data access (a watchpoint). When execution has stopped, one
of two modesis entered:

Halt mode All processor execution halts, and can only be restarted with
hardware connected to the external JTAG interface. You can
examine and alter all processor state (CPU registers), coprocessor
state, memory, and input/output locations through the JTAG
interface. This mode is intentionally invasive to program
execution. In halt mode you can debug the processor irrespective
of itsinternal state. Halt mode requires external hardware to
control the JTAG interface. A software debugger providesthe user
interface to the debug hardware.

Monitor mode In monitor mode the processor stops execution of the current
program and starts execution of a Debug Abort handler. The state
of the processor is preserved in the same manner as all ARM
exceptions (see The ARM Architecture Reference Manual on
exceptions and exception priorities). The abort handler
communi cates with a debugger application to access processor
and coprocessor state, and to access memory contents and
input/output peripherals. Monitor mode requires adebug monitor
program to interface between the debug hardware and the
software debugger.
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10.1.1 Halt mode and monitor mode compared

Halt mode is for nonreal-time debugging. Because of its hardware nature, you can use
halt mode to debug the processor under almost all circumstances. However, real-time
systems in which processor execution cannot be completely suspended are unlikely to
be able to tolerate the intrusion caused by halt mode. Therefore monitor mode is
provided for time-critical applicationsthat cannot tolerate along interruption while the
processor is halted. Monitor mode relies on the processor being able to freely execute
instructions to process debug requests.

10.1.2 Programming the debug unit

The debug unit is programmed using Coprocessor 14, CP14. CP14 provides:
. instruction address comparators for triggering breakpoints

. data address comparators for triggering watchpoints

. abidirectional serial communication channel

. all other state information associated with debug.

CP14 is accessed using coprocessor instructions in both halt mode and monitor mode.
BKPT instructions cause a Prefetch Abort if debug is disabled.

10.1.3 Summary of CP14 registers

All debug state is mapped into CP14 asregisters. Three CP14 registers, RO, R1, and R5,
can be accessed by software running on the processor. Four registers, RO, R1, R4, and
R5, are accessible as scan chains from the JTAG interface. R4, the instruction transfer
register, is accessible only as a scan chain. The remaining registers are accessible only
by software operating in a privileged processor mode. Table 10-1 shows the CP14
registers and their scan chain numbers.

Table 10-1 CP14 registers and scan chain numbers

Register Register name Scan chain number
CP14 RO Debug ID register, DIDR 0
CP14 R1 Debug Satus and Control Register, DSCR 1
CP14 R2 and R3 Reserved -
CP14 R4 Instruction Transfer Register, ITR 4
CP14 R5 Data Transfer Register, DTR 5
CP14 R6-R63 Reserved -

ARM DDI 0237A
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Table 10-1 CP14 registers and scan chain numbers (continued)

Register

Register name

Scan chain number

CP14 R64-R69

Breakpoint Address registers, BAO-BAS

CP14 R70-R79

Reserved

CP14 R80-R85

Breakpoint Control registers, BCO-BC5

CP14 R86-R95

Reserved

CP14 R96 and R97 Watchpoint Address registers, WAO and WALl -
CP14 R112 and R113  Watchpoint Control registers, WCOand WC1 -
CP14 R114 and R127 Reserved -

The register file has space reserved for up to 16 breakpoints and 16 watchpoints. A
particular implementation can have any number from 2 to 16. The processor has six
instruction-side breakpoints and two data-side watchpoaints.

There are two requirements to enable debugging:

. An enable bit in the debug status and control register enables debug functionality
through software. Reset clears the enable bit, disabling all debug functionality.
The processor ignores external debug requests, and BKPT instructions cause
Prefetch Aborts. In thismode, an operating system can quickly enable and disable
debugging on individual tasks as part of the task-switching sequence.

. The DBGEN pin allows the debug features of the processor to be disabled

entirely.

The DBGEN pin must be tied HIGH to enable the debug functionality of the core.
DBGEN must be tied LOW only when debugging is never required.

The CRm and opcode? fields are used to encode the debug register number, where the
register number is{opcode2, CRm}.

10-4 Copyright © 2001 ARM Limited. All rights reserved.
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10.2 Register descriptions

This section describes the CP14 registers:

. CP14 RO, debug ID register

. CP14 R1, debug status and control register on page 10-6

. CP14 R2-R4 on page 10-8

. CP14 R5, data transfer register on page 10-8

. CP14 R6-R63 on page 10-9

. CP14 R64-R69, breakpoint address registers on page 10-9

. CP14 R70-R79 on page 10-10

. CP14 R80-R85, breakpoint control registers on page 10-10

. CP14 R86-R95 on page 10-11

. CP14 R96 and R97, watchpoint address registers on page 10-12
. CP14 R112 and R113, watchpoint control registers on page 10-13
. CP14 R114-R127 on page 10-14

10.2.1 CP14 RO, debug ID register

31

The Debug ID Register, DIDR, isread-only and contains 0x41006201. Table 10-2 shows
the instructions for reading DIDR.

Table 10-2 Debug ID register instructions

Instruction Description

MRC p14,0,Rd,c0,c0,0 Copiescontents of debug ID register into Rd.

Figure 10-1 showsthe DIDR bit fields.

24 23 20 19 16 15 12 11 8 7 4 3 0

Designer code SBZ Architecture | Breakpoints | Watchpoints | SBZ Revision
0100 0001 0000 0000 0110 0010 0000 0001

Figure 10-1 Debug ID register

ARM DDI 0237A
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Table 10-3 describes the DIDR bit fields.

Table 10-3 Encoding of the debug ID register

Bits Meaning

[31:24] Designer code

[23:20]  SHOULD BE ZERO

[19:16] Debug architecture version

[15:12] Number of implemented register breakpoints

[11:8] Number of implemented watchpoints

[7:4] SHOULD BE ZERO

[3:0] Revision number

10.2.2 CP14 R1, debug status and control register

The Debug Status and Control Register, DSCR, is aread/write register. Table 10-4
shows the instructions for accessing DSCR.

Table 10-4 Debug status and control register instructions

Instruction Description

MRC pl4,0,Rd,c0,c1,0 Copies contents of debug status and control register into Rd.

MCR p14,0,Rd,c0,c1,0 Copies contents of Rd into debug status and control register.

Figure 10-2 shows the DSCR bit fields.

31 30 29 28 27 24 23 22 21 20 19 18 17 16 15 8 7 6 5 4 2 1 0

GE|H |E | T |Reserved|CF|C1|R |CD|CP|CS|CU|CR| Reserved |RFIWE|R| MOE |Reserved

Figure 10-2 Debug status and control register
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Table 10-5 describes the DSCR bit fields.

Table 10-5 Encoding of debug status and control register

Bits

Definition

31

GE, global debug enable hit. Reset clears GE.
1 = All debugging functions enabled
0 = All debugging functions disabled.

30

H, halt mode bit. Reset clears H.
1 = halt mode
0 = monitor mode.

29

E, execute bit.
1 = execute instruction in ITR when in JTAG Run-Test/Idle state
0 = do not execute instruction in ITR when in JTAG Run-Test/Idle state.

28

T, Thumb instruction bit:
1=ITR contains a Thumb instruction
0=ITR contains an ARM instruction.

[27:24]

Reserved.

DSCR[23:22] and DSCR[20:16] are used to catch ARM exceptions. The effect of setting one
of these bitsis the same as setting a register breakpoint on the address of the exception vector.

23 CF, vector catch FIQ bit; read-only.

22 Cl, vector catch IRQ bit; read-only.

21 Reserved.

20 CD, vector catch Data Abort bit; read-only.

19 CP, vector catch Prefetch Abort bit; read-only.

18 CS, vector catch Software Interrupt bit; read-only.

17 CU, vector catch Undefined Instruction bit; read-only.
16 CR, vector catch reset bit; read-only.

[15:8] Reserved.

7 RF, rDTR buffer full bit; read-only:

1 = new data placed in the rDTR through the JTAG interface that can be read with
aMRC or STC instruction
0 =no new data placed in the rDTR through the JTAG interface.

ARM DDI 0237A
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Table 10-5 Encoding of debug status and control register (continued)

Bits

Definition

WE, wDTR buffer empty bit; read-only:
1=thewDTR buffer is ready to have data written to it
0 = data has not been read through the JTAG interface

10.2.3 CPl14 R2-R4

[4:2]

MOE, method of entry bits; read-only:
000 = JTAG halt instruction

001 = breakpoint hit

010 = watchpoint hit

011 = breakpoint instruction requested
100 = external debug requested asserted
101 = vector catch occurred

110 = data-side abort occurred

111 = instruction-side abort occurred

[2:0]

CP14 R2-R4 are reserved.

10.2.4 CP14 R5, data transfer register

The Data Transfer Register, DTR, is aread/write register. Table 10-6 shows the
instructions for accessing DTR.

Table 10-6 Data transfer register instructions

Instruction Description
MRC p14,0,Rd,c0,c5,0 Copies contents of DTR into Rd.
MCR p14,0,Rd,c0,c5,0 Copies contents of Rd into DTR.

LDC pl4,c5,<addressing mode> Loadsvalue accessed in memory into DTR.

STC pl4,c5,<addressing mode>  Storescontents of DTR to memory.

Figure 10-3 on page 10-9 showsthe DTR hit field.
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31 0

Transfer data

Figure 10-3 Data transfer register

Note

Physically, the DTR istwo separate registers, the rDTR for reading and the wDTR for
writing.

10.2.5 CP14 R6-R63
CP14 R6-R63 are reserved.

10.2.6 CP14 R64-R69, breakpoint address registers

The Breakpoint Addressregisters, BAO-5, areread/writeregisters. Table 10-7 showsthe
instructions for accessing BAO-5.

Table 10-7 Breakpoint address register instructions

Register

Instruction

Description

CP14 R64, BAO

MRC

pl4,0,Rd,c0,c0,4

Copies contents of BAO into Rd

MCR

pl4,0,Rd,c0,c0,4

Copies contents of Rd into BAO

CP14 R65, BA1

MRC

pl4,0,Rd,c0,cl,4

Copies contents of BA1 into Rd

MCR

pl4,0,Rd,c0,cl,4

Copies contents of Rd into BA1

CP14 R66, BA2

MRC

pl4,0,Rd,c0,c2,4

Copies contents of BA2 into Rd

MCR

pl4,0,Rd,c0,c2,4

Copies contents of Rd into BA2

CP14 R67, BA3

MRC

pl4,0,Rd,c0,c3,4

Copies contents of BA3 into Rd

MCR

pl4,0,Rd,c0,c3,4

Copies contents of Rd into BA3

CP14 R68, BA4

MRC

pl4,0,Rd,c0,c4,4

Copies contents of BA4 into Rd

MCR

pl4,0,Rd,c0,c4,4

Copies contents of Rd into BA4

CP14 R69, BA5

MRC

pl4,0,Rd,c0,c5,4

Copies contents of BA5 into Rd

MCR

pl4,0,Rd,c0,c5,4

Copies contents of Rd into BA5

ARM DDI 0237A
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Figure 10-4 showsthe BAO-5 bit field.

31

Breakpoint address

10.2.7 CP14 R70-R79

CP14 R70-R79 are reserved.

10.2.8 CP14 R80-R85, breakpoint control registers

Figure 10-4 Breakpoint address registers

The Breakpoint Control registers, BCO-5, are read/write registers. Table 10-8 showsthe
instructions for accessing BCO-5.

Figure 10-5 on page 10-11 shows the BCO-5 hit fields.

Table 10-8 Breakpoint control register instructions

Register

Instruction

Description

CP14 R80, BCO

MRC

pl4,0,Rd,c0,c0,5

Copies contents of BCO into Rd

MCR

pl4,0,Rd,c0,c0,5

Copies contents of Rd into BCO

CP14 R81, BC1

MRC

pl4,0,Rd,c0,cl,5

Copies contents of BC1 into Rd

MCR

pl4,0,Rd,c0,cl,5

Copies contents of Rd into BC1

CP14 R82, BC2

MRC

pl4,0,Rd,c0,c2,5

Copies contents of BC2 into Rd

MCR

pl4,0,Rd,c0,c2,5

Copies contents of Rd into BC2

CP14 R83,BC3

MRC

pl4,0,Rd,c0,c3,5

Copies contents of BC3into Rd

MCR

pl4,0,Rd,c0,c3,5

Copies contents of Rd into BC3

CP14 R84, BC4

MRC

pl4,0,Rd,c0,c4,5

Copies contents of BC4 into Rd

MCR

pl4,0,Rd,c0,c4,5

Copies contents of Rd into BC4

CP14 R85, BC5

MRC

pl4,0,Rd,c0,c5,5

Copies contents of BC5 into Rd

MCR

pl4,0,Rd,c0,c5,5

Copies contents of Rd into BC5

10-10
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543210

SBZ

Figure 10-5 Breakpoint control registers

Table 10-9 describes the BCO-5 bit fields.

10.2.9 CP14 R86-R95

Table 10-9 Encoding of breakpoint control registers

Definition

SHOULD BE ZERO.

Instruction type bit:

00 = reserved

10 = ARM instruction
01 = Thumb instruction
11 = either

Supervisor access hit:
00 = reserved

10 = privileged

01 = user

11 = either

Bit Name
[3L5] -

[4:3] IT
[2:1] SA

0 E

Enable bit. Reset clears E:
0 =register disabled
1 = register enabled

CP14 R86-R95 are reserved.
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10.2.10 CP14 R96 and R97, watchpoint address registers

TheWatchpoint Addressregisters, WAO and WA 1, are read/write registers. Table 10-10
shows the instructions for accessing WAOQ and WA 1.

Table 10-10 Watchpoint address register instructions

Register Instruction Description

MRC p14,0,Rd,c0,c0,6 Copiescontents of WAQ into Rd

CP14 R96, WAO
MCR pl4,0,Rd,c0,c0,6 Copiescontentsof Rd into WAO

MRC p14,0,Rd,c0,cl,6 Copiescontents of WAl into Rd

CP14 R97, WA1
MCR pl4,0,Rd,c0,cl,6 Copiescontentsof Rdinto WA1

Figure 10-6 shows the watchpoint address bit field.

31 0

Watchpoint address

Figure 10-6 Watchpoint address registers
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10.2.11 CP14 R112 and R113, watchpoint control registers

TheWatchpoint Control registers, WC0 and WC1, areread/writeregisters. Table 10-11
shows the instructions for accessing WCO and WC1.

Table 10-11 Watchpoint control register instructions

Register Instruction Description

MRC p14,0,Rd,c0,c0,7 Copiescontents of WCO into Rd

R112, WCO
MCR p14,0,Rd,c0,c0,7 Copies contents of Rd into WCO control

MRC p14,0,Rd,c0,c1,7 Copiescontentsof WC1 into Rd

R113, WC1
MCR pl14,0,Rd,c0,c1,7 Copiescontentsof Rd into WC1

Figure 10-7 shows the WC0 and WCL1 bit fields.

31 1110 9 8 7 54 3210

SBZ Mask | S| Size |L/SIE S |E

Figure 10-7 Watchpoint control registers
Table 10-12 describes the WC0 and WCL1 hit fields.

Table 10-12 Encoding of watchpoint control registers

Bits Definition

[31:11] SHOULD BE ZERO.

[10:9] DA[1:0] address mask.
Bit 10:

1 =exclude DAL in comparison
0 =include DA1 in comparison
Bit 9:

1 = exclude DAO in comparison
0 =include DAOQ in comparison

8 SHOULD BE ZERO.
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Table 10-12 Encoding of watchpoint control registers (continued)

Bits Definition

[7:5] Byte/halfword/word/any size:
000 = reserved
001 = byte

010 = halfword

011 = byte or halfword
100 = word

101 = word or byte

110 = word or halfword
111 =any size

[4:3] Load/store/either:
00 = reserved
10 =load
01 = store
11 = either

[2:1] Supervisor:
00 = reserved
10 = privileged
01 = user
11 = either

0 Enable, clear on a system reset
0 = register disabled
1 = register enabled

10.2.12 CP14 R114-R127
R114-R127 are reserved.
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10.3 Software lockout function

When the JTAG debugger is attached to an evaluation board or test system, it indicates
its presence by setting the halt/monitor mode bit in the DSCR. When breakpoint and
watchpoint registers have been configured, software cannot alter them if the
halt/monitor mode bit remains HIGH because the debugger retains control. In this
mode, software can till write to the comms channel register.

ARM DDI 0237A
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10.4 Halt mode

Halt mode is for debugging the processor using external hardware connected to the
JTAG interface. The external hardware provides an interface to a JTAG debugger
application. Halt mode can be selected only by setting bit 30 the H bit (bit 30) of the
DSCR, which is only writable through the JTAG interface.

In halt mode the processor stops executing instructions if one of the following events
OCCUrs:

. an instruction is fetched from a breakpointed memory location

. adatafetch (load or store) occurs from awatchpointed data location

. abreakpoint instruction is executed

. the external EDBGRQ signal is asserted

. aHALT instruction has been scanned into the JTAG instruction register
. an exception occurs and the corresponding vector catch bit is set.

When the processor is halted, it is controlled by sending instructions to the integer unit
through the JTAG port. Any valid instruction sequence can be scanned into the
processor, and the effect of the instruction on the integer unit is asif theinstruction is
executed under normal operations. Some specific exceptions are described Sending
instructionsto the integer unit and Using DSCR29 for fast data uploads and downloads
on page 10-17. Also accessible through the JTAG interface is aregister to transfer data
between CP14 and the JTAG debugger.

Theinteger unit isrestarted by executing a JTAG RESTART instruction.

10.4.1 Sending instructions to the integer unit

Two registersin CP14 are used to communicate with the processor:
. the Instruction Transfer Register, ITR
. the Data Transfer Register, DTR.

ThelTRisusedtoinsert aninstruction into the processor pipeline. Whilein debug state,
most of the processor timeis spent waiting for avalid instruction in the ITR. Undefined
instructionsfed to the integer unit through the debugger are UNPREDICTABLE. Instructions
that cause exceptions cause UNPREDICTABLE behavior. In halt mode, the PC is not
incremented as instructions are executed. However, branches and instructions that
modify the PC directly update the PC value.

10-16

Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0237A



Debug

10.4.2 Using DSCR29 for fast data uploads and downloads

DSCR29 enables instructions to be repeatedly issued to the integer unit. When this bit
isset, each time the JTAG TAP controller enters the Run-Test/I dle state, theinstruction
currently residing inthe ITR is sent to the prefetch unit for execution. If thisbit isclear,
no instruction is passed to the prefetch unit. The instruction in the JTAG instruction
register must be either INTEST or EXTEST.

The execute feature enables fast uploads and downloads of data. For example, a
download sequence might consist of:

1. Scanchain 2, thecombination of scan chains4 and 5, isselected in the ScanNReg,
then the JTAG instruction is set to EXTEST for writing.

2. Aninteger unit write instruction (an STC) and data are loaded into the ITR and
DTR, respectively.

3. When the TAP controller passes through the Run-Test/Idle state, the instruction
inthe ITR is executed by the processor.

4.  Thescan chain can be switched to the DTR only (chain 5) and polled until the
status bit in wDTRO indicates the completion of the instruction.

More data can then be loaded into DTR and the instruction reexecuted by passing
through Run-Test/Idle. The STC instruction must specify base address write-back so that
the addresses are automatically updated.

A similar mechanism can increase the performance of upload:

1.  First, the JTAG instruction is changed to EXTEST.

2. Using chain 2, aread instruction such as LDC can be scanned into the ITR.
3. TheJTAG instruction is switched to INTEST for reading.
4,

The scan chain can then be switched to the DTR and polled until the instruction
completes. By passing through the Run-Test/Idle state on the way to Shift-DR
(for polling), the instruction in the ITR isissued to the integer unit.

Repeat this process until the last word is read.
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10.4.3 Accessing processor state

Reading the contents of theinteger unit register file requiresindividual movesfrom an
ARM10 register to CP14 register 5 using MRC and MCR instructions. The datais then
scanned out of the DTR.

Byteand halfword transfers are performed by transferring both the address and datainto
ARM10 registers and then executing the appropriate ARM instructions.

Transfers to and from coprocessors are performed by moving data through an ARM 10
register. For thisreason all coprocessors must have all dataaccessible using MRC and MCR
(otherwise a data buffer in writable memory must be used).
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10.5 Monitor mode

Monitor mode is useful in real-time systems when the integer unit cannot be halted to
collect information. Engine controllers and servo mechanismsin hard drive controllers
that cannot stop the code without physically damaging the components are exampl es.

For situations that can only tolerate a small intrusion into the instruction stream,
monitor mode isideal. Using thistechnique, code can be suspended with an exception
long enough to save off state information and important variables. The code continues
when the exception handler is finished. The MOE bitsin the DSCR can beread to
determine what caused the exception.

10.5.1 Entering and exiting monitor mode

Monitor mode is the default mode on Reset. Only an external debugger can change the
mode bit in the DSCR. When monitor mode is enabled, the processor takes an
exception, rather than halting, if one of the following events occurs:

. aregister breakpoint is hit

. awatchpoint is hit

. a breakpoint instruction reaches the Execute stage of the ARM 10 pipeline

. an exception is taken and the corresponding vector trap bit is set.

The global debug enable bit in the DSCR must be set or no action istaken. Exiting the
exception handler must be done in the normal fashion, for example, restoring the PC to
(R14 - 0x4) for prefetch exceptions or moving R14 into the PC for BKPT instructions
because they are skipped.

Watchpoints cause Data Abort exceptions. Register breakpoints cause Prefetch Abort
exceptions.

10.5.2 Reading and writing breakpoint and watchpoint registers

When in monitor mode, all breakpoint and watchpoint registers can be read and written
with MRC and MCR instructions from a privileged processing mode.
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10.6 Values in the link register after aborts

After an exception, R14, the link register, holds an address for exception processing.
Thisaddressis used to return after the exception is processed and to address the faulted
instruction. BKPT can also generate a Prefetch Abort exception. Prefetch Aborts and
Data Aborts might not want to rerun the faulted instruction. BKPT exceptions might or
might not want to rerun the instruction at the address of the breakpoint instruction.

Table 10-13 shows the valuesin the link register after exceptions.

Table 10-13 Values in the link register after exceptions

Value left in Address of faulted Address of following
Faulted instruction link register instruction instruction
type
ARM Thumb ARM Thumb ARM Thumb
Prefetch Abort PC+4 PC+4 R14 -4 R14-4 R14 R14 -2
BKPT PC+4 PC+4 R14 -4 R14-4 R14 R14 -2
Used in software debug
Register breakpoint PC+4 PC+4 R14 -4 R14-4 R14 R14-2
Used in software debug
Data Abort PC+8 PC+8 R14 -8 R14-8 Rl1l4-4 R14-6
For watchpoints, the watchpointed instruction is completed, and the link register points
to the instruction at which execution should restart after the handler has finished. The
restart address might be several instructions after the faulted instruction.
Table 10-14 shows the values | eft in the link register and the address of the instruction
at which execution must restart.
Table 10-14 Value in the link register after a watchpoint
Value left in Address of restart
link register instruction
Faulted instruction
type ARM Thumb ARM
Watchpoint PC+8 PC+8 R14-8
Used in software debug
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10.7 Comms channel

The comms channel isimplemented using the two physically separate DTRsand a
full/empty bit pair to augment each register, creating a bidirectional data port. One
register can be read from the JTAG interface and iswritten from the ARM 10 processor.
The other register is written from the JTAG interface and read by the processor. The
full/empty bit pair for each register is automatically updated by the debug unit
hardware, and is accessible to both the JTAG interface and to software running on the
processor.

When the debugger performs comms channel activities, it indicates thisto the hardware
by setting DSCR27 in scan chain 1. Thisforcesthe least significant bit of thewDTR to
indicate the state of the comms channel registers.

Toread datafrom thewDTR, the debugger loadsthe INTEST instructioninto the JTAG
instruction register and then scans out the contents of the wDTR register. If the LSB of
the 33-hit packet of datais HIGH, the dataisvalid. The bit isthen cleared by this read.
If the bit isa 0, meaning that the core has not written any data for the debugger, the
external hardware can poll the DSCR to seeif the core halted.

Towritedatainto therDTR, the debugger scansthe EXTEST instruction into the JTAG
instruction register and then scans datainto the rDTR. When the debugger goesto write
more data, it pollsthe LSB of the register until the LSB isHIGH. If the LSB isLOW,
indicating the rDTR is till full and the core has not read the old data, then the new data
shifted in is not loaded into the rDTR.

Because halt mode and monitor mode are mutually exclusive, the transfer registers are
not used for any other purpose in monitor mode.
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Figure 10-8 illustrates the output from the comms channel.

Write data from
ARM10 processor

32 1

wDTR — 0
WDTR full | —__ % DO

rDTR empty |

32 1

TDI — rDTR

Read data to
ARM10 processor

Figure 10-8 Comms channel output
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Chapter 11
Instruction Cycle Summary and Interlocks

This chapter gives the instruction cycle counts and examples of interlock timing. This
chapter contains the following sections:

. Cycle timing considerations on page 11-2
. Instruction cycle counts on page 11-3
. Interlocks on page 11-23.

ARM DDI 0237A Copyright © 2001 ARM Limited. All rights reserved. 11-1



Instruction Cycle Summary and Interlocks

11.1

Cycle timing considerations

Complex instruction dependencies make it impossible to describe briefly the exact
behavior of al instructionsin all circumstances. The tables in this chapter are accurate
in most cases but must never be used instead of running code on acycle-accurate model
of the ARM 10 processor.

Two performance-enhancing architectural features make it particularly difficult to
count the number of cycles an instruction takes:

. branch prediction
. the independent Load/Store Unit (L SU).

11.1.1 Branch prediction

With branch prediction enabled, it isimpossible to look at abranch inisolation and tell
how many cyclesit takes. The cycle count depends on where the branch isin memory
and what the processor was doing beforehand.

If instruction accesses are hitting in the |Cache, then the prefetch buffer islikely to be
full. This means the prefetch unit has plenty of time to predict branches and fetch from
their targets. In this case, correctly predicted branches look like they take no cycles at
al. They are folded.

If the prefetch unit was recently flushed, or isfetching from external memory, itsbuffer
can be empty or only partially full. In these cases, the branch predictor does not always
have timeto completely remove abranch, and it can take one or more cycles before the
following instruction isissued. Thisisdescribed in more detail in Branch instructions
on page 11-8.

11.1.2 Load/store unit

The independent LSU can process aload or store multiple instruction while data
processing operations are executed in the ALU pipeline. However, there are a number
of scenarios in which the pipeline isforced to stop and wait for the LSU to complete.
The cycle in which the LSU completes aload or store multiple instruction depends on
severa things:

. how many accesses hit in the cache and TLB

. the 64-bit alignment of theinitial access

. the proximity of accessesto a 1K protection region boundary.

Thisis described in more detail in Load multiple and store multiple instructions on
page 11-14.

11-2
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11.2 Instruction cycle counts

Unless stated otherwise, cycle counts and result latencies described here are best case

numbers. They assume:

. no outstanding data dependencies between an instruction and a previous
instruction

. the instruction does not encounter any resource conflicts

. all data accesses hit in the DCache and do not cross protection region boundaries

. all instruction accesses hit in the | Cache.

Thetablesin this section show the number of cycles an instruction takesto execute and
the number of cycles after which the result of the instruction is available to afollowing
instruction. These numbers differ because after an instruction has | eft the Execute stage
of the pipeline, asecond instruction can start to execute, even when the first instruction
has not produced itsfinal result. Thisisonly the case when the second instruction is not
dependent on the result from the first.

—  Note

Instructions that change the PC cause the pipeline to be flushed and restarted with a
fetch of anew instruction. By thetime the new instruction executes, itislikely that any
dependencies on previous instructions have been cleared.

Three figures are given for each instruction:

Condition pass cycles
Thisisthe number of cyclestaken if the instruction passes its condition
code check, that is, the number of cycles between thisinstruction starting
to execute and the next instruction starting to execute. Thisisusualy the
same as the number of iterations the instruction makes in the Execute
stage of the ALU pipeline.

Note

A load or storemultipleinstructionisasingle-cycle operationinthe ALU
pipeline but iterates in the LSU pipeline until compl eted.

If an instruction changes the instruction stream, then the condition pass
cyclesindicates the number of cyclesbeforethe new PCisavailable plus
the number of cyclesit takes to refill the pipe to the point where a new
instruction enters Execute in the next cycle.
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Condition fail cycles
Thisisthe number of cyclestaken if the instruction failsits condition
code check, that is, the number of cyclesbetween thisinstruction entering
the Execute stage of the pipeline and failing its condition code check and
the next instruction entering the Execute stage.

Result cycles
Thisisthe number of cyclesit takes for the instruction to produce its
result. It isthe number of cycles that must be taken up by the current
instruction and following independent instructions before a dependent
instruction can be run without interlocking. It can belarger than condition
pass cycles in cases where an instruction produces a result later than the
Execute stage of the pipeline.

If condition pass cycles is greater than result cycles for an instruction,
then the result is always available to a following instruction.

See Interlocks on page 11-23 for details of result forwarding paths and the pipeline
stages in which instructions have to read registers.

Instructions that change mode by writing the control section of the CPSR are
highlighted in some of the tables because they have to wait for the L SU pipe to empty.
Thisisnoted inthe tables becauseit makesasignificant differenceto the execution time
if there are any outstanding load misses. Exceptions al so change mode, causing adelay
while the LSU pipe empties.

The instructions are described in the following sections:

. Data processing instructions on page 11-5

. Multiply instructions on page 11-7

. Branch instructions on page 11-8

. MRS and MSR instructions on page 11-9

. SWI instruction on page 11-9

. Load and store instructions on page 11-10

. Load multiple and store multiple instructions on page 11-14

. Preload instructions on page 11-15

. Coprocessor instructions on page 11-15

. Semaphore instructions on page 11-17

. Thumb data processing instructions on page 11-17

. Thumb multiply instructions on page 11-19

. Thumb branch instructions on page 11-20

. Thumb load instructions and store instructions on page 11-21
. Thumb load multiple and store multiple instructions on page 11-22.

11-4
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11.2.1 Data processing instructions

The simple data processing instructions are:
AND, EOR, SUB, RSB, ADD,

ADC, SBC, RSC,CMN, ORR,

ORR, MOV, BIC, MVN,TST,

TEQ, CMP, QADD, QDADD, QSUB, QDSUB, CLZ

Table 11-1 shows the addressing mode 1 subcategories of data processing instructions.

Table 11-1 Subcategories of data processing instructions

Subcategory Format Example
Immediate OP Rd, Rn, #imm ADD R1, R2, #1
Register OP Rd, Rn, Rm AND R1, R2, R3

Immediate shifted register  OP Rd, Rn, Rm LSL #imm  AND R1, R2, R3 LSL #1

Register shifted register OP Rd, Rn, Rm LSL Rs AND R1, R2, R3 LSL R4

—  Note

A simple unshifted moveto the PC (R15) isaspecial casethat operatesfaster than most
data processing operations with the PC astheir destination. This enablesfast execution
of MoV PC, LR, and other simple jumps.

Table 11-2 shows examples of data processing cycle counts. In the table, any of the
simple data processing operations can be substituted for AND.

Table 11-2 Cycle counts of data processing instructions

Example instruction Notes Change mode Pass Fail Result available
AND Rd, Rn, #imm - No 1 1 1
AND Rd, Rn, Rm - No 1 1 1
AND Rd, Rn, Rm LSL #imm - No 1 1 1
AND Rd, Rn, Rm LSL Rs - No 2 2 2
ANDS Rd, Rn, #imm Set flags No 1 1 1
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Table 11-2 Cycle counts of data processing instructions (continued)

Example instruction Notes Change mode Pass Fail Result available
ANDS Rd, Rn, Rm Set flags No 1 1 1
ANDS Rd, Rn, Rm LSL #imm  Set flags No 1 1 1
ANDS Rd, Rn, Rm LSL Rs Set flags No 2 2 2
AND PC, Rn, #imm ToPC No 1+4 1 N/A
AND PC, Rn, Rm ToPC No 1+4 1 N/A
AND PC, Rn, Rm LSL #imm ToPC No 1+4 1 N/A
AND PC, Rn, Rm LSL Rst ToPC No 2+4 2 N/A
ANDS PC, Rn, #imm To PC, restore CPSR Yes 1+4 1 N/A
ANDS PC, Rn, Rm To PC, restore CPSR Yes 1+4 1 N/A
ANDS PC, Rn, Rm LSL #imm To PC, restore CPSR Yes 1+4 1 N/A
ANDS  PC, Rn, Rm LSL Rs ToPC, restoreCPSR  Yes 2+4 2 N/A
MoV PC, Rn Zero shift MOV toPC  No 1+3 1 N/A
CLz Rd, Rm - No 1 1 1
QADD Rd, Rm, Rn Sets Q flag No 1 1 2
QSuB Rd, Rm, Rn Sets Q flag No 1 1 2
QDADD  Rd, Rm, Rn Sets Q flag No 1 1 2
QDSUB  Rd, Rm, Rn Sets Q flag No 1 1 2

Most data processing instructions take one cycle to execute, after which their result is
availablefor use. The exceptions are instructions that invol ve register-controlled shifts,

saturating instructions, and instructions that write to the PC.

A simpleMov from aregister, with no shift that writes the PC requiresthree extracycles
to refill the pipeline. More complex operations that write to the PC take four extra
cyclesto refill the pipeline.

11-6
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11.2.2  Multiply instructions

Table 11-3 showsthecycle counts of multiply instructions. For long multiplies, theleast
significant word of theresult isawaysthe first available. The most significant word is
availablein the following cycle. Thisiswhy there are two cycle counts for instructions
whose results extend over one word.

Table 11-3 Cycle counts of multiply instructions

Instruction Notes Pass Fail Rd(Lo/Hi) Flags
SMUL<x><y> Rd, Rm, Rs 16 x 16->32 1 1 2 -
SMLA<x><y> Rd, Rm, Rs, Rn 16 x 16 + 32->32 2 2 2 -
SMLAL<x><y> RdLo, RdHi, Rm, Rs 16 x 16 + 64->64 2 2 2/3 -
SMULW<x> Rd, Rm, Rs 32 x 16->32, upper 32 hits 1 1 2 -
SMLAW<x> Rd, Rm, Rs, Rn 32 x 16 + 32->32, upper 32 hits 2 2 2 -
MUL Rd, Rm, Rs 32 x 32->32 2 2 3 -
MULS Rd, Rm, Rs 32 x 32->32, set flags 4 2 3 4
MLA Rd, Rm, Rs, Rn 32x 32+ 32->32 2 2 3 -
MLAS Rd, Rm, Rs, Rn 32 x 32 + 32->32, set flags 4 2 3 4
UMULL RdLo, RdHi, Rm,Rs 32 x 32->64, unsigned 3 2 3/4 -
UMULLS RdLo, RdHi, Rm, Rs 32 x 32->64, unsigned, set flags 5 2 3/4 5
UMLAL RdLo, RdHi, Rm, Rs 32 x 32 + 64->64, unsigned 3 2 3/4 -
UMLALS RdLo, RdHi, Rm, Rs 32 x 32 + 64->64, unsigned, setflags 5 2 3/4 5
SMULL RdLo, RdHi, Rm,Rs 32 x 32->64, signed 3 2 3/4 -
SMULLS RdLo, RdHi, Rm,Rs 32 x 32->64, signed, set flags 5 2 3/4 5
SMLAL RdLo, RdHi, Rm, Rs 32 x 32 + 64->64, signed 3 2 3/4 -
SMLALS RdLo, RdHi, Rm, Rs 32 x 32 + 64->64, signed, set flags 5 2 3/4 5

If the number of pass cyclesis greater than the number of result cycles, then the result
cycles dominate. Multiplies that set the flags other than Q have to sit in Execute stage
for several cycles, because the the ALU must calculate the new flags. Sometimes it
might be possible to use a multiply that does not set the flags, followed by a compare
of theresult that does set the flags. Thisisappropriate where auseful instruction can be
inserted between the multiply and the compare.
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11.2.3 Branch instructions

This section describes the following instructions:

B, BL, BX, and BLX.

When branch prediction is enabled, unconditional and conditional backward branches
are predicted taken, and conditional forward branches are predicted not taken. See
Branch instruction cycle summary on page 6-6 for more detail.

Table 11-4 Cycle counts of branch instructions

Unpredicted Predicted
Instruction Pass Fail Predictable Correctly Incorrectly
B<address> 4 1 Yes Oto 22 4
BL <address> 4 2 Yes 1to2 4
BX Rm 4 2 No - -
BLX Rm 4 2 No - -
BLX <Imm24> 4 2 Yes 1lto2 4

a. Assuming al accesseshitinthel cache. When the prefetch unit hashad timeto
fold abranch it appears to take O cycle. When the prefetch unit has been recently
been flushed and is empty it takes 2 cycles to obtain the instruction at the branch

target.
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11.2.4 MRS and MSR instructions

MSR instructions that write just the flags run quickly. MSRs that change mode take more
cycles and have to wait for the LSU pipeline to be empty before they start to execute.
Table 11-5 shows the cycle counts for MRS and MSR instructions.

Table 11-5 Cycle counts of MRS and MSR instructions

Example instruction  Notes Change mode Pass Fail
MRS Rd, CPSR - No 1 1
MRS Rd, SPSR - No 1 1
MSR_f CPSR, Rn Only flags No 1 1
MSR_f CPSR, #<cns> Only flags No 1 1
MSR CPSR, Rn Notonly flags Yes 4 1
MSR CPSR, #<cns> Notonly flags Yes 4 1
MSR SPSR, Rn - No 3 2
MSR SPSR, #<cns> - No 3 2

11.2.5 SWIinstruction

This section describes the SWI instruction:

A SwI instruction takesfour cycles, or two cyclesif it failsits condition code check. This

istrue for the ARM and Thumb SWI instructions.
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11.2.6 Load and store instructions

This section describes the following instructions:

LDR, LDRD, LDRB, LDRBT, LDRH, LDRSB, LDRSH, LDRT,

STM, STR, STRD, STRB, STRBT, STRH, STRT.

Loadsand storesall take one cycleto execute unlessthey use ascaled register offset, in
which case they take two. Loaded datais available for use after one more cycle.

Loads to the PC take six cycles unlessthey use a scaled register offset, when they take
seven. The behavior of load and store multiple instructions is best assessed using a

cycle-accurate model of the ARM 10 processor.

Table 11-6 shows the cycle counts of the load instructions.

Table 11-6 Cycle counts of load instructions

Example instruction Pass Fail Base write-back result Load data
LDR PC, [Rn], #<cns> 6 2 1 -
LDR PC, [Rn, #<cns>] 6 2 - -
LDR PC, [Rn, #<cns>]! 6 2 1 -
LDR PC, [Rn], Rm, <shf><cns> 7 2 2 -
LDR PC, [Rn, Rm] 6 2 - -
LDR PC, [Rn, Rm]! 6 2 1 -
LDR PC, [Rn, Rm, <shf><cns>] 7 2 - -
LDR PC, [Rn, Rm, <shf><cns>]! 7 2 2 -
LDR Rd, [Rn], #<cns> 1 1 1 2
LDRT Rd, [Rn], #<cns> 1 1 1 2
LDRB Rd, [Rn], #<cns> 1 1 1 2
LDRBT Rd, [Rn], #<cns> 1 1 1 2
LDR Rd, [Rn, #<cns>] 1 1 - 2
LDR Rd, [Rn, #<cns>]! 1 1 1 2
LDRB Rd, [Rn, #<cns>] 1 1 - 2
LDRB Rd, [Rn, #<cns>]! 1 1 1 2
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Table 11-6 Cycle counts of load instructions (continued)

Example instruction Pass Fail Base write-back result Load data
LDR Rd, [Rn], Rm, <shf><cns> 2 2 1 3
LDRT Rd, [Rn], Rm, <shf><cns> 2 2 1 3
LDRB Rd, [Rn], Rm, <shf><cns> 2 2 1 3
LDRBT Rd, [Rn], Rm, <shf><cns> 2 2 1 3
LDR Rd, [Rn,Rm] 1 1 - 2
LDR Rd, [Rn,Rm]! 1 1 1 2
LDR Rd, [Rn, Rm, <shf><cns>] 1 1 - 3
LDR Rd, [Rn, Rm, <shf><cns>]! 1 1 1 3
LDRB Rd, [Rn, Rm] 1 1 - 2
LDRB Rd, [Rn, Rm]! 1 1 1 2
LDRB Rd, [Rn, Rm, <shf><cns>] 1 1 - 3
LDRB Rd, [Rn, Rm, <shf><cns>]! 1 1 1 3
LDRD Rd, [Rn], Rm 1 1 1 2
LDRD Rd, [Rn], #<cns> 1 1 1 2
LDRD Rd, [Rn, Rm] 1 1 - 2
LDRD Rd, [Rn, Rm]! 1 1 1 2
LDRD Rd, [Rn, #<cns>] 1 1 - 2
LDRD Rd, [Rn, #<cns>]! 1 1 1 2
LDRSB Rd, [Rn], Rm 1 1 1 2
LDRSB Rd, [Rn], #<cns> 1 1 1 2
LDRSB Rd, [Rn, Rm] 1 1 - 2
LDRSB Rd, [Rn, Rm]! 1 1 1 2
LDRSB Rd, [Rn, #<cns>] 1 1 - 2
LDRSB Rd, [Rn, #<cns>]! 1 1 1 2
LDRH Rd, [Rn], Rm 1 1 1 2
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Table 11-6 Cycle counts of load instructions (continued)

Example instruction Pass Fail Base write-back result Load data
LDRH Rd, [Rn], #<cns> 1 1 1 2
LDRH Rd, [Rn, Rm] 1 1 - 2
LDRH Rd, [Rn, Rm]! 1 1 1 2
LDRH Rd, [Rn, #<cnt>] 1 1 - 2
LDRH Rd, [Rn, #<cnt>]! 1 1 1 2
LDRSH Rd, [Rn], Rm 1 1 1 2
LDRSH Rd, [Rn], #<cns> 1 1 1 2
LDRSH Rd, [Rn, Rm] 1 1 - 2
LDRSH Rd, [Rn, Rm]! 1 1 1 2
LDRSH Rd, [Rn, #<cns>] 1 1 - 2
LDRSH Rd, [Rn, #<cns>]! 1 1 1 2

Table 11-7 shows the cycle counts of the store instructions.

Table 11-7 Cycle counts of store instructions

Example instruction Pass Fail Base write-back result
STR Rd, [Rn], #<cns> 1 1 1
STRT Rd, [Rn], #<cns> 1 1 1
STRB Rd, [Rn], #<cns> 1 1 1
STRBT Rd, [Rn], #<cns> 1 1 1
STR Rd, [Rn, #<cns>] 1 1 -
STR Rd, [Rn, #<cns>]! 1 1 1
STRB Rd, [Rn, #<cns>] 1 1 -
STRB Rd, [Rn, #<cns>]! 1 1 1
STR Rd, [Rn], Rm, <shf><cns> 1 1 1
STRT Rd, [Rn], Rm, <shf><cns> 1 1 1
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Table 11-7 Cycle counts of store instructions (continued)

Example instruction Pass Fail Base write-back result
STRB Rd, [Rn], Rm, <shf><cns> 1 1 1
STRBT Rd, [Rn], Rm, <shf><cns> 1 1 1
STR Rd, [Rn, Rm] 1 1 -
STR Rd, [Rn, Rm, <shf><cns>] 2 2 -
STR Rd, [Rn, Rm]! 1 1 1
STR Rd, [Rn, Rm, <shf><cns>]! 2 2 1
STRB Rd, [Rn, Rm] 1 1 -
STRB Rd, [Rn, Rm, <shf><cns>] 2 2 -
STRB Rd, [Rn, Rm]! 1 1 1
STRB Rd, [Rn, Rm, <shf><cns>]! 2 2 1
STRH Rd, [Rn], Rm 1 1 1
STRH Rd, [Rn], #<cns> 1 1 1
STRH Rd, [Rn, Rm] 1 1 -
STRH Rd, [Rn, Rm]! 1 1 1
STRH Rd, [Rn, #<cnt>] 1 1 -
STRH Rd, [Rn, #<cnt>]! 1 1 1
STRD Rd, [Rn], Rm 1 1 1
STRD Rd, [Rn], #<cns> 1 1 1
STRD Rd, [Rn, Rm] 1 1 -
STRD Rd, [Rn, Rm]! 1 1 1
STRD Rd, [Rn, #<cns>] 1 1 -
STRD Rd, [Rn, #<cns>]! 1 1 1
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11.2.7 Load multiple and store multiple instructions

A simple LDM takes one cycle in Execute after which it operates independently in the
load/store pipeline. Following instructions can then execute in the integer pipeline. If a
dependent instruction isreached, then the integer pipeline stops until the LDM has |oaded
the required data or has completed. Dependent instructions are those that require data
that has not yet been loaded or those that must be executed in the LSU. Instructionsthat
must be executed inthe LSU include al instructionsthat write to the PC, except branch
instructions. An LDM loads two registers per cycle. If theinitial accessis not to a 64-hit
aligned address, an extra cycleis required because only asingle register can be loaded
inthefirst cycle.

If an LDM loadsthe PC, it isloaded from thelast access, and five more cyclesare required
to refill the pipeline. Instructions are not allowed to run under an LDM that changes the
processor mode or T hit, or if access is to a noncachable, nonbufferable region of
memory.

A simple STM operates the same as an LDM, except that instructions following an STM are
held up if they try to write to aregister that has not yet been stored. Table 11-8 shows
the cycle counts of simple store instructions where L isthe number of cyclesit takesto
load the part of thelist beforethe PC. For example, if thelist of registersis{R1, R2, R3,

PC}, L is1 or 2 depending on whether the address to load R1 from isaligned to 64 bits.
If itisaligned, R1 and R2 are loaded in one cycle. If not, then it takes one cycle to load
R1 and a second cycle to load R2 and R3.

Table 11-8 Cycle counts of load multiple and store multiple instructions

Example instruction Change mode Pass Fail Write-back First data

STM Rn, <...> No 1 1 - -
STM Rn!, <...> No 1 1 1 -
STM Rn, <...>A No 1 1 - -
STM Rn!, <...>A No 1 1 1 -
LDM Rn, <...noPG No 1 1 - 2
LDM Rn!, <...noPC> No 1 1 1 2
LDM Rn, <...noPC>A No 1 1 - 2
LDM Rn!, <...noPC>A No 1 1 1 2
LDM Rn, <...PC> No L+6 2 - 2
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Table 11-8 Cycle counts of load multiple and store multiple instructions

Example instruction Change mode Pass Fail Write-back First data
LDM Rn!, <...PC> No L+6 2 1 2
LDM Rn, <...PC>A Yes L+6 2 - 2
LDM Rn!, <...PC>A Yes L+6 2 1 2

11.2.8 Preload instructions

Table 11-9 shows the cycle counts of preload instructions. See Cachable, Write-Back

(WB) on page 5-11 for more information on this instruction.

Table 11-9 Cycle counts of preload instructions

Instruction Cycles
PLD [Rn,#-<cns>] 1
PLD [Rn, #<cns>] 1
PLD [Rn, -Rm] 1
PLD [Rn, -Rm, <shf><cns>] 2
PLD [Rn, Rm] 1
PLD [Rn, Rm, <shf><cns>] 2
11.2.9 Coprocessor instructions
This section describes the following instructions:
CDP, LDC, MCR, MCRR, MRC, MRRC, STC.
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Table 11-10 shows the cycle counts of the coprocessor instructions. The maximum
number of cycles taken by one of these instructions depends on the coprocessor
involved. Cycles shown are the minimum cycle count for atightly coupled coprocessor
such asthe VFP10 (Rev 1) coprocessor. Other coprocessors may have greater minimum
cycle count.

Table 11-10 Cycle counts of coprocessor instructions

Example instruction Pass Fail W/B Data Flags
CDP <copr>, <opl>, CRd, CRn, CRm, <op2> 1 1 - - -
MCR <copr>, <opl>, Rd, CRn, CRm, <op2> 1 1 - - -
MCRR <copr>, <op>, [Rd], [Rn], <CRm> 1 1 - - -
MRC <copr>, <opl>, Rd, CRn, CRm, <op2> 1 1 - 2 -
MRC <copr>, <opl>, PC, CRn, CRm, <op2> 2 2 - 2 2
MRRC <copr>, <op>, [Rd], [Rn], <CRm> 1 1 - 2 -
STC <copr>, CRd, [Rn], {option} 1 1 1 - -
STC <copr>, CRd, [Rn], #<cns>! 1 1 1 - -
STCL <copr>, CRd, [Rn], {option} 1 1 1 - -
STCL <copr>, CRd, [Rn], #<cns>! 1 1 1 - -
STC <copr>, CRd, [Rn, #<cns>] 1 1 - - -
STC <copr>, CRd, [Rn, #<cns>]! 1 1 1 - -
STCL <copr>, CRd, [Rn, #<cns>] 1 1 - - -
STCL <copr>, CRd, [Rn, #<cns>]! 1 1 1 - -
LDC <copr>, CRd, [Rn], {option} 1 1 1 2 -
LDC <copr>, CRd, [Rn], #<cns>! 1 1 1 2 -
LDCL <copr>, CRd, [Rn], {option} 1 1 1 L+2 -
LDCL <copr>, CRd, [Rn], #<cns>! 1 1 1 L+2 -
LDC <copr>, CRd, [Rn, #<cns>] 1 1 - 2 -
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Table 11-10 Cycle counts of coprocessor instructions (continued)

Example instruction Pass Fail W/B Data Flags
LDC <copr>, CRd, [Rn, #<cns>]! 1 1 1 2 -
LDCL <copr>, CRd, [Rn, #<cns>] 1 1 - L+2 -
LDCL <copr>, CRd, [Rn, #<cns>]! 1 1 1 L+2 -

11.2.10 Semaphore instructions
This section describes the following instructions:
SWP and SWPB.

A swap takestwo cycles, but before it can be executed, all outstanding loads and stores
are completed. Table 11-11 shows the cycle counts of swap instructions.

Table 11-11 Cycle counts of swap instructions

Example instruction Pass Fail Result available

SWP Rd, Rm, [Rn] 2 2 2

SWPB Rd, Rm, [Rn] 2 2 2

11.2.11 Thumb data processing instructions

Thumb data processing instructions behave in away similar to ARM instructions.
Table 11-12 shows the cycle counts of Thumb data processing instructions.

Table 11-12 Cycle counts of Thumb data processing instructions

Example instruction  Number of cycles Result available

LSL Rd, Rm, #sh_imm5 1 1
LSR Rd, Rm, #sh_imm5 1 1
ASR Rd, Rm, #sh_imm5 1 1
ADD Rd, Rn, Rm 1 1
SUB Rd, Rn, Rm 1 1
ADD Rd, Rn, #imm3 1 1
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Table 11-12 Cycle counts of Thumb data processing instructions (continued)

Example instruction

Number of cycles

Result available

SUB Rd, Rn, #imm3 1 1
MOV Rd, #imm8 1 1
CMP Rd, #imm8 1 1
ADD Rd, #imm8 1 1
SUB Rd, #imm8 1 1
AND Rd, Rm 1 1
EOR Rd, Rm 1 1
LSL Rd, Rs 2 2
LSR Rd, Rs 2 2
ASR Rd, Rs 2 2
ADC Rd, Rm 1 1
SBC Rd, Rm 1 1
ROR Rd, Rs 2 2
TST Rn, Rm 1 1
NEG Rd, Rm 1 1
CMP Rd, Rm 1 1
CMN Rd, Rm 1 1
ORR Rd, Rm 1 1
BIC Rd, Rm 1 1
MVN Rd, Rm 1 1
ADD Rd, Hm 1 1
ADD Hd, Rm 1 1
ADD Hd, Hm 1 1
CMP Rd, Hm 1 1
CMP Hd, Rm 1 1

11-18

Copyright © 2001 ARM Limited. All rights reserved.

ARM DDI 0237A



Instruction Cycle Summary and Interlocks

Table 11-12 Cycle counts of Thumb data processing instructions (continued)

Example instruction  Number of cycles Result available

CMP Hd, Hm 1 1
MOV Rd, Hm 1 1
MOV Hd, Rm 1 1
MOV Hd, Hm 1 1
ADD Rd, PC, #imm 1 1
ADD Rd, SP, #imm 1 1
ADD SP, #imm 1 1
SUB SP, #imm 1 1
ADD PC, Rm 5 -
ADD PC, Hm 5 -
MOV PC, Rm 5 -
MOV PC, Hm 5 -

11.2.12 Thumb multiply instructions

The Thumb multiply instruction behavesin away similar to the ARM MULS instruction.
Table 11-13 shows the cycle count of the Thumb multiply instruction.

Table 11-13 Cycle count of the Thumb multiply instruction

Result
Example Number of
instruction  Notes cycles Rd Flags
MUL Rd, Rm 32x32+32->32, setflags 4 3 4
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11.2.13 Thumb branch instructions

Thumb BL and BLX to an immediate va ue are encoded as two Thumb instructions. The
first instruction is a data processing instruction that puts an immediate value into R14.
This takes one cycle. The second instruction adds an immediate value to R14 and
fetches from that address. This takes four cycles before the next instructionisin
Execute. Table 11-14 shows the cycle counts of Thumb branch instructions.

Table 11-14 Cycle counts of Thumb branch instructions

Unpredicted Predicted

Instruction  Pass Fail Predictable Correctly Incorrectly

B<address> 4 1 Yes Oto 22 4
BL <address> 1+4 1 Yes 1lto2 4
BX Rm 4 1 No - -
BLX Rm 1+4 1 No - -
BLX <Imm> 1+4 1 Yes lto2 4

a. Assuming all accesses hitinthe | cache. When the prefetch unit has had timeto
fold abranch it appears to take O cycle. When the prefetch unit has been recently
flushed and is empty it takes 2 cyclesto obtain the instruction at the branch

target (See Chapter 6 Prefetch Unit).
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11.2.14 Thumb SWI instruction

This section describes the SWI instruction:

An SWI instruction takes four cycles, or two cyclesif it failsits condition code check.

Thisistrue for both the ARM and Thumb SWI instruction.

11.2.15 Thumb load instructions and store instructions

Thumb load/store instructions behave in away similar to ARM load/store instructions.

Table 11-15 shows the cycle counts of Thumb store instructions.

Table 11-15 Cycle counts of Thumb store instruction

Example instruction  Number of cycles Data
STR Rd, [Rn, Rm] 1 -
STRB Rd, [Rn, Rm] 1 -
STRH Rd, [Rn, Rm] 1 -
STR Rd, [Rb, #imm5] 1 -
STRB Rd, [Rb, #imm5] 1 -
STRH Rd, [Rn, #imm5] 1 -
STR Rd, [SP, #imm8] 1 -

Table 11-16 shows the cycle counts of Thumb load instructions.

Table 11-16 Cycle counts of Thumb load instructions

Example instruction  Number of cycles Data
LDR Rd, [Rn, Rm] 1 2
LDRB Rd, [Rn, Rm] 1 2
LDRSB Rd, [Rn, Rm] 1 2
LDRH Rd, [Rn, Rm] 1 2
LDRSH Rd, [Rn, Rm] 1 2
LDR Rd, [Rb, #imm5] 1 2
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Table 11-16 Cycle counts of Thumb load instructions (continued)

Example instruction  Number of cycles Data

LDRB Rd, [Rb, #imm5] 1 2
LDRH Rd, [Rn, #imm5] 1 2
LDR Rd, [SP, #imm8] 1 2

11.2.16 Thumb load multiple and store multiple instructions

Thumb load/store multiple instructions behave in the same way as ARM load/store
multipleinstructions. Table 11-17 showsthe cycle counts of Thumb load/store multiple
instructions.

Table 11-17 Cycle counts of Thumb load/store multiple instructions

Example instruction Number of cycles w/B First data
PUSH {rlist} 1 - -
PUSH {rlist, LR} 1 - -
STMIA Rn!, {rlist} 1 1 -
POP {rlist} 1 - 2
POP {rlist, PC} L+6 - 2
LDMIA Rn!, {rlist} 1 1 2

L isthe number of cyclesit takesto load the part of thelist before the PC. For example,
for {R1, R2, R3, PC} L is1 or 2 depending on whether the addressto load R1 fromis
aligned to 64 hits. If it isaligned, R1 and R2 isloaded in one cycle. If not, then it takes
one cycle to load R1 and a second cycleto load R2 and R3.
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Instruction Cycle Summary and Interlocks

In almost all cases, the integer core uses forwarding to resolve data dependencies
between instructions. For the remaining cases, hardware-imposed interlocks (pipeline
stalls) are used to ensure the correct operation of an instruction.

The most common causes of data dependency interlocks are instructions that have a
source register that isloaded from memory by the previous instruction. The previous
instruction might be an LDR, in which casethisdataisusually available after aone-cycle
interlock. In the case of an LDM, the interlock lasts until the register isloaded. The data
processing instruction gets as far as Decode beforeit interlocks. It interlocksin Decode
because thisis where it reads its source registers.

Pipeline interlocks are also used to resolve hardware dependencies in the pipeline.
Some common examples of hardware dependencies are:

. anew load waiting for the LSU to finish an existing LDM or STM
. aload that misses when the Hit-Under-Miss (HUM) slot is already occupied

. anew multiply waiting for a previous multiply to free up the first stage of the
multiplier.

The integer core generates most interlocks as late as possible. For instance, amultiply
accumulate instruction can start before the accumul ate operands are avail able and stops
only when the values are required. This gives the maximum time possible for previous
instructions to generate the required data and minimizes occurrences of interlocks.

Theinteger core implements forwarding pathsto enable almost any result to be used as
soon asit is calculated. The forwarding paths are shown in Figure 11-1 on page 11-24.
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Fetch Issue Decode Execute Memory Write

P

Hit-under-miss

Results available for forwarding

Read port A T
Read port B l X

Write port W
Read port S1 «—» Write port L1
Read port S2 Write port L2

ALU results Loaded data
Multiplier results

Figure 11-1 Pipeline forwarding paths

The register bank has four read ports:

. Port A
. Port B
. Port S1
. Port S2.

In the second phase of the Decode stage, theinteger unit reads port A and port B. Ports
A and B are for operands for ALU and multiply instructions and registers to generate
addresses for |oads, stores, and unpredicted branches.

In the second phase of the Execute stage, the integer unit reads port S1 and port S2.
Ports S1 and S2 are for store datafor STRs and STMs and for transfers to coprocessors.

The register bank has three write ports:

. Port W
. Port L1
. Port L2.

The integer unit writesto port W, port L1, and port L2 in the first phase of the Write
stage. Port W is for writing results from the ALU pipeline. The resultsinclude ALU
operations, multiplies, and base register write-backs for |oads and stores. Ports L1 and
L2 are for writing loaded data for LDRs and LDMs and for transfers from coprocessors.
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Writes take place in the first phase, so the values are in the registers ready for reads to
take place in the second phase. This means there is no need for forwarding paths from
Writeto earlier stages.

The Execute-to-Execute forwarding paths are used to forward AL U resultsto following
ALU operations.

The Memory-to-Memory forwarding paths are used to forward | oaded datato following
stores.

The Memory-to-Execute forwarding paths are used to forward one-cycle-old ALU
results, freshly loaded data, or multiply results to following ALU operations.

11.3.1 Examples of interlocking and forwarding

Example 11-1 and Example 11-2 illustrate interlocking and forwarding.

Example 11-1 isthe simplest case of forwarding. The ADD is dependent on the MOV asthe
MoV writes RO and the ADD readsit. The write of 1 into register RO does not happen until
the Write stage of the pipeline, but the correct value for RO, a1, isforwarded to the ADD
at the start of the Execute stage by the Execute-to-Execute forwarding path. This
enables the ADD to run with no interlocks.

Example 11-1

MOV RO, #1
ADD R1, RO, #1

In Example 11-2, the ADD is dependent on theMov, and thereisasingle-cycle SUB between
them. Thewrite of 1 to RO has not happened when the ADD is reading its source registers
because the MoV isin the Memory stage when the ADD isin the Decode stage. The correct
value for RO, a1, is forwarded to the Execute stage by the ALU pipeline
Memory-to-Execute forwarding path. This enables the ADD to run with no interlock.

Example 11-2

MOV RO, #1
SUB R1, R2, #2
ADD R2, RO, #1
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In Example 11-3, the dataloaded into RO is only available at the end of the Memory
stage of the LDR, so the ADD interlocks in the Decode stage for one cycle after which the
datais available for forwarding to the Execute stage.

Example 11-3

LDR RO, [R1, R2]
ADD R3, RO, #1

In Example 11-4, the STR data depends on the data |oaded by the LDR but there is no
interlock because the datais available in time to be forwarded to the Memory stage of
the STR.

Example 11-4

LDR RO, [R1, R2]
STR RO, [R3, R4]

In Example 11-5, the STR address depends on the loaded data from the LDR. In this case
thereis an interlock for a cycle because the registers used to generate addresses are
reguired in the Execute stage, and RO is not available until the datais|oaded at the end
of the Memory stage.

Example 11-5

LDR RO, [R1, R2]
STR R3, [RO, R4]

In Example 11-6, the source register for the MOV depends on the LDR base write-back to
R1. Thereisnointerlock because the write-back valueiscalculated inthe ALU pipeline
in the Execute stage and isimmediately available for forwarding to the Execute stage

of the following instruction.

Example 11-6

LDR RO, [R1, R2]!
MOV R3, R1
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In Example 11-7, there are no data dependencies between the loads. If the first LDR
missesin the cache and the HUM slot isempty, thenit isassigned to the HUM slot. The
second LDR runs underneath it. If the second LDR also missesin the cache, the pipeline
interlocks until aload is compl eted.

Example 11-7

LDR RO, [R1, R2]
LDR R3, [R4, R5]

In Example 11-8, both loads run without interlocking if they both hit in the cache. If the
first LDR misses, the second LDR is held up in the Execute stage to prevent the possibility
of having instructions that write to the same register in both the LSU pipeline Memory
stage and the HUM buffer.

Example 11-8

LDR RO, [R1, R2]
LDR RO, [R1, R2]

In Example 11-9, there are no data dependenci es between the instructions. There are no
interlocks even if the LDR misses, because the data processing instructions can run
undernesath a miss.

Example 11-9

LDR RO, [R1, R2]
ADD R3, R4, RS
SUB R6, R7, R8

In Example 11-10, the ADD depends on the LDR. If the LDR hitsin the cache, RO isloaded
in time for the ADD to read it without an interlock. If the LDR misses and the data is not
returned for afew cycles, then the MOV instructions run underneath the LDR. The ADD
interlocks in the Decode stage and waits for |oaded the data to be available for
forwarding.

Example 11-10

LDR RO, [R1, R2]
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MOV R3, R4
MOV RS, R6
ADD R7, RO, R8

In Example 11-11, the ADD depends on the LDR. They both write the same register. If the
LDR hitsin the cachethere are no interlocks. If the LDR missesand the datais not returned
for afew cycles, then the moves run underneath the LDR. The ADD only gets as far as
Memory where it interlocks until RO has first been written by the LDR.

Example 11-11

LDR RO, [R1, R2]
MOV R3, R4

MOV RS, R6

ADD R@, R7, R8

In Example 11-12, the LDMIA tries to load R1 first. (Depending upon 64-bit address
alignment, R2 might be loaded at the same time as R1.) The MOV is dependent on the
LDMIA so it isheld up for at least one cycle until the datafor R1 isavailable for
forwarding. If the load to R1 (or R1 and R2) misses, then the LDMIA continues until it
completes or a second miss occurs. The MoV is always held up until the data loaded to
Rlisavailable.

Example 11-12

LDMIA RO, {R1-R7}
MOV R8, R1
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In Example 11-13 the STR depends on the LDMIA load data. If the LDMIA hits on its first
access the datais available to the STR, but the STR cannot run in any case because the
LDMIA is occupying the LSU. When the LDMIA is finished, the STR runs. The LDMIA can
have up to one miss and still leave the LSU pipeline. The STR then runs under the LDMIA
load missthat isinthe HUM slot. Clearly thereis one case when the STR isstill not run,
when the LDMIA miss was the load to R1.

Example 11-13

LDMIA RO, {R1-R7}
STR R1, [R8, RI]

In Example 11-14 there is a data dependency between the LDMIA |oad data and the MOV
source register. Register R7 isthe last register to be loaded by the LDMIA so theMov is
held up for along time.

Example 11-14

LDMIA R@, {R1-R7}
MOV R8, R7

In Example 11-15 there is a data dependency between the LDMIA load to R5 and the
destination register of theMov. TheMov isheld up in the Memory stage of the ALU pipe
until the LDMIA has written to R5. In this case there are two different instructionsin the
Memory stage of the LSU pipe and the ALU pipe both of which write to the same
register. Thisisresolved by always allowing the LSU pipe to write its results first
because it always contains the first of the two instructions in program order.

Example 11-15

LDMIA RO, {R1-R7}
MOV R5, #1

In Example 11-16 on page 11-30 there is a data dependency between the LDMIA store of
R5 and the destination register of theMov. The MoV is held up in memory until the STMIA
has read R5. The MOV is then alowed to overwrite R5.
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Example 11-16

STMIA RO, {R1-R7}
MOV RS, #1

In Example 11-17 there are no data dependencies between the load multiple
instructions. If asingleload (one register or two 64-bit aligned registers) from the first
LDMIA missesthen it is assigned to the HUM dlot. The second LDMIA then starts. There
are no interlocks if the second LDMIA does not miss until after the miss for the first LDM
isresolved.

Example 11-17

LDMIA RO, {R1-R7}
LDMIA R8, {R9-R13}

11-30 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0237A



Chapter 12
Design for Test

This chapter describesthe Design For Test (DFT) features of the ARM 10 processor and
describes how best to integrate the DFT featuresinto a System on a Chip (SoC). This
chapter contains the following sections:

. Test modes and ports on page 12-2

. Scan chain configuration on page 12-6

. Clocks and clock gating on page 12-8

. Wrapper cells on page 12-11

. Memories on page 12-18

. Memory BIST waveforms on page 12-27

. Cache upload/download, manufacturing test on page 12-33
. Test signal value tables on page 12-39.
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12.1 Test modes and ports

This section describes the test modes and test ports:
. ATPG modes

. Test ports on page 12-3.

. Test pinout requirements on page 12-5.

12.1.1 ATPG modes

A1020WM UXINSEL and A1020WMUXOUT SEL configurethewrapper for internal
test mode, external test mode, or functional mode.

Writingto A1020WM UXINSEL and A1020WMUXOUT SEL selectsthetest modeas
shown in Table 12-1.

Table 12-1 ATPG mode selection

Mode A1020WMUXINSEL  A1020WMUXOUTSEL
Internal test mode 1 0
External test mode 0O 1
Functional mode 0 0

Internal test mode

Ininternal test mode, all input wrapper cellsareinward-facing to control coreinputsand
observe all outputs during test.

Serial coretest modeis an internal test mode configuration in which al of the scan
chains are connected serialy with the wrapper chain attached last. The last cell in the
wrapper chainis alockup latch so that this output can be connected to another clock
domain and retain safe shift properties. That is, values can be shifted from one scan cell
to the next with no risk of error dueto clock skew. In this mode, the wrapper clock must
be in phase with GCL K. Capture cycles cannot occur safely if there are delay
differences between the clock domains. UDLTEST must be 0 during serial core test
mode. The SCORETEST signal enables serial core test mode.

External test mode

In external test mode, all input wrapper cells observe external logic and all output
wrapper cells control external logic.
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12.1.2 Test ports

Thetest portsin Table 12-2 must be instantiated as specified for ARM 10 testing to

operate correctly.
Table 12-2 Test port signals
Port name /1O Type Description
A1020DFTCKEN I Static Enablesinternal core clocks.
A1020SCANEN I Dynamic  Scan enablefor all internal domains.
A1020SCANMODE I Static Puts device in scan mode.

A1020SCANOUT[23:0] O Dynamic  Scan output ports, cache download outputs, memory BIST outputs.

A1020SCANIN[23:0] I Dynamic  Scan input ports, cache upload inputs, memory BIST inputs.

A1020DFTRESET I Dynamic  Provides direct control over asynchronous reset in scan mode.

A1020TEST I Static Enables cache upload or download mode and BIST test modes.

A1020TESTCFG[2:0] I Static Choose cache upload, download, or BIST test mode.

HRESETN I Dynamic  Hard reset.

SFRESETN I Dynamic  Soft reset.

TDI I Dynamic  JTAG scan-in.

TMS I Dynamic  JTAG test mode select.

TCK I Dynamic  JTAG test clock.

NTRST I Dynamic  JTAG test reset.

TDO (0] Dynamic  JTAG scan-out. Two-state signa externally controlled by ARM 10
TDOEN output.

——— Caution

Because JTAG access occurs with wrappers disabled, JTAG accesses during a cache
upload pattern requires additional pin constraints. Lack of constraints on these input
pins may result in pattern failure.

A workaround is to constrain the signals during cache upload test as shown in
Table 12-3 on page 12-4.
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Table 12-3 Cache upload signal constraints

Signal Connection  Note

CPBUSYD1 O

CPBUSYE1l 0 If fromthe VFP10, CPBUSY signals can be constrained to the correct state by asserting
CPBUSYD2 O VFP10SAFE. Tie unused CPBUSY signalsto ground.

CPBUSYE2 0

PMRXACK 0 Acknowledge signalsfrom the power manager are anticipated to be zero after hard reset.
PMTXACK 0 Tie unused power manager acknowledge signals to ground.

FIFOFULL O If from the ETM 10, FIFOFUL L can be constrained to correct state by asserting

ETM10SAFE. Tie unused FIFOFULL to ground.

Table 12-4 lists wrapper test signals. There are 24 scan-in and 24 scan-out ports.
However, even in 12 or 6 scan chain configuration, a minimum of 16 scan inputs and
16 scan outputs must be ported out to accommodate memory Built-1n Self-Test (BIST)
and cache upload/download modes.

Table 12-4 Test port wrapper signals

Port name /O Type Description

A1020DFTWCKEN I Static Enables wrapper clock A1020WCLK to dedicated test cells.

A1020RSTSAFE I Static Enables reset of portion of core while testing external logic.

A1020SAFE I Static Forces safe values onto core outputs. Used during ARM 10 test.

A1020WCLK I Dynamic  Wrapper clock for dedicated wrapper cells.

A1020WMUXINSEL | Stic Puts dedicated wrapper cellsininternal test mode, external test mode, or

A1020WMUXOUTSEL | Saic  functiona mode.

A1020WSCANEN I Dynamic  Scan enable for all wrapper cells.

A1020WSCANOUT[2:.0] O Dynamic  Output ports for wrapper scan chains.

SCANMUX12 I Static Gives access to 12 separate internal scan chains and three wrapper
chains. Clearing both SCANM UX12 and SCANM UX6 gives 24
separate internal scan chains and three wrapper chains.

12-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0237A



Design for Test

Table 12-4 Test port wrapper signals (continued)

Port name /1O Type Description

SCANMUX6 I Static Gives access to six separate internal scan chains and one wrapper chain.
SCORETEST I Static Concatenates all internal and wrapper scan chains.

UDLTEST I Static Enables only shared wrapper cells. Must be asserted during 3-wrapper

chain mode.

A1020WSCANIN[2:0]

I Dynamic  Input ports for wrapper scan chains.

A test control module can be created to control the states of these signals. Table 12-20
on page 12-39.

SCORETEST, SCANMUX®6, and SCANM UX 12 port states depend on how many
scan chains are required during test. When dynamic test signals are connected at chip
level, they must make single-cycle timing to thefirst flip-flop encountered. All signals
in Table 12-2 on page 12-3 and Table 12-4 on page 12-4 except A1020DFTCKEN
must be disabled in functional mode. In functional mode, A1020DFT CK EN must be
enabled. UDLTEST must be LOW for seria core test mode and 6-chain mode.
UDLTEST must be HIGH for 12-chain mode and 24-chain mode.

12.1.3 Test pinout requirements

Simple and safe implementation of the test pinout in your design requires porting all of
the signals listed in Table 12-2 on page 12-3 to your external pinout. Carefully
designing a DFT control block can reduce the pin count of the test interface by
controlling the static test signals through mode selection. See Test signal value tables
on page 12-39 for reference tables.
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12.2

Scan chain configuration

The ARM 10 processor is a partial scan design. Scan chains in the core can be
configured as follows:

. 3 wrapper scan chainsin 24 core scan chain mode
. 3 wrapper scan chainsin 12 core scan chain mode
. 1 wrapper scan chain in 6 core scan chain mode.

Table 12-5 shows how tying SCANMUX6 and SCANM UX12 HIGH or LOW selects
the scan chain configuration.

Table 12-5 Scan chain configurations

SCANMUX12 SCANMUX6 UDLTEST Maximum

Configuration value value value chain length
24 internal scan chains and 3 wrapper chains 0 0 1 377

12 internal scan chainsand 3 wrapper chains 1 0 1 656

6 internal scan chains and 1 wrapper chain 0 1 0 1039
Restricted 1 1 - -

3 wrapper scan chains - - 1 320

1 wrapper scan chain - - 0 830

All chains concatenated, serial coretest mode 0 0 0 6419

The wrapper scan chain consists of the concatenated scan chains shown in Table 12-6.

Table 12-6 Wrapper scan chain configurations

Scan chains

Mode concatenated Scan-in Scan-out
SCANMUX12 23,11 A1020SCANIN11 A1020SCANOUT 11
SCANMUX12 22,10 A1020SCANIN10 A1020SCANOUT 10
SCANMUX12 21,9 A1020SCANIN9 A1020SCANOUT9
SCANMUX12 20,8 A1020SCANINS A1020SCANOUTS8
SCANMUX12 19,7 A1020SCANIN7 A1020SCANOUT7
SCANMUX12 18,6 A1020SCANING6 A1020SCANOUT6

12-6
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Table 12-6 Wrapper scan chain configurations (continued)

Scan chains

Mode concatenated Scan-in Scan-out

SCANMUX12 17,5 A1020SCANINS5 A1020SCANOUTS
SCANMUX12 16,4 A1020SCANIN4 A1020SCANOUT4
SCANMUX12 15,3 A1020SCANIN3 A1020SCANOUT3
SCANMUX12 14,2 A1020SCANIN2 A1020SCANOUT?2
SCANMUX12 13,1 A1020SCANIN1 A1020SCANOUT1
SCANMUX12 12,0 A1020SCANINO A1020SCANOUTO
SCANMUXG6 23,11,17,5 A1020SCANINS5 A1020SCANOUTS
SCANMUX6 22,10, 16, 4 A1020SCANIN4 A1020SCANOUT4
SCANMUX6 21,9,15,3 A1020SCANIN3 A1020SCANOUT3
SCANMUXG6 20,8,14,2 A1020SCANIN2 A1020SCANOUT?2
SCANMUX6 19,7,13,1 A1020SCANIN1 A1020SCANOUT1
SCANMUX6 18,6,12,0 A1020SCANINO A1020SCANOUTO

ARM DDI 0237A

Copyright © 2001 ARM Limited. All rights reserved.
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12.3

Clocks and clock gating

There are three clock domains in the core and one clock for the dedicated cellsin the
wrapper:

GCLK Isthe largest clock domain within the core.

HCLK Is delay-matched with GCLK. HCLK also drives some shared
wrapper cells.

TCK is not synchronized with any other clock domain. It must have

separate clock control during the capture cycle.

A1020WCLK Isthe wrapper clock. Itstiming is not perfectly delay-matched
with any of the other clocks, so take care to prevent hold time
failuresduring test. In production scan mode, A1020WCL K must
be 180° +8% out of phase with GCLK. In serial core test mode
A1020WCLK must be in phase with GCLK.

Table 12-7 shows the scan chains and the related clock domains.

Table 12-7 Scan chain clocks

Maximum Clock
Chain name Scan-in Scan-out chain length domain
Chain 23 A1020SCANIN23 A1020SCANOUT23 305 GCLK/TCK
Chain 22 A1020SCANIN22 A1020SCANOUT 22 336 GCLK
Chains 20-0 A1020SCANIN[20:0] A1020SCANOUT[20:0] 377 GCLK
Chain 21 SCANIN21 A1020SCANOUT21 332 GCLK/HCLK
Wrappers2and 1  A1020WSCANIN[2:1] A1020WSCANOUT[2:1] 257 A1020WCLK
Wrapper 0 A1020WSCANINO A1020WSCANOUTO 320 HCLK

12.3.1 Scan mode clocking

The ARM 10 processor patterns are created with GCLK and HCL K pin equivalenced.
They aways have the same activity. You can drive both of these clocks from one clock
source. In other words, the test patterns expect GCLK and HCLK to arrive
coincidentally. The timing from the input clock pin or pins must be delay-matched to
the GCLK and HCLK port as shown in Figure 12-1 on page 12-9.

12-8
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Figure 12-1 Production scan mode clocking

A1020WCLK is 180° out of phase of GCLK during production scan mode and any
wrapper mode as shown in Figure 12-1. Thisisto prevent hold timing errors because
GCLK and A1020WCLK are not perfectly delay-matched within the core.
A1020WCLK can be created by inverting GCLK, but the timing of these two signals
to the ports of the ARM 10 processor must be closely matched. TCK is not
delay-matched with any other clock. During the capture cycle, TCK isnever toggled at
the sametime as any other clock on the ARM10 processor. There arelock-up latchesin
the scan chainswherever they cross clock domainsto allow safe shift. Thetimingto the
TCK port should be ¥4 of GCLK.

Note

Due to the mixture of shared and dedicated wrapper cells in the wrapper scan chain,
A1020W SCANEN isthe scan enablefor both the HCL K and A1020WCLK domains.
To prevent setup or hold time issues for either clock edge, position the edges of
A1020W SCANEN carefully during use of the wrapper.

ARM DDI 0237A
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12.3.2 Clocking in serial core test mode

12.3.3 Clock gating

During serial core test mode, all scan enables must remain asserted. All clocks are
coincident as shown in Figure 12-2. The scan chains in the ARM 10 processor are
concatenated into one scan chain with the wrapper scan chain attached last. Thereisa
lock-up latch on the end of the wrapper scan chain. There are also lock-up latches
wherever two scan chains from different clock domains are connected.

eewrerk [ | | [ L [ [ |

ek [ L L L L L |

we | [ L L L

Figure 12-2 Clocking in serial core test mode

A1020DFT CKEN and A1020DFTWCKEN are the clock gating signals that gate
GCLK and A1020WCLK respectively. Whilethese signals are enabled, HCLK isnot
gated. In functional mode, A1020DFT CK EN must be enabled and
A1020DFTWCKEN should be disabled. A1020DFT CKEN must be enabled
whenever GCLK isused. A1020DFTCKEN can be disabled when GCLK is hot
needed. A1020DFTW CKEN must be enabled when A1020WCLK is used.
A1020DFTWCKEN must be disabled when A1020W CLK is hot used.

12-10
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12.4  Wrapper cells

This section describes the different kinds of wrapper cells:
. Dedicated input and output wrapper cells

. Reset dedicated wrapper cell on page 12-12

. Direct control of reset on page 12-14

. Shared wrapper cell on page 12-14.

12.4.1 Dedicated input and output wrapper cells

Figure 12-3 on page 12-12 shows adedicated input wrapper cell and a dedicated output
wrapper cell.
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Figure 12-3 Dedicated input and output wrapper cells

12.4.2 Reset dedicated wrapper cell

Thereisathird type of wrapper cell designed for asynchronousreset inputs. Figure 12-4
on page 12-13 shows the elements of the reset dedicated wrapper cell.
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Figure 12-4 Reset dedicated wrapper cell

During external test mode, the safe gate on the reset wrapper cells enables the reset of
the core to reduce power and to keep the core safe. In addition, all asynchronous resets
are directly controllable during scan mode.

The ARM 10 processor has three asynchronous reset inputs:

. HRESETN
. SFRESETN
. NTRST.

The HRESETN and SFRESETN ports do not have standard reset wrapper cells. The
behavior is basically the same as shown in Figure 12-4, except that the
A1020DFTRESET signal does not override thesetwo signalsuntil after thelogicinthe
power manager block (see Figure 12-5 on page 12-14). The HRESETN pin must be
controllable by an external pin to reset the power management block at the beginning
of each test pattern. This signal must make single-cycle test timing to the flip-flopsin
the power manager.
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Figure 12-5 HRESET and SFRESET wrapper cell

12.4.3 Direct control of reset

The A1020DFTRESET port is a separate port that must be directly connected to apin
for direct control of the reset during test.

Ininternal test mode, A1020SAFE can be asserted so that the values at the output of the
core are held in a steady state.

In external test mode, A1020RST SAFE can be asserted, putting the TCK domain of
the core into reset during external test mode.

12.4.4 Shared wrapper cell

Figure 12-6 on page 12-15 shows a shared wrapper cell. Shared wrapper cells can only
be used on registered inputs or outputs, that is, on inputs or outputs on which registers
arethe closest element to the port. The shared cellsin thiswrapper areal controlled by
HCLK.
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Figure 12-6 Shared wrapper cells

UDLTEST configuresthe wrapper chain so that only thewrapper cells connected to the
HCLK domain, all shared, are used, as shown in Figure 12-7 on page 12-16. This
provides a shorter wrapper chain while testing unwrappered logic connected to the
HCLK domain of the ARM10 core.

ARM DDI 0237A
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Figure 12-7 HCLK domain wrapper chain isolation

Caution

The following input ports do not have wrapper cells:
. HRESPI[1:0]

. HRESPD[1:0].

Wrapper cells are for observing logic external to the core during external scan test
mode. If the wrapper cells are not there, and the wrapper is used during test, any logic
connected to these ports cannot be observed, and test coverage is affected.

A workaround is to register any external logic connected to these inputs.
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The ARM 10 processor has three asynchronous reset inputs:
. SFRESETN

. HRESETN

. NTRST.

The reset sequence for testing external logic using the ARM 10 processor wrapper
reguires the use of A1020SCANM ODE and A1020DFTRESET.

A1020SCANM ODE must be set (see Table 12-24 on page 12-43 and Table 12-25 on
page 12-44 for recommended test signal configurations during external testing), and
A1020DFTRESET must toggle at the beginning of each pattern that usesthe ARM10
wrapper to prevent bus contention in the core during external testing.

ARM DDI 0237A
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12.6 Memories

The ARM 10 processor memories are all tested with memory BIST. Thereisalso atest
mode that allows the cache to have dataloaded directly into it to operate the core. The
configuration port values for these test modes are in Table 12-8.

12.6.1 Memory BIST and cache upload/download testing

The ARM 10 processor supports memory BIST for RAM/PA/flag/CAM arraysinside
the ICache, DCache, IMMU, and DMMU blocks. Industry standard patterns and an
ARM -specific pattern are avail able to the user, enabling specific controls of sequences
to support textbook fault models as well as high-performance cache RAM failure
mechanisms. Insertion of test logic occurs away from the physical cache, piggybacking
preexisting data paths. This allows for zero test timing impact on the cache signal
interface while supporting full speed test.

The ARM 10 processor also supports an extended feature of BIST that enables the user
to upload binariesinto the | Cache and DCachefor test execution. Thisallowsfor native
code based testing in an SoC where specific [/Os are not necessarily availableto outside
interfaces.

BIST test execution and cache download use the A1020SCANOUT[15:0] bus. This
bus delivers data from cache downloads and provides real-time BIST execution
information.

The ARM 10 processor is a hard core. BIST and cache upload execution patterns are
delivered in Condensed Reference Format (CRF) and are supplied with arecommended
test suite.

12.6.2 Test port signal configuration summary

A1020SCANIN[15:0] and A1020SCANOQUT]15:0] are used for BIST setup and data
transfer during upload and download. Table 12-8 shows the A1020TEST CFG[2:0]
values for uploads and downloads. The wrapper must be initialized before the | Cache
upload is started.

Table 12-8 Test pin configuration for upload, download, and BIST

A1020TESTCFG[2:0] Description

000 | Cache download
001 DCache download
010 | Cache upload
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Table 12-8 Test pin configuration for upload, download, and BIST (continued)

A1020TESTCFG[2:0] Description

011 DCache upload

100 CAM¢g/flags/PAs upload

101 CAM¢g/flags/PAs download

110 BIST controller reset and instruction load
111 BIST test

12.6.3 Memory BIST test execution

Thetest sequenceisasfollows:

1.  Perform ahard reset and then initialize the signals as described in Table 12-22 on

page 12-40.

2. With A1020TESTCFG[2:0] = 0x6, set A1020SCANIN[15:0] to load BIST

instruction.

3. WIith A1020TEST CFG[2:0] = 0x7, continually monitor

A1020SCANOUT[15:0Q].
4.  Repeat steps 2 and 3 for the next test.

12.6.4 BIST instruction format

The BIST instruction register configures the BIST engine for operation. Writing 0x6 to
A1020TESTCFGJ[2:0] at the start of atest sequence asserts BIST engine reset and
loads the BIST instruction register from the A1020SCANIN[15:0] bus. The last
positive edge of GCLK delivered to the ARM 10 processor during BIST engine reset
loads the instruction register. Allow a setup and hold time of more than two GCLK
cyclesfor BIST instruction register loading before starting execution.
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Table 12-9 shows the BIST instruction fields captured from A1020SCANIN[15:0]
when A1020T ESTCFG[2:0] = 0x6.

Table 12-9 Encoding of BIST instruction fields

A1020SCANIN bits  Description

[15:12] Engine control
[11:8] Block under test
[7:4] Dataword

[3:0] BIST pattern

Engine control description

Table 12-10 describes the BIST instruction register control field.

Table 12-10 Encoding of BIST engine control field

A1020SCANIN[15:12] Description

0000 Normal BIST test execution; runs to completion.
Used during BIST test.

0001 Stop on error; stops 2-3 cycles after error detection.
Used during upload tests.

1111 Run cache test; executes native code on completion of upload.
Used during upload tests.

Block description address size

Table 12-11 on page 12-21 shows how the BIST block under test field selectsblocksin
terms of x and y coordinates.

Note
CAM BIST does not include compare logic.
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Table 12-11 Encoding of BIST block under test field

A1020SCANIN[11:8] Block Address size (X, Y)
0000 Cache CAM 211 (26, 25)

0001 Cache RAM 211 (26, 25)

0010 Cache PA, flags 211 (26, 25)

1000 MMU CAM 26 (26, 20)

1001 MMU RAM 26 (26, 20)

1010 MMU PA 26 (26, 20)

Data word description

Table 12-12 shows how the BIST dataword field selects the data word.

Table 12-12 Encoding of BIST data word field

A1020SCANIN[7:4] Test Description

XXXX BIST Root data word.
xxx0 Upload Parallel upload; instruction and data side cache upload.
xxx1 Upload  Serial upload; instruction or data side cache upload.

BIST patterns

Table 12-13 shows how the BIST pattern field selects test patterns. N is the number of
times each memory cell is accessed.

Table 12-13 Encoding of BIST pattern field

A1020SCANIN[3:0] Description N
0000 WriteSolids 1
0001 ReadSolids 1
0010 WriteCkbd 1
0011 ReadCkbd 1
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Table 12-13 Encoding of BIST pattern field (continued)

A1020SCANIN[3:0] Description N
0100 RowMarch, wordline fast 6
0101 ColMarch, bitline fast 6
0110 Bang, bitline fast write/read stress tests 18

1111

Bang, bitline fast write/read stress tests 2

BIST pattern descriptions

All BIST execution is performed with a physically mapped address space. This means
that the least significant Xaddress switches between adjacent rows. For example,

LSB + 1 switches between every second row. Yaddress spaceisalso physically mapped
for efficient and direct targeting of memory faults with the supplied patterns.

Table 12-14 lists the definitions for terms used in the BIST patterns.

Table 12-14 BIST pattern terms and definitions

Term

Definition

Column

Dimension in array parallel to bitlines on same sense amp.

Row

Dimension in array parallel to wordlines.

Row fast / Xfast

Target cell moves along bitlines before moving to next column.

Col fast/ Yfast

Target cell moves across bitline pairs before row/wordline.

Xfast increment

Target cell begins nearest sense amp, moves away.

Xfast decrement

Target cell begins furthest point from sense amp, moves closer.

Yfast increment

Yaddr space moves from 0 to maximum, east-west rel ationship.

Yfast decrement

Yaddr space moves from maximum to O, opposite of increment.

The following patterns are used:

WriteCkbd Is performed Xfast. This pattern is 1N, writing only. Data polarity is set
by xor(Xaddr0,Yaddr0).

ReadCkbd Isperformed Xfast. Thispatternis 1N, reading only. Data polarity set by
xor(Xaddr0,Yaddr0).
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WriteSolids Isperformed Xfast. This patternis 1N, writing only. Data polarity = true.
ReadSolids Isperformed Xfast. Thispatternis 1N, reading only. Datapolarity = true.

RowMarch Isperformed Xfast. This 6N pattern has the following sequence:
1. WriteSolids, initialize array.
2.  Read data/write databar increment.
3. Read databar/write data decrement.
4. Read datasolid.

ColMarch Is6N and performed Y fast with the same sequence as RowMarch.

PttnFail Is performed Xfast. It executes a WriteSolid pattern followed by a
ReadSolid. Fails are injected by reversing data polarity on select
addresses during ReadSolid. This pattern is required to insure BIST
detection logic at the target array is functional.

Bang Is 18N, and performed Xfast, executing consecutive multiple writes and
reads on a bitline pair.

The sequence is as follows:
1. WriteSolid, initialize array.
2. Read datatarget, write databar target, repeat write databar six times

This segment bangs bitline pairsinsuring proper equalization after
writes. Insufficient equalization or precharge causes slow reads
when opposite datais read from the same bitline pair. Slow reads
in self-timed caches result in functional failure not found in
single-shot algorithmslike March C-. This segment stresses bitline
pullup and equalization so that a memory cell read may have to
overcome an opposite bitline differential, missing critical
sense-amp timing.

3. Repesat read databar target fivetimes, write datarow O, read databar
target, and write data target.

This segment walks down a bitcell, writes opposite data on that
bitline pair, and reads target cell data. This failure mechanismis
lesscommon in 6T RAM cells compared to 4T or DRAM.

Using the sacrificia row also helps detect open decoder faultsin
the Xaddr space (Yaddr not subject to fault class architecturally) in
the absence of Gray code pattern sequences. This pattern detects
stuck-at faults, but its primary purpose isto address the analog
characteristics of the memories. It is more effective in stressting
bitline recovery than March C-.

4. Read data, verify array.

ARM DDI 0237A Copyright © 2001 ARM Limited. All rights reserved. 12-23



Design for Test

12.6.5 Mapping and description of memory BIST test monitors

The A1020SCANOUT([15:0] bus provides real -time data, allowing monitoring of test
progress and pass/fail behavior. The bus becomes active for strobing after
A1020TEST CFGJ2:0] are changed from ox6 (BIST reset) to ox7 (BIST execute). On
completion of the algorithm, the finished flag is set, and all A1020SCANOUT([15:0]
outputs are sourced by registered sticky signals.

Table 12-15 A1020SCANOUTI[15:0] mapping

Bits Description

[15:10] Unused

9 BIST done flag, current algorithm finished

8 Xaddr expire, set whenever Xaddr = maxAddr
7 Yaddr expire, set whenever Yaddr = maxAddr
6 Unused

5 |-side MMU failure

4 Data-side MMU failure

3 Instruction-side CAM/flag failure

2 Data-side CAM/flag failure

1 Instruction-side RAM failure

0 Data-side RAM failure

The SCANOUT bus datameetstiming requirementsat the ARM 10 processor interface.
Because this bus can be routed throughout the SoC, timing failures might occur on the
SCANOUT strobe at the tester. Timing delay between the ARM 10 processor interface
and external pins must be accounted for intiming. Do not set_false path thisbus, even
though scan is a substring of the net name.

Note

Failure flags toggle throughout test during normal BIST execution whenever a change
infail or pass status occurs. This information can be datalogged to gain understanding
of fail behavior. Once the BIST done flag has been set, fail flagsare held if any failures
were observed during test.
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Direct bit mapping of array failuresis not available in this version of the ARM10

processor. Understanding of the failure type can be obtained by:

. analyzing real timefailure flags on A1020SCANOUT

. running acomprehensive BIST test suite, for example, using solids and dataword

changes

. using the cache download mechanism described in Cache upl oad/download,
manufacturing test on page 12-33.

Future ARM10 processors might have more direct bit mapping featuresinstalled. The
cache dump mechanism does not support the MM U but does allow for determination of
failing bits found during test.

Eachreal-timefailureflag hasalatency inrelation to address expire flagsdueto internal
pipelines. The information in Table 12-16 can be used to determine failure address.
Cyclett is the cycle count between address expire and fail flag observations.

Table 12-16 Failure address formulas

Block Latency  Xaddr formula Yaddr Formula

ICache RAM 6 (cyclett- 64 x int((cycle#t- 6) / 128)) / 2 int((cyclet - 6) / 128)
DCache RAM 8 (cycle#t - 64 x int((cyclett - 8) / 128)) / 2 int((cycle# - 8) / 128)
ICache CAM 7 (cyclett- 64 x int((cycle#t- 7)1 128)) / 2 int((cyclet#t - 7) / 128)
DCache CAM 7 (cycle#t - 64 x int((cyclet - 7) /1 128)) / 2 int((cycle# - 7) / 128)
ICache PA 7 (cyclett - 64 x int((cycle#t - 7) /1 128)) / 2 int((cyclet - 7) / 128)
DCache PA 7 (cyclett - 64 x int((cycle#t - 7) /1 128)) / 2 int((cyclet - 7) / 128)
MMU RAM 7 (cycle#t - 64 x int((cyclett- 7)1 128)) / 2 int((cycle# - 7) / 128)
MMU CAM 7 (cycle#t - 64 x int((cyclett- 7)1 128)) /2 int((cycle# - 7) / 128)
MMU PA 7 (cyclett- 64 x int((cycle#t- 7)1 128)) / 2 int((cyclet#t - 7) / 128)

Figure 12-11 on page 12-32 shows an example failure waveform highlighting
Xaddr = 1, Yaddr = O failure in the | Cache and DCache.

ARM DDI 0237A
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12.6.7 Memory BIST test suite

Vectorsare provided in CRF format to exercise the defined test interface. The sequence
1-4 provides simple gross functional stuck-at tests. Patterns 1-5 establish fundamental
cell integrity in a manner that provides gross functional yield data prior to engaging
stress tests.

The pattern set comprises data words 0x9 and 0xA used in the following sequence:

1.  WCkbd
Dataword: 0x9

2. RCkbd 5s
Dataword: 0x9

3.  WCkbdAs
Dataword: 0xA

4, RCkbd
Dataword: 0xA

5. Repeat patterns 1, 2, 3, 4 with 200ms extreme voltage pause to insure adequate
data retention.

6.  Y-fast March Decrement
Dataword: 0x6
Thisisafundamental column fast pattern.

7. X-fast BANG
Dataword: 0x0
This provides hitline stress testing.
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12.7 Memory BIST waveforms

The waveform diagrams associated with common memory BIST operations are shown
in the following sections:

. Reset followed by BIST test

. Test completion followed by new test on page 12-28
. Exampl e of real-time failure on page 12-30

. Test termination, failure observed on page 12-32.

12.7.1 Reset followed by BIST test

Figure 12-8 shows on release of reset assertions that the A1020SCANIN[15:0] bus
value of 0x02f0 is captured while A1020T ESTCFG[2:0] = ox6. BIST test executionis
allowed once A1020TESTCFG[2:0] = 0x7.

HRESETN /

SFRESETN \ /

A1020DFTRESET

A1020SAFE

A1020WCLK

A1020DFTCKEN

A1020DFTWCKEN

GCLK
HCLK

TCK

A1020TESTCFGJ[2:0] \

SCANIN[15:0]

Figure 12-8 Reset followed by BIST test
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Table 12-17 shows the A1020SCANIN[15:0] values for reset followed by BIST test.

Table 12-17 Instruction fields for reset followed by BIST test

A1020SCANIN bits  Value Description

[15:12] 0000 Normal test execution
[11:8] 0010 Cache PA/flags

[7:4] 11 Root dataword

[3:0] 0000 WriteSolids pattern

12.7.2 Test completion followed by new test

In Figure 12-9 on page 12-29 compl etion of WriteSolidstest occurs. Both Xaddr expire
8 and Yaddr expire 7 are set when the respective maxAddr occurs as defined in

Table 12-15 on page 12-24. Completion flag 9 is set and no failures are observed. A
second test isinitiated by writing A1020T EST CFGJ[2:0] = 0x6 and beginning the next
test, column march.
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Figure 12-9 Test completion followed by a new test
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Table 12-18 shows the values for the operations described in Figure 12-9 on
page 12-29.

Table 12-18 Instruction fields for test completion followed by new test

A1020SCANIN bits  Values Description

[15:12] 0000 Normal test execution
[11:8] 0001 Cache RAM

[7:4] 1110 Root data word

[3:0] 0101 Column march, Yfast

12.7.3 Example of real-time failure

Figure 12-10 on page 12-31 shows a real-time failure flag being set. The fail was
created for Xaddr = 0x1 and is shown for the RW increment portion of the test,

pattern = oxf isPttnFail. The WriteSolids portion of the al gorithm compl eted when both
X addr and Yaddr expires were set.
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A1020DFTRESET

A1020SAFE
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A1020DFTCKEN
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A1020TESTCFG[2:0]

SCANIN[15:0]
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Yaddr_expire SCANOUT? \

fail_flags

fail_flag4
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fail_flag1 ﬂ
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Figure 12-10 Setting a real time failure flag
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12.7.4 Test termination, failure observed

Figure 12-11 showsthe compl etion of the pattern fail test. A sticky version of thefailure
flag is set when the BIST_DONE9 signal is asserted. These values remain on the bus
until a BIST engine reset is performed.

A1020DFTRESET

A1020SAFE

A1020WCLK

A1020DFTCKEN

A1020DFTWCKEN

GCLK
HCLK

TCK

A1020TESTCFG[2:0] >< ><

SCANIN[15:0] ><

bist DONE SCANOUT[9]

Xaddr_expire SCANOUTI8] /

Yaddr_expire SCANOUT[7]

j><
—

fail_flags

fail_flag4

fail_flag3

fail_flag2

fail_flag [\
fail_flag0 [\

Figure 12-11 Completion of pattern fail test
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12.8 Cache upload/download, manufacturing test

The ARM10 processor ispartial scan and does not achieve high coverage by Automated
Test Pattern Generation (ATPG) aone. The nonscan area of the processor is tested by
partial scan ATPG and is supplemented with the cache upload test mechanism. To
minimize design impact, the memory BIST logic was shared for this feature which
allows usto directly load caches with functional test binariesin the ARM 10 processor.
Thistest can be performed in an SoC environment without external ARM 10 processor
bus transactions. External bus transactions and their supporting logic are fully scanned
and are tested by ATPG. L1 caches and flags are loaded and downloaded by this
mechanism but the MMU arrays are not supported. All tests supplied by ARM are
locally resident in the L1 and self-deterministic. Expected results are also loaded for
comparison against CPU-created results.

It isassumed that testing the ARM 10 processor in an SoC environment occurs with no
access to functional pins. Therefore, all functional patterns are self-contained (no
external bus accesses are allowed) and self-deterministic.

All cache upload patterns are provided and fault graded by ARM Ltd. The upload
information described here is for information purposes only. The upload feature is
designed to maximize ARM 10 test coverage and cannot be used to test logic external to
the ARM10 processor.

12.8.1 Test port signal configuration

Table 12-8 on page 12-18 shows the values for A1020T ESTCFG[2:0] for cache
upload and cache downl oad tests. A1020SCANIN[15:0] and A1020SCANOUT][15:0]
are used as a data transfer bus. They are also used for monitoring of cache-loaded test
patterns.

12.8.2 Cache upload test execution

Cache upload tests that use JTAG must be able to disable the wrapper during test in
order for valid TDO to be created. During cache upload test execution,

A1020WM UXINSEL and A1020SAFE need to toggle. See the waveform in Cache
upload test execution on page 12-35.

The sequence of operationsis as follows:
1.  Performahard reset.

2. Loadthewrapper chain with the required valuesto prevent the external busfrom
disrupting execution.

NFIQ, NIRQ, ISYNC, and CPBOUNCEEL1 are set. All other input signals are
cleared. DBGEN is set for some patterns.

ARM DDI 0237A
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3. Initialize A1020SCANIN[15:0] to set BIST controls/target array with
A1020TESTCFG[2:0] = ox6.

The pattern selected must be WriteSolids/ReadSolids.

For the last array upload, write oxF to the engine control field,
A1020SCANIN][15:12], to execute code on completion. In this mode, the BIST
controller performs atest-only soft reset to the ARM 10 processor. Thisoverrides
default CP15 POR statesto allow for immediate execution from caches. Writing
0xF to the engine control field before the last array being loaded causes
UNPREDICTABLE behavior.

4.  Write 0x0-0x5 to A1020TEST CFG[2:0] to upload or download values using the
A1020SCANIN[23:0] and A1020SCANOUT([23:0] buses.

The BIST controller increments address every fourth cycle when
A1020TESTCFGJ[2:0] = 0x0-0x5. This alows 64-bit entries to be constructed.
TheBIST controller creates sequential addressing and enables pathsto thearrays.
See BIST instruction format on page 12-19 for encoding of BIST instructions.

5. Write A1020TESTCFG[2:0] = ox6 for early termination of upload for patterns
lessthan array size.

6.  Repeat steps 3-5 for next array.

Note

The upload/download configuration can be terminated at any time by setting
A1020TESTCFGJ[2:0] = ox6. This allows for reduced vector count when loading
programsthat do not require the entire address space. Perform an early termination only
after thelast required entry has been compl etely written. Termination during the upload
of the last address produces UNDEFINED data for that cache line.
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Figure 12-12 Cache upload test execution
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12.8.3 Cache download test execution and waveforms

The cache download feature can be used for determining cache values at any time.
Such reads of the caches are destructive and the device should be reset after datais
downloaded. There are four pattern sets delivered for cache download. Datal ogs of
download tests can be used to bitmap failing bits. The downloads consist of reading all
zeros, ones, and reading of checkerboard backgrounds produced by root datawords of
0xA and 0x5. The expected data pattern sets provided are those commonly found at the
termination of provided BIST test patterns. A supplied README file describes cycle
numbers where data entries appear on the SCANOUT bus.

When using such patterns for debug, us care to insure not to cause a device reset
between BIST test execution and download. Such resets invalidate cache entries.

12.8.4 Execution of binary test download

When A1020TEST CFG[2:0] moves from reset (0x6) to execution (0x0), |Cache
download begins, as shown in Table 12-8 on page 12-18. The first data read occurs 11
cycleslater. Table 12-19 shows the cache download values for A1020T ESTCFG[2:0].

Table 12-19 Instruction fields for cache download

A1020SCANIN bits  Values Description

[15:12] 0000 Normal test execution
[11:8] 0001 Cache RAM

[7:4] Dontcare -

[3:0] 0001 ReadSolids

Figure 12-13 on page 12-37 shows the execution of cache download start.

12-36
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A1020SCANMODE

A1020TEST

A1020SAFE

A1020DFTRESET
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HRESETN
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A1020WMUXINSEL

A1020WSCANEN

A1020WCLK

SCANIN[15:0] ><

A1020SCANOUT[15:0] X X | AN D O 0

Figure 12-13 Execution of cache download start

12.8.5 Transition of download tests

Figure 12-14 on page 12-38 shows the transition of download tests. Completion of
|Cache load isfollowed by aBIST engine reset and aload of the same engine control
register with settings 0x01C1. A1020TESTCFG[2:0] = ox1, which defines DCache
download. Other arrays are read by repeating the process with A1020TESTCFG[2:0]
settings shown in Table 12-8 on page 12-18.

ARM DDI 0237A Copyright © 2001 ARM Limited. All rights reserved. 12-37



Design for Test
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SCANIN[15:0] X )(
atozoscanoutriso] 0 0 O O O
Figure 12-14 Execution of binary test download
Note

MMU download is not supported.
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This section contains signal test value tables for the following test modes:

. Test signals for ATPG testing

. Test signalsin functional mode on page 12-40

. Test signalsin cache upload mode on page 12-41

. Test signalsin external test wrapper mode with one wrapper chain on page 12-43
. Test signalsin external test wrapper mode with three wrapper chains on

page 12-44.

Table 12-20 shows the ARM10 test signal values for ATPG testing.

Table 12-20 Test signals for ATPG testing

Test signals Connection

A1020TEST 1

A1020SCANMODE 1

A1020DFTCKEN 1

A1020DFTWCKEN 1

A1020SCANEN Connect to an external pin

A1020WSCANEN Connect to an external pin

A1020DFTRESET Connect to an external pin

A1020M UXINSEL 1

A1020M UXOUTSEL 0

A1020SAFE 1 recommended

A1020RST SAFE 0

A1020SCANIN Connect to externd pins

A1020SCANOUT Connect to externd pins

UDLTEST 0if 6-chain pattern or serial coretest mode, else 1

SCORETEST 0, unless serial scan pattern

SCANMUX6 Dependent upon pattern set, see Scan chain configurations on page 12-6
SCANMUX12 Dependent upon pattern set, see Scan chain configurations on page 12-6

ARM DDI 0237A
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Table 12-21 shows test signals valuesin functional mode.

Table 12-21 Test signals in functional mode

Test signals Connection
A1020TEST 0
A1020SCANMODE 0
A1020DFTCKEN 1
A1020DFTWCKEN 0
A1020SCANEN 0
A1020WSCANEN 0
A1020DFTRESET 0 recommended
A1020M UXINSEL 0

A1020M UXOUTSEL 0

A1020SAFE 0
A1020RSTSAFE 0
A1020SCANIN 0 recommended
A1020SCANOUT -

UDLTEST NA
SCANMUX6 NA
SCANMUX12 NA

Table 12-22 shows the test signal values for memory BIST testing.

Table 12-22 Test signals during BIST testing

Signal Value
A1020SCANMODE 0
A1020SCANEN 0
A1020DFTCKEN 1
A1020DFTRESET 0
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Table 12-22 Test signals during BIST testing (continued)

Signal

Value

A1020DFTWCKEN

0 recommended

A1020WSCANEN

0 recommended

A1020WM UXINSEL

0 recommended

A1020WMUXOUTSEL 0 recommended
A1020SAFE 1 recommended
A1020RST SAFE 0
A1020TEST 1
A1020TESTCFG[2:0] 110 = BIST engine reset
111 = BIST execution
SFRESETN Connect to external pin
HRESETN Connect to external pin

Table 12-23 shows test signals values in cache upload mode.

Table 12-23 Test signals in cache upload mode

Test signals Connection
A1020TEST 1

A1020SCANM ODE 0

A1020DFTCKEN 1

A1020DFTWCKEN Connect to external pin
A1020SCANEN Connect to external pin
A1020WSCANEN 1

A1020DFTRESET 0

A1020M UXINSEL

Connect to external pin

A1020M UXOUT SEL

0

A1020SAFE

Connect to external pin

A1020RSTSAFE

0
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Table 12-23 Test signals in cache upload mode (continued)

Test signals Connection
A1020SCANIN Connect to external pins
A1020SCANOUT Connect to external pins
UDLTEST 0

SCANMUX6 1

SCANMUX12 0

SFRESETN Connect to external pin
HRESETN Connect to external pin
TDI Connect to external pin
TDO Connect to external pin
TMS Connect to external pin
NTRST Connect to external pin
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Table 12-24 shows test signals values in external test wrapper mode with one wrapper
chain.

Table 12-24 Test signals in external test wrapper mode with one wrapper chain

Test signal Connection
A1020TEST 1

A1020SCANMODE 1

A1020DFTCKEN 0

A1020DFTWCKEN 1

A1020SCANEN 0

A1020WSCANEN Connect to an external pin
A1020DFTRESET Connect to an external pin
A1020M UXINSEL 0

A1020M UXOUT SEL 1

A1020SAFE 0

A1020RSTSAFE 1 recommended
A1020SCANIN 0

A1020SCANOUT Not needed
A1020WSCANOUT Connect to a pin or another scan chain
A1020WSCANIN Connecttoapin
UDLTEST 0

SCANMUX6 1

SCANMUX12 0

SFRESETN Connect to externd pin
HRESETN Connect to externad pin

ARM DDI 0237A

Copyright © 2001 ARM Limited. All rights reserved. 12-43



Design for Test

Table 12-25 showstest signalsvaluesin external test wrapper mode with three wrapper

chains.

Table 12-25 Test signals in external test wrapper mode with three wrapper chains

Test signals Connection
A1020TEST 1

A1020SCANMODE 1

A1020DFTCKEN 0

A1020DFTWCKEN 1

A1020SCANEN 0

A1020WSCANEN Connect to an external pin
A1020DFTRESET Connect to an external pin
A1020M UXINSEL 0

A1020M UXOUT SEL 1

A1020SAFE 0

A1020RST SAFE 1 recommended
A1020SCANIN 0

A1020SCANOUT Not needed
A1020WSCANOUT Connect to a pin or another scan chain
A1020WSCANIN Connect to apin
UDLTEST 0

SCANMUX6 1

SCANMUX12 0

SCORETEST 0

SFRESETN Connect to externad pin
HRESETN Connect to apin

12-44
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Chapter 13
Power Manager

This chapter describesthe power manager and its extensible, memory map independent
ARM 10 processor interface. It contains the following sections:

. About the power manager on page 13-2

. ARM10 processor power modes on page 13-3

. System control coprocessor on page 13-8

. Programming examples on page 13-13

. Power manager interface on page 13-15

. Timing on page 13-16

. Software exampl e code sequences on page 13-20.
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13.1 About the power manager

Typical system-level power manager functions are built as application-specific
hardware. For example, memory-mapped hardware registers are programmed to turn
off subsystem clocks. In high-performance processes, however, |eakage can be
significant even when clocks are stopped, and a generic power management interfaceis
required.

The ARM 10 power manager interface is not memory-mapped and is extensible to
accommodate process-driven voltage ranges and frequencies.

The NORMAL and OFF states are the minimum state set required to support power
management.

13.1.1 Power management hardware requirements

In a system that includes a single or multiple processors, each ARM 10 processor must
have a power management isolation layer. The lock-out layer isolates the ARM 10
processor from the system bus, placing the ARM 10 processor busin the IDLE state.
Thelock-out layer issimilar to the layer that isprovided inthe ARM 10 processor cache
for isolation of clock, reset, and control signals from ARM 10 processor signals.

13-2
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13.2 ARM10 processor power modes

The processor supports the power modes listed in Table 13-1.

Note

In this chapter, the term processor core state refers to the state of :
. all banked registers

. the CPSR

. theMMU TLB

. the system control coprocessor, CP15

. the debug coprocessor, CP14

. the VFP10 coprocessor

. the ETM 10.
Table 13-1 ARM10 processor power modes
Mode Description Recovery
time

RUN Processor executing instructions and able to program the power manager. > 1cycle
STANDBY Processor clocks stopped. > 10t cycle

Return to RUN mode on interrupt request or external debug request.
DORMANT Processor core state must be saved in external memory. =102 cycle

If processor and caches have separate power rails, caches held in reduced-leakage state.

Return to RUN mode on soft reset or power-on reset.
SHUTDOWN  Processor core state and cache states must be saved in external memory. = 10% cycles

Processor and cac owered down.
Return to RUN mode on hard reset.

The recovery time is the time it takes the processor to reenter RUN mode and resume
executing instructions. Whilein RUN mode, the recovery timeis the time it takes the
processor to change from one system power mode to another.

All normal transitions from RUN mode are due to commands written under program
control. The power manager controls the sequencing back to RUN mode from any of
the power-saving modes so that voltage supply rails and clocks are running after the
appropriate wakeup or reset condition.

ARM DDI 0237A
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Figure 13-1 is a state diagram of the four power modes of the ARM 10 processor.

Full power
Interrupt Enter
wakeup STANDBY
STANDBY
10xx
Low power Sof; r:((ajset Enter
DORMANT
Interrupt wakeup
DORMANT /
01xx
Hargnrgzset Enter
SHUTDOWN
Interrupt wakeup
No power SHUTDOWN /

00xx

Hardware transitions Programmed commands

Figure 13-1 Power manager state diagram

Hardware transitions are caused by power supply problemssuch aslow battery reserves
or power supply regulation failure.
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Table 13-2 summarizes the effects of the ARM 10 processor and system power modes.

Table 13-2 Power mode Vpp states

U
8~
w —
e ()
g sc g
© o= Ja) S
» SHaY fa) o e
o [=ge o >
— o 0O 4 > o E
z 25 8 2 S 2 Dpescripti
< 22 O 5 8 2 escription
RUN 1 On On On On Operating speed depends on clock
frequency and voltage level of Vpp.
STANDBY 10xx  Stop On  On  On Proc&sso_ r clocks stopped. Minimal
dynamic current
DORMANT  Olxx None Off On On 10Cessor corestale must besavedin
external memory. Leakage current only.
None Off Off On )
Processor core state must be saved in
None Off Off On external memory.
No leakage from processor or cache.
SHUTDOWN 00xx None Off Off On
Processor core state must be saved in
None Off Off Off external memory.

No power.
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13.2.1 RUN mode

To determine how to return to RUN mode and resume execution, the ARM 10 processor
first requests the previous state from the power manager. Table 13-3 shows the restart
conditions for each previous state.

Table 13-3 Reentering RUN mode

Previous

state Restart

STANDBY Processor core state and cache states intact. If interrupt request wakes
processor, interrupt vector pointsto execution entry point. If external debug
reguest wakes processor, execution entry point is the instruction after the
onethat initiated STANDBY.

DORMANT Cache statesintact. Processor core state must be reloaded. Reset vector
points to execution entry point.

SHUTDOWN  Processor core state and cache states must be reloaded. Reset vector points
to execution entry point.

13.2.2 STANDBY mode

Do either of the following to put the processor in STANDBY mode:
. program the power manager to the IDLE state
. use the system control coprocessor, CP15, to issue a wait-for-interrupt command.

Note

Beforeentering STANDBY mode, software must enablewakeup by interrupt request or
external debug request.

When exiting STANDBY mode, the processor resumes program execution at one of the
following:

. the address pointed to by an interrupt vector if an interrupt request woke the
processor

. the address after the instruction that initiated STANDBY mode if an external
debug request woke the processor.

Software does not have to check the previous state of the power manager because no
hardware state has to be restored.
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13.2.3 DORMANT mode
To put the processor in DORMANT mode:
1.  Savethe processor core state.

2. Usethesystem control coprocessor, CP15, to issue arequest to enter DORMANT
mode.

In DORMANT mode, hardware removes power from the processor, leaving the caches
powered.

To exit DORMANT mode, do one of the following:
. issue a soft reset
. iSsue a power-on reset.

A soft reset isthe normal way to exit DORMANT mode, asit does not affect the cache
state. The processor then vectors to the soft reset routine, which must get the previous
state from the power manager so that it can restore the processor and MMU.

13.2.4 SHUTDOWN mode
To put the processor in SHUTDOWN mode:
1.  Savethe processor core state.

2. Save the cache state.

3. Usethe system control coprocessor, CP15, to issue arequest to enter
SHUTDOWN mode.

To exit SHUTDOWN mode:

1. I ssue a power-on reset.

2. Restorethe processor core state.
3.  Restorethe cache state.
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13.3 System control coprocessor

Coprocessor CP15 supports power management. CP15 has three registers to transmit
and receive data from the power manager. The functionality is similar to the debug
communications channel defined in CP14. The three registers are:

. Power manager status register
. Power manager receive data register on page 13-9
. Power manager transmit data register on page 13-10.

13.3.1 Power manager status register

The Power Manager Status Register (PMSR) is read-only. It controls synchronized
handshaking between the processor and the power manager. Figure 13-2 shows the
PMSR hit fields.

31 28 27

Version

SBZ WI|R

Figure 13-2 Power manager status register

Table 13-4 describes the PM SR bit fields.

Table 13-4 PMSR bit fields

Bits

Meaning

[31:28]

Contain afixed pattern that denotes the power manager architecture version
number of the hardware. The code returned for revision 0001 is thefirst currently
defined architecture.

[27:2]

SHOULD BE ZERO.

1

TheW flagis set when the transmit channel isempty and availablefor anew power
manager command. Writing acommand to the transmit dataregister clears W until
a handshake acknowledges receipt of the command. Reset sets W to indicate that
the power manager transmit data register is ready to accept new data.

The R flagis set when the power manager receive dataregister isfull and valid data
can be read from the channel. Reading the receive dataregister clears R. Reset sets
R to reflect the reason for waking up the processor.
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Software can read the status register using the following instruction. Dataisreturned in

register Rd:
MRC CP15, @, Rd, C15, Cl14, @

Writing to PM SR is UNPREDICTABLE.

13.3.2 Power manager receive data register

The Power Manager Receive Data Register (PMRDR) isread-only. WhentheR flagin
PMSR is set, valid data can be read from PMRDR. An acknowledgement is sent to the
power manager to indicate data acceptance. When the R flagin PMSR is cleared,
reading PMRDR is UNPREDICTABLE. Figure 13-3 shows the bit fields of the PMRDR.

31 30

E SBZ

State

SBZ

Figure 13-3 Power manager receive data register

Table 13-5 describes the PMRDR bit fields.

Table 13-5 PMRDR bit fields

Bits Meaning

31 Emulation flag. When exiting areset sequence, E reflectsthe last programmed state

of the system:

1 = power manager issued a command in emul ation mode
0 = power manager issued acommand in normal mode

[30:8]  SHOULD BE ZERO.

[7:4] System power state. When exiting a reset sequence, this field reflects the last

programmed state of the system:
1111 =TURBO

1110 = NORMAL

110x = SLOW

100x = IDLE

01xx = NAP

0011 = SLEEP

0010 = COMA

0001 = HIBERNATE

0000 = OFF

[3:0] SHOULD BE ZERO.
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Software can read the receive data register using the following instruction. Datais

returned in register Rd:
MRC CP15, @, Rd, C15, C14, 1

Writing to PMRDR is UNPREDICTABLE.

13.3.3 Power manager transmit data register

The Power Manager Transmit Data Register (PMTDR) iswrite-only. Whenthe W flag
in PMSR is set, new data can be written to PMTDR. An acknowledgement following
thewriteis sent to the power manager to indicate that new datais available. Writing to
PMTDR clears W. Writing to PMTDR when W is clear is UNPREDICTABLE. Figure 13-4

shows the bit fields of the PMTDR.

31 30

E SBZ

State

SBz

Figure 13-4 Power manager transmit data register

Table 13-6 describes the PMTDR bit fields.

Table 13-6 PMTDR bit fields

Bits Meaning

31 1 = power manager issued a command in emul ation mode
0 = power manager issued acommand in norma mode

[30:8]  SHOULD BE ZERO.

[7:4] System power state. When exiting a reset sequence, this value reflects the last

programmed state of the system:
1111 =TURBO

1110 = NORMAL

110x = SLOW

100x = IDLE

01xx = NAP

0011 = SLEEP

0010 = COMA

0001 = HIBERNATE

0000 = OFF

[3:0] SHOULD BE ZERO.
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Software can write the transmit data register using the following instruction. Datais
written using register Rn:

MCR CP15, @, Rn, C15, C14, 1

Reading PMTDR is UNPREDICTABLE.

13.3.4 Emulation mode

Emulation mode is used in a system to test both software and hardware behavior.
Commands areissued in normal mode causing the power manager to change the power
mode of the system and the voltagesin the core. A typical normal mode command use
isto change the mode from RUN to DORMANT to save power. This requires that the
power manager tell the regulator controlling the voltage to the processor to lower the
voltage from Vpp to 0. When a soft reset isissued, the power manager indicatesthat the
voltage to the processor can be raised from 0to Vpp.

To test software and hardware without testing the enabling and disabling of the voltage
regulators, issue a command with the emulation bit (E) set. This signals the power
manager to trandate the command and change to the desired mode. The voltage
regulator is never flagged to lower the voltage. When the command is transmitted and
received, the power manager issues a soft reset sequence.

— Note

The soft reset issued by the power manager occurs during emulation. All other forms of
soft reset are done from an external source.

13.3.5 Transmission protocol
When issuing commands to the power manager, a specific sequence must be foll owed:

1. Veify that both PMTDR and PMRDR are empty by checking that the W flag is
set and that the R flag is cleared where appropriate.

2. Totransmit, write acommand to PMTDR. Thisclearsthe W flag. Hardware then
performs a handshake with the power manager, waiting for acceptance of the
command using a double-ended handshake.

3. When the transmit data handshake is complete, hardware sets the W flag.

When receiving data, software must wait until the R flagisset. When Risset, new valid
datais availablein PMRDR.
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Data transmit code

When data has to be transmitted to the power manager, software must always perform
the code sequence shown below. The command is sent using register R1, while RO
reflects the status register contents:

tx_command:

MRC CP15, 0, Ro, (15, C14, @
TST RO, #W_flag
BNE tx_command
MCR CP15, @, R1, C15, C14, 1

check for outstanding commands

W flag clear indicates active command
if command active, loop again

write new command to controller

Note

TheW flagispolled until itisset. When W is set, the command can be sent to the power
manager.

Data receive code

To wait until data has been received in the receive data register, software must always
perform the code sequence shown below. The command is received into register R1,
while RO is used to reflect the status register contents:

rx_status:

MRC CP15, @, R@, C15, C14, 0
TST RO, #R_flag

BNE rx_status

MRC CP15, @, RO, C15, C14, 1

check for incoming data

R flag clear indicates no data
if no data, Toop again

read in ‘previous-state’

Note
The R flagis polled until it is cleared. When R is cleared, the command can be read.

13-12
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13.4 Programming examples

This section contains examples of how to change the processor power mode.

13.4.1 RUN to STANDBY

This example changes the processor mode from RUN to STANDBY:
tx_command:

MRC CP15, @, R@, C15, C14, 0 ; check for outstanding commands

TST RO, #W_flag ; W flag clear indicates active command

BNE tx_command ; if command active, Toop again

MOV R1, #PM_IDLE SHL 4 ; program IDLE state into 7:4, no emulation
MCR CP15, @, R1, C15, C14, 1 ; write new command to controller

13.4.2 RUN to DORMANT

This example changes the processor mode from RUN to DORMANT:

;save all ARM1022E macrocell state here
tx_command:

MRC CP15, @, R@, C15, C14, 0 ; check for outstanding commands
TST RO, #W_flag ; W flag clear indicates active command
BNE tx_command ; if command active, Toop again

MOV R1, #PM_NAP SHL 4 ; program NAP state into 7:4, no emulation
MCR CP15, @, R1, (C15, C14, 1 ; write new command to controller
B . ; branch to self to freeze core on this

; instruction

13.4.3 RUN to SHUTDOWN

This example changes the processor mode from RUN to SHUTDOWN:

;no ARM1022E macrocell state needs to be saved since entering SHUTDOWN
tx_command:

MRC CP15, 0, R0, C15, C14, 0 ; check for outstanding commands
TST RO, #W_flag W flag clear indicates active command
BNE tx_command if command active, loop again
MOV R1, #PM_SHUTDOWN SHL 4 put SHUTDOWN state into 7:4, no emulation
MCR CP15, @, R1, C15, C14, 1 write new command to controller
B . branch to self to freeze core on this
; instruction

ARM DDI 0237A
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13.4.4 Reset recovery

This exampl e detects the previous state of the power manager before a power-on reset

or soft reset:

B reset

;insert other code here

reset

MRC CP15, 0, Ro, (15, C14, @ ;
TST RO, #R_flag ;
BNE reset ;
MRC CP15, @, R@, C15, C14, 1 ;

check for incoming data

R flag clear indicates no data
if no data, Toop again

read in ‘previous-state’

TST RO, #0xCO ; check to see if ‘previous-state’ RUN

BEQ Tast_state_run

TST RO, #0x80 ; check to see if ‘previous-state’ STANDBY
BEQ Tast_state_standby

TST RO, #0x40 ; check to see if ‘previous-state’ DORMANT

BEQ Tast_state_dormant

;execute default power-on reset code here

13-14
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13.5 Power manager interface
Table 13-7 defines the interface between the power manager and the ARM 10 processor.
Table 13-7 Power manager/processor interface signals

Signal Direction Description

PMEXISTS To processor Power manager active-HIGH signal to processor.
If power manager not attached to processor, PM EXI ST S must be at logic 0.

PMTXREQ From processor  CPU request for power manager state change. PMTXREQ and PMTXACK
provide a double-ended handshake in transmissions to the power manager.

PMTXACK To processor Power manager asserts PM TXACK to acknowledge processor state change on
PMTX][3:0].

PMTX[3:0] From processor ~ CPU state change data.

PMTXEMUL  From processor CPU state change request in emulation mode. Request for power manager to leave
the voltage regul ators unchanged.

PMRXREQ From processor  CPU reguest for previous state of power manager. PM RXREQ and PMRXACK
provide a double-ended handshake during power manager reception.

PMRXACK To processor Power manager acknowledgement of PMRXREQ. Signalsvalid dataon
PMRX[3:0].

PMRX[3:0] To processor Power manager previous state data.

PMRXEMUL  To processor Power manager previous state of emulation.

SFRESETN To processor Power manager active-L OW soft reset indicator.

HRESETN To processor Power manager active-L OW power-on or AHB bus reset.

ARM DDI 0237A
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13.6 Timing

Thetiming diagrams in this section illustrate the following:

ARM10 processor transmit

ARM10 processor transmit with emulation on page 13-17

ARM10 processor previous-state request on page 13-17

ARM10 processor previous-state request with emulation on page 13-18
ARM10 processor hard reset on page 13-18

ARM10 processor soft reset from powerdown timing on page 13-19.

13.6.1 ARM10 processor transmit

GCLK

PMTXREQ

PMTXACK

PMTX[3:0]

PMRX[3:0]

In Figure 13-5 the processor sends PM TXREQ to the power manager. The power
manager acknowledges with PM TXACK and puts the state entered on PM RX[3:0].

=\

RUN

X DORMANT

—|/|<|y|—z—||||Nh||‘N‘ll_l
N
\
N
N
N

ZZZZE

N
\
RUN \@O( DORMANT

Figure 13-5 CPU transmit request timing
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13.6.2 ARM10 processor transmit with emulation

In Figure 13-6 the emulation hit is set. The processor sends PM RXEQ to the power
manager. The power manager then acknowledges with PMRXACK and issues the
requested state on PM RX[3:0]. In this case, the voltage regulators do not change.

ecLK—||—||‘N7|||M|rN7|—|
\

PMTXREQ N /Aﬁh
PMTXACK L\ m \ /\ B\
PMTX[3:0] RUN\ (X \ &1 DORMANT Q‘ &1
PMTXEMUL \7// \ \ \
: \ \
PMRX[3:0] RUN X DORMANT N N

Figure 13-6 CPU transmit request timing with emulation bit set

13.6.3 ARM10 processor previous-state request

In Figure 13-7 the processor sends PM RXEQ to the power manager. The power
manager then issues an acknowledge with the previous state on PM RX[3:0].

ecLK—||—||‘N7||M||‘N7|—|

PMRXREQ N \Tﬁ
N
— e\
PMRXACK
: \ \
PMRX[3:0] DORMANT N N

Figure 13-7 CPU previous state request timing
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13.6.4 ARM10 processor previous-state request with emulation

In Figure 13-8 the processor sends PM RXEQ to the power manager. The power
manager issues an acknowledgment with the previous state on PMRX[3:0].
PMRXEMUL indicates that the previous state was in emulation mode.

ecLK—||—|rN7|||M|rN7|—|

PMTXREQ //\7/ N N )
PMTXACK (\ N// \ /\ B\
PMTX[3:0] RUN\ (Y \\ Q‘ DORMANT Q‘ m
PMTXEMUL \~// \ \
: \ \
PMRX[3:0] RUN XX DORMANT N N

Figure 13-8 CPU previous state request timing with emulation bit set

13.6.5 ARM10 processor hard reset

Figure 13-9 shows that both hard reset HRESETN, and soft reset, SFRESETN, must
be issued to the processor in the same cycle.

xar L L L L L L L L
NTRST \\ N N A N |
HRESETN NN N N // N
NSFRES \ A\N N N Y78
‘47 8.c.ycles HF* 8.c.ycles HF* 8.c.ycles 4>‘

Figure 13-9 Hard reset timing

Hard reset isthen removed aminimum of eight cycleslater. Soft reset must be extended
afurther minimum of eight cycles. Thisguaranteesthat the processor properly resetsall
states.
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13.6.6 ARM10 processor soft reset from powerdown timing

Figure 13-10 shows how a soft reset can be issued following entry into DORMANT
mode.

v L[ L YL Y L LY L

NSFRES \ '\1 '\1 '\1 /7
Softreset -« Processor core »‘ ‘47 8 cycles 4>‘
assertion voltage dropped minimum

8 cycles minimum
Figure 13-10 Soft reset from power-down timing

When the processor enters DORMANT and receives an acknowledgement from the
power manager, the voltage can be removed from the processor, and the voltage to the
processor caches can be lowered to the minimum value that retains state.

The soft reset signal, SFRESETN, must stay L OW when the processor voltageistaken
away to ensure proper behavior when the processor voltage is returned.

When the processor and cache voltages are rai sed to the operational value, SFRESETN
must be asserted at least eight more cyclesto guarantee a proper exit from soft reset.
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13.7

Software example code sequences

The precise definition of state to be saved and reloaded in asystemis
implementation-defined. The example routines in this section show the basic
reguirements and give a starting point for implementation.

13.7.1 Save LO_state code sequence

AREA |PowerDown|, CODE, READONLY

KE
EX
PwrMgt

EP
PORT PwrMgt_Save_L0@_State
_Save_L0_State

On Entry: Processor must be in a privileged mode. RO points to start of

; address.

STMIA RO!, {R1-R7} ;
MRS R2, CPSR

STMIA RO!, {R2}

STMIA RO, {R8 - R14}A ;
ADD RO, RO, #28 ;

BI

C R3, R2, #0x1f ;

; the data block in memory. This code disables virtual memory, so must be
; executed from a virtual address that is mapped to the same physical

; first save all the integer registers, CPSR & SPSRs

save unbanked registers

save CPSR

save user mode banked registers
increment base register

clear the mode bits from the CPSR value

; now roll through each of the privileged modes and save banked registers

ORR R4, R3, #0x13 ;
MSR CPSR_cf, r4

MRS RS, SPSR

STMIA RO!, {R5, R13, R14} ;

ORR R4, R3, #0x1b ;
MSR CPSR_c, r4

MRS R5, SPSR

STMIA RO!, {R5, R13, R14} ;

SVC mode

save SPSR and banked registers

UNDEF mode

save SPSR and banked registers

13-20
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ORR R4, R3, #0x17

MSR CPSR_c, r4

MRS R5, SPSR

STMIA RO!, {R5, R13, R14}

ORR R4, R3, #0x12

MSR CPSR_c, r4

MRS RS5, SPSR

STMIA RO!, {R5, R13, R14}

ORR R4, R3, #0x11

MSR CPSR_c, r4

MRS R5, SPSR

STMIA RO!, {RS, R8 - R14}
MSR CPSR_c, R2

; now do the CP15 registers

MRC p15, @, R1, cl, c0, 0
MRC p15, @, R2, c2, c0, 0
MRC p15, @, R3, c3, c0, 0
MRC p15, @, R5, c5, c0, 0
MRC p15, @, R6, c6, c0, 0

STMIA RO!, {R1 - R3, R5, R6}

MOV R7, #0@
MCR pl5, @, R7, c7, clo, 4

Power Manager

ABORT mode

save SPSR and banked registers

IRQ mode

save SPSR and banked registers

FIQ mode

save SPSR and banked registers

and return to the original mode

Control register
Translation Table Base
Domain Access Control
FSR

FAR

dummy data

; Drain the write buffer

; Insert code here to power down ARM1022E macrocell

B .

END

ARM DDI 0237A
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13.7.2 Reload_LO_state code sequence

AREA |PowerDown|, CODE, READONLY
KEEP
EXPORT PwrMgt_Reload_L@_State
PwrMgt_Reload_LO_State
; On entry, the processor must be in a privileged mode. RO points to start
; of the data block in memory. This code disables virtual memory, so must be
; executed from a virtual address that is mapped to the same physical
; address

; first clear the TLBs ready to turn on virtual memory
ADD RO, RO, #0xa0 ; size of the data block

MOV R7, #0 ; dummy data
MCR p15, @, R7, c8, c7, @ ; Invalidate ITLB/DTLB

; now do the CP15 registers
LDMDB RO!, {R1 - R3, RS, R6}

MCR p15, @, R2, c2, c0, @ ; Translation Table Base
MCR p15, @, R3, c3, c0, @ ; Domain Access Control
MCR p15, @, RS, c5, c@, @ ; FSR

MCR p15, @, R6, c6, c0, @ ; FAR

MCR p15, @, R1, cl, c@, @ ; Control register

MRS R2, CPSR
BIC R3, R2, #0x1f; clear the mode bits from the CPSR value

; now roll through each of the privileged modes and restore banked registers

ORR R4, R3, #0x11 ; FIQ mode

MSR CPSR_c, r4

LDMDB RO!, {R5, R8 - R14} ; restore SPSR and banked registers
MSR SPSR_cxsf, RS

ORR R4, R3, #0x12 ; IRQ mode

MSR CPSR_c, r4

LDMDB RO!, {R5, R13, R14} ; restore SPSR and banked registers
MSR SPSR_cxsf, RS

ORR R4, R3, #0x17; ABORT mode

MSR CPSR_c, r4

LDMDB RQ!, {R5, R13, R14} ; restore SPSR and banked registers
MSR SPSR_cxsf, RS
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ORR R4, R3, #0x1b ; UNDEF mode

MSR CPSR_c, r4

LDMDB RQ!, {R5, R13, R14} ; restore SPSR and banked registers
MSR SPSR_cxsf, RS

ORR R4, R3, #0x13; SVC mode

MSR CPSR_cf, r4

LDMDB R@!, {R5, R13, R14} ; restore SPSR and banked registers
MSR SPSR_cxsf, RS

; now restore all the integer registers, CPSR & SPSRs

LDMDB RO, {R8 - R14}A ; restore user mode banked registers
SUB RO, RO, #28 ; decrement base register

LDMDB RO!, {R2} ; restore CPSR

MSR CPSR_cxsf, R2

LDMDB RO!, {R1-R7} ; restore unbanked registers

END

ARM DDI 0237A

Copyright © 2001 ARM Limited. All rights reserved. 13-23



Power Manager

13-24 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0237A



Chapter 14

Clock Generator

This chapter describes the operation of a Phase-Locked Loop (PLL) using the clock

generator. This chapter contains the following sections:

Features on page 14-2

About the clock generator on page 14-3
Interface description on page 14-6
Output clock behavior on page 14-9

PLL configuration register on page 14-11.
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14.1

Features

The clock generator synthesi zes two programmabl e clocks. It contains analog circuitry
with enough flexibility to cover arange of applications while placing minimum
restrictions on the remainder of the test chip.

The key featuresinclude:

two synchronized, frequency-programmable clock outputs

internal loop filter

output duty cycle from 48% to 52%

power-down and Voltage-Controlled Oscillator (VCO) bypass modes
partner-specific mode support

integrated crystal oscillator option

testable design.

14-2
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14.2 About the clock generator

Figure 14-1 shows the structure of the clock generator.

ARM10220E macrocell
VMUX
XTALA1
xTAL1 [X]-» —
NPORES [X]+| NPORES
PLL vCco GCLK
* e
core
CLKTESTCTL[1]
BYPASS[1:0] /‘/
MCLK " BYPASS[1:0]
h divider
CLKTESTCTL[0] HMUX
MDIV[7:0]
HCLK
>
XTAL2EN
XTAL2EN [« H
LKTESTCTL[3: ivi
CLKTESTCTL[3:0] [X}» CLKTESTCTL[3:0] tC'°t°k divider
CLKTESTOUT ester )
CLKTESTOUT [X]« BYPASS[1:0]
PCONFIGIN[5:0
PCONFIGIN[5:0] —» [5:0] HDIV[3:0]
PCONFIGOUT[1:0
PCONFIGOUT[1:0] <= [1:0]
POWERDN
POWERDN —»| F 2 CP15
BYPASS[1:0] —»| DYPASS[1:0] controller
MDIV[7:0]
MDIV[7:0] —»
HDIV[3:
HDIV[3:0] —» [3:0]

|X| = test chip package pad
Figure 14-1 Clock generator block diagram

The HCLK and GCLK output clocks are derived from either a5MHz to 40MHz
integrated crystal oscillator or a5MHz to 100MHz external oscillator, XTAL 1. The
PLL isnot sensitiveto areference clock duty cycle of lessthan 30% or more than 70%.
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On and during reset, the XTAL 1 reference clock drives HCLK and GCLK directly,
bypassing the VCO. After reset, when the PLL is configured and has achieved lock, the
control interface can turn off VCO bypass mode. The output clocks must switch
seamlessly from XTAL1 to the VCO output without exceeding the frequency or
minimum phase time of the faster clock.

Whether HCLK and GCLK are derived from the VCO or from a 50% duty cycle
reference clock at less than 100MHz, the duty cycle degradation must be minimal.
Phase lock with external signals and zero insertion delay are not required. The PLL
feedback path, including the loop filter, is completely internal to the clock generator.

Dedicated Vppa and Vssa pins supply power to both the analog and digital portions of
the clock generator. The clock generator must haveits own power supply so that it does
not affect power measurements made on the test chip.

The following equations show the derivations of GCLK and HCLK:

GCLK = XTAL1 x MDIV[7:0] + 1

MDIV[7:0] + 1

HCLK = XTAL1 X ———
c X HDIV[3:0] + 1

Table 14-1 shows GCLK and HCLK frequencieswith XTAL1 at 20MHz.

Table 14-1 GCLK/HCLK frequencies with XTAL1 = 20MHz

GCLK/HCLK MDIV[7:0]

0 1 2 3

0 20/20 40/40 60/60 80/80

1 20/10 40/20 60/30 80/40

2 20/6.67 40/13.3 60/20 80/26.7

HDIV[3:0]

14 20/1.33 40/2.67 60/4 80/5.33

15  20/1.25 40/2.5 60/3.75 80/5

14-4
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You can program values of M DIV[7:0] withagiven XTAL 1 that would causethe clock
generator to operate outside of the VCO functional operating range. You must supply
an addendum that states the restrictions placed on M DIV[7:0] for various X TAL 1
inputs. Here are example addendum restrictions on MDIV[7:0] for aV COyax Of
800MHz;

VCO, ., = 800MHz = XTAL1 x MDIV[7:0]

. If XTAL 1 =5MHz, then the maximum value for MDIV[7:0] is 159.
. If XTAL1 = 100MHz, then the maximum value for MDIV[7:0] is7.
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14.3 Interface description

This section describes the clock generator input and output signals.

XTAL1

NPORES

XTALZ2EN

Thisisthe reference clock input. During reset it drives the two output
clocks, HCLK and GCLK. If anintegrated crystal oscillator isused, itis
one of the connections to the crystal. If an integrated crystal oscillator is
not used, an external oscillator drives XTAL1.

Thisisthe power-on reset input. During reset, NPORES is driven LOW
for multiple XTAL1 cycles and ensures that X TAL1 drives HCLK and
GCLK during thistime.

This output enables the external crystal oscillator. If the crystal oscillator
isinternal, then thisisits output.

CLKTESTCTL[3:0]

Asshown in Table 14-2, these test control inputs select clock generator
internal clocks for viewing on CLKTESTOUT.

— Note
The CLKTESTCTL[3:0] pins are not internally synchronized before

use, meaning that entering atest mode might causeaVMUX, GMUX, or
HMUX glitch.

Table 14-2 Test mode programming

CLKTESTCTL[3:0] Test mode

0000

Normal mode of operation. CLKTESTOUT = 0. Crystal oscillator
enabled.

0001

XTAL1drivesM divider. CLKTESTOUT = MCLK. Isolates
design faultsin M divider circuit.

0010

Ippg test mode. All circuits are silent. CLKTESTOUT =0,
HCLK =GCLK =XTAL1. Apply patternsin VCO bypass mode.
Then switch to Ippg test mode.

0011

VCO bypass mode. XTAL drivesHCLK and GCLK directly.

01xx

CLKTESTCTL[1] drivesGCLK.CLKTESTCTLIO] drives
HCLK. Bypasses clock generator due to extreme failure.
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Table 14-2 Test mode programming (continued)

CLKTESTCTL[3:0] Test mode

1000 CLKTESTOUT isthe GCLK output. Tests for defectsin PLL, H
divider, and crystal oscillator.

1001 CLKTESTOUT isthe HCLK output. Tests for defectsin PLL, H
divider, and crystal oscillator.

1010 CLKTESTOUT isthe VCO output. Tests for defectsin PLL, H
divider, and crystal oscillator.

1011 CLKTESTOUT isthe crystal oscillator output. Testsfor defectsin
PLL, H divider, and crystal oscillator.

110x Partner-specific test modes.

111x RESERVED

Note

Therising edge of GCLK must be synchronous with the rising edge of
HCLK. There must be zero delay between GCLK and HCLK for any
given clock input.

CLKTESTOUT
This clock test output isfor viewing GCLK, HCLK, MCLK, XTAL1,
or VCO.

PCONFIGINI[5:0]
These are configuration inputs for PLL-specific control signals.
PCONFIGIN[5:0] are cleared by reset and can be programmed with a
CP15 instruction.

PCONFIGOUT[1:0]
These are configuration outputs for PLL-specific control signals. If the
PLL hasalock-detect signal, it must betied to PCONFIGOUTIQ]. Any
other PLL outputs must use PCONFIGOUT(1].

POWERDN Thisisthe powerdown input. When POWERDN isHIGH, the PLL shuts
down and draws the minimum leakage current. In atypical operating
configuration, the VCO must first be bypassed so the ARM10 processor
can continueto run from X TAL 1. POWERDN is set by reset and can be
programmed with a CP15 instruction.
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BYPASS[1:0]
These are inputs that control selection of the VMUX, GMUX, and
HMUX multiplexors. BY PASS[1:0] are set by reset and can be
programmed with a CP15 instruction.

MDIV[7:0] Theseinputs select the PLL multiplier. The value programmed is
MDIV[7:0] + 1. MDIV][7:0] are cleared by reset and can be
programmed with a CP15 instruction.

HDIV[3:0] Theseinputs select theH divider. HDIV[3:0] are set by reset and can be
programmed with a CP15 instruction.

GCLK This output is the the primary clock of the ARM 10 processor. The clock
generator must be ableto drive GCLK at maximum frequency under all
process conditions. During reset, GCLK must be driven by the XTAL 1
input.

HCLK This output isthe primary AHB clock and is aso an input to the ARM 10
processor. Theclock generator must be ableto drive HCL K at maximum
frequency under all process conditions. During reset, HCLK must be
driven by the XTAL 1 input.
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14.4  Output clock behavior

The clock generator output clocks, HCLK and GCLK, are defined by the inputs
HDIV[3:0], BYPASS[1:0], and POWERDN. It isastrict requirement that the output
clocks are driven by X TAL 1 during reset so that reset is propagated throughout the
ARM 10 processor. It is also arequirement that both HCLK and GCLK have no
glitches, have synchronous rising edges, and have approximately 50% duty cycles.

When multiplexing from one input clock to the other, the resultant output clock must
not have a pulse smaller than either of theinput clocks. An output clock pulse smaller
than either of the input clocksisaglitch. Clock switching must be done so that HCLK
and GCLK remain glitch-free.

HCLK and GCLK must have synchronous rising edges. When reprogramming the H
divider, take care to ensure that:

. the HCLK and GCLK rising edges are synchronous
. the resultant clocks have approximately 50% duty cycles
. no glitches occur.

Table 14-3 on page 14-10 shows the behavior of HCLK and GCLK.

Note

Theinputsto the table are the outputs of the synchronizers from the CP15 coprocessor.
Itisstrongly recommended that al inputs from the ARM 10 processor go through afull
synchronizer before being used in any logic in the clock generator.
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Table 14-3 does not account for lock detection. PLL lock does not factor into the output
GCLK and HCLK multiplexor selection logic.

Table 14-3 GCLK and HCLK behavior

Sz 8
i
S @ g 2
oo R BT ]
> £ = -
= [l )
2 % § E HcK GCLK
00 0 Active H divider output. VCO output drives H divider.  VCO output
o0 1 O
01 O Active Hdivider output. XTAL1 drives H divider.
>0
o1 1 o0 XTAL1
Ix 0 Active
XTAL1
Ix 1 0
00 0 Active VCO output VCO output
o0 1 o0
01 0 Active
=0
o1 1 o0 XTAL1 XTAL1
Ix 0 Active
Ix 1 0

Theonly timethat the behavior in Table 14-3 doesnot apply iswhen the clock generator
isin one of the test modes defined in Table 14-2 on page 14-6.

Most of the clock generator inputs and outputs come from a CP15 register within the
ARM 10 processor. Thisregister controls both dividers, PLL power-down enable,
VMUX, HMUX, GMUX, and special partner-specific configuration inputs. The
register can be read and written under software control in supervisor mode only.

14-10 Copyright © 2001 ARM Limited. All rights reserved.
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Clock Generator

145 PLL configuration register

Reset:

Figure 14-2 showsthe PLL configuration register. All signalswithin thisregister areall
active HIGH. These instructions are defined to operate in supervisor mode only. Any
other mode of operation in the ARM 10 processor bounces the instruction, causing an
exception to be taken.

312524 23 22 17 16 15 14 13 12 11 4 3 0

SBZ | PCONFIGOUT[1:0] | PCONFIGIN[5:0] |POWERDN | BYPASS[1:0] | SBZ |MDIV[7:0]| HDIV[3:0]

00 00 0000 1 11 0000 0000 1111

Figure 14-2 PLL configuration register

Theinstructions used to access the CP15 PLL configuration register are:
. write: MCR p15,0,Rd,c15,c12,0
. read: MRC p15,0,Rd,c15,c12,0.

The SBZ fields in must always be written as zeros.

14.5.1 Programming the PLL configuration register

Examples for reprogramming the CP15 PLL configuration register appear in the
following sections:

. After reset
. Entering powerdown state on page 14-12
. With no lock hardware on page 14-12.

The examples are based on the following frequencies:
. XTAL1 frequency = 20MHz
. GCLK frequency = 60MHz
. HCLK frequency = 30MHz.

After reset
Program the CP15 PLL configuration register, assuming that alock indicator exists.

LDR r@, = 0x0000C021
MCR p15,0,r0,c15,c12,0 ; write new contents
Loop MRC p15,0,r1,c15,c12,0 reread the contents
TST rl, #0x00800000 check to see if lock bit is set
BNE Loop if Tock bit not set, recheck

ARM DDI 0237A
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Clock Generator

Entering powerdown state

When the clock generator is programming the POWERDN bit so that the PLL VCO is
silent, software must simply read the CP15 PLL configuration register, set the
POWERDN bit to one, and rewrite the CP15 PLL configuration register:

MRC p15,0,rl,c15,c12,0; ; read state of CP15 register
ORR rl1, rl, #0x00010000 ; set the POWERDN bit
MCR p15,0,rl,c15,c12,0 ; reprogramming with POWERDN bit set

With no lock hardware

When the PLL is programmed and no lock hardware exists, the software must calculate
how much time must be allocate to waiting. Thisis done by assuming afixed value for
the lock time, 150us, and calculating the wait as a function of the input frequency,
XTALL:

MOV ro, #150 ; lock time in us
MOV rl, #20 XTAL1 in MHz
MUL r2, ro, rl counter wait time
LDR r3, = 0x0000C021 value to write
MCR p15,0,r3,cl15,c12,0 write new CP15 PLL register contents
Loop SUBS r2, r2, #0x1 decrement wait counter
BNE Loop if count not zero, wait is not done so Toop

14-12
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Appendix A
Signal Descriptions

This appendix describes the ARM 10 processor signals. It contains the following
sections:

. Global control signals on page A-2

. AHB signalsin normal mode on page A-3

. PLL signals on page A-6

. JTAG and TAP controller signals on page A-7
. Debug signals on page A-8

. Coprocessor signals on page A-9

. Design for test signals on page A-11

. ETM signals on page A-13.
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Signal Descriptions

A.1  Global control signals

Table A-1 shows al the processor input signals used to set clocks, memory
configuration, vector table location, and external interrupt features.

Table A-1 Global control signals

Signal Direction Description

BIGENDINIT  Input Configures processor to treat memory bytes as big-endian or little-endian:
1 = big-endian format
0 = little-endian format

GCLK Input Global clock. Drives processor. Can be stopped in either clock phase.
HIVECSINIT  Input Configures the vector table location coming out of reset:

1 = OxFFFF0000
0 = 0x00000000

ISYNC Input Indicatesthat NFI Q and NI RQ are synchronized to core clock. Enables synchronization:
1 =not synchronized. Thisresultsin slightly faster interrupt response. | SYNC can be set
when NFIQ and NIRQ are already synchronized to GCLK or HCLK .
0= synchronized. The synchronizer is clocked by GCL K. Thisreducesthelikelihood of
metastability problems from asynchronous inputs.

NFIQ Input Fast interrupt request signal. Active-LOW.

NIRQ Input Interrupt request signal. Active-LOW.
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Signal Descriptions

A.2  AHB signals in normal mode

Table A-2 list the AHB signals divided by function.

Table A-2 AHB signals

Signal 110

Description

HADDRI[3L:0]

IBIU address bus.

HADDRD[31:0]

o

DBIU address bus.

HBURSTI[2:0]

IBIU burst transfer type:
000 = single transfer
010 = four-beat wrapping burst

HBURSTD[2.0] O

DBIU burst transfer type:

000 = single transfer

010 = four-beat wrapping burst
011 = four-beat incrementing burst

HCLK |

Clock that times all bus transfers. All signals are related to the rising edge of HCLK.

HPROTI[3:0] o)

IBIU protection control. Transfers are always opcode fetches:
xxx0 = opcode fetch

xxx1 = data access

XX0X = user access

xx1x = privileged access

X0xx = not bufferable

x1xx = bufferable

Oxxx = not cachable

1xxx = cachable

HPROTD[3:0] o)

DBIU protection control. Transfers are always data accesses:
xxx0 = opcode fetch

xxx1 = data access

xX0X = user access

xx1x = privileged access

X0xx = not bufferable

x1Ixx = bufferable

Oxxx = not cachable

Ixxx = cachable

HRDATAI[63:0] |

Read IBIU data bus. Transfers data and instructions from bus slaves to instruction-side bus
master in read operations.

HRDATAD[63:0] |

Read DBIU data bus. Transfers data from bus slaves to data-side bus master in read
operations.

ARM DDI 0237A
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Signal Descriptions

Table A-2 AHB signals (continued)

Signal

/10

Description

HREADYI

Slave ready. HIGH means transfer finished. Can be driven LOW to extend transfer.

HREADYD

Slave ready. HIGH means transfer finished. Can be driven LOW to extend transfer.

HRESETN

Resets system and bus. It is the only active-LOW AHB signal.

HRESPI[1:0]

Slave response to IBIU. Reflects status of transfer:
00=OKAY

01 = ERROR

10 = RETRY

11=SPLIT

HRESPD[L:0]

Slave response to DBIU. Reflects status of transfer:
00=OKAY

01 =ERROR

10=RETRY

11=SPLIT

HSIZEI[2:0]

Size of IBIU transfer:

000 = byte (8 bits)

001 = hafword (16 bits)
010 = word (32 hits)

011 = doubleword (64 hits)
100 = 4 words (128 hits)
101 = 8 words (256 bits)
110 = 16 words (512 hits)
111 = 32 words (1024)

HSIZED[2:0]

Size of DBIU transfer:

000 = byte (8 bits)

001 = halfword (16 bits)
010 = word (32 hits)

011 = doubleword (64 hits)
100 = 4 words (128 hits)
101 = 8 words (256 bhits)
110 = 16 words (512 hits)
111 = 32 words (1024)

HTRANSI[1:0]

Selectstype of IBIU transfer:
00=IDLE

01 =BUSY (Thissignal is not used.)
10 = NONSEQUENTIAL

11 = SEQUENTIAL

Copyright © 2001 ARM Limited. All rights reserved.
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Table A-2 AHB signals (continued)

Signal /0 Description

HTRANSD[1:0] (@) Reflectstype of DBIU transfer:
00=IDLE
01 =BUSY (Thissigna isnot used.)
10 = NONSEQUENTIAL
11 = SEQUENTIAL

HWDATAD[63:0] O DBIU write data bus. Transfers data from master to slaves in write operations.

HWRITEI

o

IBIU transfer direction. HIGH means write transfer. LOW means read transfer.

HWRITED

o

DBIU transfer direction. HIGH means write transfer. LOW means read transfer.

Table A-3 lists arbiter signals.

Table A-3 Arbiter signals

Name I/O Description

HBUSREQD O Request line from DBIU.

HBUSREQI (0] Request line from IBIU.

HGRANTD I AHB mastership granted to DBIU.

HGRANTI I AHB mastership granted to IBIU.

HLOCKD (0] Indicates sequence of locked DBIU transfersin SWP operations.

HLOCKI (0] For AMBA compliance. Never asserted.
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A.3  PLL signals

The signals described in Table A-4 are for test chip use only and must not be used for
other designs.

Table A-4 PLL signals

Name /O Description

BYPASS[1:0] @) PLL bypass enable. Do not connect.
HDIV[3:0] @) PLL HCLK divider. Do not connect.
MDIV[7:0] (@) PLL feedback divider. Do not connect.
PCONFIGOUT[1:0] | PLL output lines. Tie off LOW.

PCONFIGIN [5:0] 0 PLL configuration. Do not connect.

POWERDN @) PLL powerdown. Do not connect.
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Signal Descriptions

A.4  JTAG and TAP controller signals
Table A-5 liststhe TAP controller signals.

Table A-5 TAP controller signals

Name /0 Description
CLOCKDR External boundary scan chain clock.
IR[3:0] JTAG instruction register. Reflect current instruction in TAP controller instruction register.
NRSTOVR Output TAP reset override. Used in boundary scan test. Active when scan chain 3 selected and
IR=EXTEST, CLAMP or HIGHZ.
NTDOEN Tristate enable for TDO output pin.
SCREGJ[4:0] Scan chain selection register.
SDOUTBS | Externa or boundary scan out.
SHIFTDR @) Combinational decode of TAP state machine used as multiplexed external scan cell clock.
TAPID[31:0] | TAP ID number.
TAPSM[3:0] Reflect current state of TAP controller state machine. Change on rising edge of TCK.
UPDATEDR Combinational decode of TAP state machine used as multiplexed external scan cell clock.
Table A-6 liststhe JTAG signals.
Table A-6 JTAG signals
Name I/O Description
NTRST | Active-LOW test reset signal for boundary scan logic. LOW in normal operation.
TCK I Test (JTAG) clock.
TDI I JTAG test data input.
TDO (0] JTAG test data output.
TMS I Test mode select. Selects state of TAP controller state machine.

ARM DDI 0237A
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A.5 Debug signals
Table A-7 lists the debug signals.
Table A-7 Debug signals

Name I/O Description

COMMRX O HIGH when comms channel receive buffer has data for processor to read.

COMMTX O Comms channel transmit. HIGH when comms channel transmit buffer is empty.

DBGACK (0] Debug acknowledge. HIGH when processor isin debug state.

DBGEN I Debug enable. Setting DBGEN enables external debug.

EDBGRQ I External debug request. Setting EDBGRQ puts processor in debug after current instruction.
A-8 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0237A
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A.6  Coprocessor signals

Table A-8 lists the coprocessor (CP) signals.

Table A-8 Coprocessor signals

Name 11O Description

ACANCELCP ToCP Currently executing instruction ignored because of failed condition. Leave
unconnected if CP interface unused.

AFLUSHCP ToCP Cancel instructions in CP Execute, Decode, Issue, and Fetch stages. Leave
unconnected if CP interface unused.

ASTOPCPD, ToCP Hold CP pipeline in Decode stage. Driven from register after stalled stage.

ASTOPCPE Hold CP pipeline in Execute stage. Driven from register after stalled stage.

L eave both unconnected if CP interface unused.

CPBIGEND ToCP Memory system is big-endian. When this signal is active, devices that support
64-bit data must assert CPL SSWP when loading or storing the 64-bit data for
correct order when read/written. Leave unconnected if CP interface unused.

CPBOUNCEE ToARM  Take undefined instruction trap for instruction in ARM Execute stage.

CPBUSYE ToARM  Busy-waitsthe ARM Execute stage.

CPCLK ToCP CP clock. In phasewith system clock. Leave unconnected if CP interface unused.

CPINSTR[25:0] ToCP Instruction input from ARM10 processor. Valid at end of ARM Fetch stage.
Validated by assertion of CPINSTRYV. Leave unconnected if CP interface
unused. Bits[27:26] always 11.

CPINSTRV ToCP CPinstruction on CPINSTR is valid new instruction. Leave unconnected if CP
interface unused.

CPLSBUSY ToARM  Driven out of register on CP |ssue/Decode boundary to signal other CPs that
sender isdoing aload or store multiple operation and is keeping control of
STCMRCDATA bus.

CPLSDBL ToARM  CP load/store request isfor double word data.

CPLSLENI5:0] ToARM  Length of CP load/store transfer.

CPLSSWP ToARM  Before writing, swap upper and lower datawords on LDCMCRDATA or
STCMRCDATA.

CPRST ToCP CPreset. Must be held for at least two cycles. Leave unconnected if CP interface
unused.

CPSUPER ToCP Supervisor mode. HIGH if ARM10 in Supervisor or interrupt-handling mode.

ARM DDI 0237A

Copyright © 2001 ARM Limited. All rights reserved. A-9



Signal Descriptions

Table A-8 Coprocessor signals (continued)

Name I/O Description

CPVALIDD ToCP Vadid CPinstruction in ARM Decode stage.

LDCMCRDATA[63:0] ToCP Carries data from ARM10 processor to CP. Leave unconnected if CP interface
unused.

LSHOLDCPE ToCP Hold CP pipelinein CP Execute stage. L SU stalled in ARM Execute stage. Leave
unconnected if CP interface unused.

LSHOLDCPM ToCP LSU stalledin ARM Memory stage in previous cycle. Leave unconnected if CP
interface unused.

STCMRCDATA[63:0] ToARM Carriesdatafrom CPto ARM10 processor.
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A.7  Design for test signals
Table A-9 liststhe DFT signals.
Table A-9 Design for test signals

Name I/O Description

A1020DFTCKEN I Enablestheinternal core GCLK.

A1020DFTRESET I Provides direct control over asynchronous resets in scan mode.

A1020DFTWCKEN I Enables the wrapper clock A1020WCLK to the dedicated test cells.

A1020RSTSAFE I Enablesthe reset to a portion of the core while testing external logic.

A1020SAFE I Forces safe values onto most core outputs. Used during core test.

A1020SCANEN I Scan enable for nonwrapper clock domains.

A1020SCANMODE I Puts the device into scan mode.

A1020SCANOUT[23:0] (0] Test businput. Bits[15:0] required for cache upload or download. ATPG scan widths
are user-configurable (24,12, or 6).

A1020TEST I Enables cache upload or cache download and BIST test modes.

A1020TESTCFG[2:0] I Chooses which BIST or upload/download mode runs.

A1020WCLK I Wrapper clock for dedicated wrapper cells.

A1020WM UXINSEL I Selects core inputs (wrapper or external logic)

A1020WMUXOUTSEL I Selects core outputs (wrapper or external logic)

A1020WSCANEN I Scan enable for al wrapper cells.

A1020WSCANIN[2:0] (0] Input ports for the wrapper scan chains.

A1020WSCANOUT[2:0] O Output ports for the wrapper scan chains.

HRESETN I Asynchronous reset.

SCANIN[23:0] I Test bus input. Bits[15:0] required for cache upload or download.

SCANMUX12 I Setting both SCANM UX 12 and SCANM UX6 enables accessto 12 separate internal
scan chainsand 3 wrapper chains. Clearing both signals produces 24 separate internal
scan chains and 3 wrapper chains.

SCANMUXG6 Enables accessto 6 separate internal scan chains and 1 wrapper chain.

ARM DDI 0237A
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Table A-9 Design for test signals (continued)

Name I/O Description

SCORETEST I Enables serial core test mode.

SFRESETN I Asynchronous reset.

UDLTEST I Enables the shared cells of the wrapper only. Must be enabled during

3-wrapper-chain mode, 12-chain mode and 24-chain mode.
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A.8 ETMsignals
Table A-10 liststhe ETM 10 signals.

Table A-10 ETM10 signals

Signal name /0 Description

ETMCORECTL[23:0] @) Miscellaneous control signal inputs from the ARM 10 processor.

ETMDA o The data address bus.

ETMDATA[63:0] (@) The load, store, and coprocessor data from the ARM 10 processor.
ETMDATAVALID[1.0] O Valid signal for ETMDATA bus (one hit for each for HIGH and LOW word).
ETMIA O Theinstruction fetch address bus.

ETMR15BP @) The instruction address for branch phantom instructions.

ETMR15EX @) The instruction address for al nonbranch phantom instructions.

FIFOFULL | Indicates a request from the ETM 10 for the ARM 10 processor to stall execution to

prevent the ETM 10 from overflowing its FIFO.
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Glossary

Abort

Access
Permissions

Advanced
Microcontroller Bus
Architecture

AHB
ALU
AMBA

AMBA
High-performance
Bus

AP

This glossary lists all the abbreviations used in the ARM1022E Technical Reference
Manual.

An Abort is caused by an illegal memory access. Aborts can be caused by the external
memory system or the MMU.

The Memory Management Unit (MMU) determines the Access Permissions (AP) to
regions of memory.

The ARM open standard for on-chip buses. AHB conforms to this standard.

See AMBA High-performance Bus.
See Arithmetic Logic Unit.
See Advanced Microcontroller Bus Architecture.

The ARM processor interface to memory and peripherals.

See Access Permissions
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Glossary

Arithmetic logic unit

ASIC
ATPG

Back of queue
pointer

Big-endian

BIU

BQ
Branch folding

Branch phantom

Breakpoint

Bus interface unit

C

Cache hit
Cache miss
CAM

Clock gating

Condensed
reference format

The component of the ARM processor that performs the arithmetic and logic
operations.

Application-Specific Integrated Circuit

Automated Test Pattern Generation.

Points to the next location to read from when draining the write buffer
See also Front of Queue pointer

Memory organization in which theleast significant byte of aword isat a higher address
than the most significant byte.

Seealso Little-endian.
See Bus Interface Unit
See Back of Queue pointer and also Front of Queue pointer

A branch can be predicted, pulled out of the normal instruction stream and effectively
executed in parallel with the next instruction in the instruction stream.

The condition codes of a predicted branch.

If execution reachesthislocation, the debugger halts execution of the program. See also
Watchpoint.

A Bus Interface Unit (BIU) that handles all data and/or instruction accesses across
AHB.

Memory configuration Cachable See also NC, NCB and NCNB
The instruction or datais found in the cache.

The instruction or datais not found in the cache.

See Content Addressable Memory

Gating aclock signal for amacrocell with acontrol signal (such as PWRDOWN) and
using the modified clock that results to control the operating state of the macrocell.

Condensed Reference Format. A vector file format proprietary to ARM Ltd

Content CAM includes comparison logic with each bit of storage. A data value is broadcast to

addressable all words of storage and compared with the values there. Words which match are

memory flagged in some way. Subsequent operations can then work on flagged words. It is
possible to read the flagged words out one at atime or write to certain bit positionsin
all of them.
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Copy-back
CPI
CPSR

CPU core state

CRF
DA

Data bus interface
unit

Data physical
address

Data streaming

Data transfer
register

DBIU

DCache

Debug ID register

Debug status and

control register

DIDR

Dirty data

DSCR

Glossary

See Write-back
Clocks per instruction or cycles per instruction

Current program status register

The state of:
. all banked registers
. the CPSR

. theMMU TLB

. the system control coprocessor, CP15

. the state of the debug coprocessor, CP14
. the VFP10 coprocessor

. ETM10.

See Condensed reference format
Data address
The BIU that handles all data accesses across AHB

The 32-bit address path between the DMMU and the DBIU.

The ability to return the second load miss data before a linefill compl etes.

Two physically separate registers used to read and write to through the JTAG interface
for debug.

See Data bus interface unit

Data cache (DCache) and associated write buffer. It has 1024 lines of 32 bytes arranged
as a 64-way associative cache and uses virtual addresses from the ARM 10E Integer
Unit.

The DIDR contains details of implementer, architecture version and the number of
watchpoints and breakpoints.

The DSCR enables all debug functionality. It controls the debug modes, settings for
catching ARM exceptions, and the comms channel.

See Debug ID register

A dataline that has been modified in the DCache and has not been written back to main
memory.

See Debug status and control register

ARM DDI 0237A

Copyright © 2001 ARM Limited. All rights reserved. Glossary-3



Glossary

DTR
EmbeddedICE

Exception

FAR

Fast context switch
extension

Fault

Fault address
register

Fault status register

FCSE

FIQ

FPGA

Front of queue
pointer

FSR
Gray code

Halt mode

Hit-under-miss

See Data transfer register

The Embedded| CE | ogic eases debugging in embedded systems. It containswatchpoint,
control, and status registers.

An exception handles an event. For example, an external interrupt or an undefined
instruction.

See Fault address register

The Fast Context Switch Extension (FCSE) enabl es cached processorswithan MMU to
present different addresses to the rest of the memory system for different software
processes even when those processes are using identical addresses.

Seealso MMU, MVA, PA, VA
An abort that is generated by the MM U.

The FAR holds the virtual address of the access which was attempted when a fault
occurred.

TheFSR contains the source of the last fault. It indicates the domain and type of access
being attempted when an abort occurred.

See Fast context switch extension

Fast interrupt request. The exception for processing fast interrupts.
Seaso IRQ.

See Field programmabl e gate array

Points to the next entry to be written to in the write buffer.

See also Back of queue pointer

See Fault status register

Only one hit changes in the move from one state to the next state.

One of two mutually exclusive debug modes. In halt mode all processor execution halts
when abreakpoint or watchpoint is encountered. All processor state, coprocessor state,
memory and input/output locations can be examined and altered by the JTAG interface.

See also Monitor mode

The HUM buffer enables program execution to continue even though there has been a
datamissin the cache. If aload missesin the data cache, the outstanding request is
moved into the HUM buffer. Other instructions, including loads, can continue to
execute unless a second miss occurs or adependency on the outstanding datais detected

Glossary-4
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HUM
IA
IBIU

ICache

ICE

IDDQ

In-circuit emulator

Incoherence

Instruction address

Instruction bus
interface unit

Instruction transfer
register

Instruction physical
address

IPA

IRQ

ITR

JTAG

Leakage

Link register

Glossary

See Hit-under-miss
See Instruction address
See Instruction bus interface unit

Instruction cache. It has 1024 lines of 16 bytes arranged as a 64-way associative cache.
It uses virtual addresses from the ARM 10E integer unit.

See In Circuit Emulator

IDDQ refersto the quiescent current in CMOS integrated circuits. IDDQ isthe |IEEE
symbol for the quiescent power supply current in a MOS circuit.

A module for debugging in embedded systems.

When |Cache or DCache copies of main memory and main memory get out of step with
each other because one is updated and the other is not, the copies have become
incoherent.

See also memory coherence
The 32-bit virtual address path between the ARM 10E integer unit, IMMU, and | Cache.

The Bus Interface Unit (BIU) that handles all instruction accesses across AHB.

The ITR sendsinstructions to the ARM 10E processor during debug.

The MMU trand ates the modified virtual address to form the instruction physical
address.

See Instruction Physical Address

Interrupt request. The exception for processing standard interrupts

Seealso FIQ, SWI

See Instruction Transfer Register

Joint Test Action Group

The committee that defined the | EEE test access port and boundary-scan standard.
The current each transistor takes even when it is not being switched.

Register 14 isthe Link Register (LR). This register holds the address of the next
instruction after a Branch and Link (BL) instruction, which is the instruction used to
make a subroutine call.
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Glossary

Little-endian

Load/store unit
Lock-out layer
LR

LSU

Memory coherency

Memory
management unit

Method of entry
MMU

Modified Virtual
Address

MOE

Monitor mode

Multi-ICE

MVA

Memory organization where the least significant byte of aword isat alower address
than the most significant byte.

See also Big-endian

Part of the ARM10E integer unit that handles load/store transfers.

I solates the CPU from the system bus, placing the CPU busin the IDLE state.
See Link Register

See L oad/Store Unit

Isthe problem of ensuring that when amemory location is read either by adataread or
an instruction fetch, the value actually obtained is always the value that was most
recently written to the location. This can be difficult when there are multiple possible
physical locations, such as main memory, awrite buffer and/or cache.

See also incoherence

An MMU controls caches and access permissions to blocks of memory, and translates
virtual to physical addresses. The ARM processor has an IMMU for instructions and a
DMMU for data.

Seealso FCSE, MVA, TLB, PA, and VA,

In debug, bits[4:2] of the DSCR can be read to determine what caused an exception.
See Memory management unit

Modified Virtual Address

A virtual address produced by the ARM 10E integer unit can be changed by the current
Process ID to provide aModified Virtual Address(MVA) for the MMUs and caches.

Seealso FCSE
See Method of Entry

One of two mutually exclusive debug modes. In monitor mode the ARM processor
enabl es a software abort handler provided by debug monitor or operating system debug
task. When a breakpoint or watchpoint is encountered, this enables vital system
interrupts to continue to be serviced while normal program execution is suspended.

See also Halt mode

Multi-1CE is a system for debugging embedded processor cores through a JTAG
interface.

See Modified Virtual Address
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NB
NC
NCB
NCNB

PA

PA[7:0]

PC
PDA

Penalty

PLL

Phase Locked Loop

RDI

Remapping

Remote Debug
Interface

RISC
ROM

RTOS

Glossary

Memory configuration, NonBufferable

Memory configuration, NonCachable

Memory configuration, NonCachableBufferable
Memory configuration, NonCachableNonBufferable
Physical Address

The MMU performsatrandation on Modified Virtual Addresses (MVA) to produce the
Physical Address (PA) whichisgivento AHB to perform an external access. The PA is
also stored in the DCache to avoid needing address translation when datais cast out of
the cache.

See also FCSE

Physical Address (internal bus)

The 8-bit data path between DMMU and DCache.
Program Counter

Personal Digital Assistant

the number of cyclesin which no useful Execute stage pipeline activity can occur due
to an instruction flow differing from that assumed or predicted

See also Branch folding, Branch phantom
See Phase Locked Loop

Phase Locked Loop

A clock synthesis device

See Remote Debug Interface

Changing the address of physical memory or devices after the application has started
executing. Thisistypically doneto enable RAM to replace ROM oncetheinitialization
has been done.

Remote Debug Interface

Reduced Instruction Set Computer
Read Only Memory
Real Time Operating System

ARM DDI 0237A
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Safe shift

SDRAM
SDT

SP
SPSR
SRAM

SWI

TAP
TIC

TLB

TTBA

UNDEFINED

UNPREDICTABLE

VA

Victim

Watchpoint

values can be shifted from one scan cell to the next with no risk of error due to clock
skew.

Synchronous Dynamic Random Access Memory
Software Development Toolkit

Stack Pointer

Saved Program Status Register

Static Random Access Memory

Software Interrupt. An instruction that causes the processor to call a
programmer-specified subroutine.

Test Access Port
Test Interface Controller
Trandation Look-aside Buffer

A cache of recently used page table entries that avoid the overhead of
page-table-walking on every memory access. Part of the memory management unit.

Trandation Table Base Address

The starting point for the memory translation process. CP15 register r2 isthe
ARM1022E trandation table base register.

Indicates an instruction that generates an undefined instruction trap.

means the result of an instruction cannot be relied upon. Unpredictable instructions or
results must not represent security holes. Unpredictabl e instructions must not halt or
hang the processor, or any parts of the system.

Virtual Address

The MMU uses its page tables to trandlate a Virtual Address into a Physical Address.
The processor executes code at the Virtual Address, which may belocated elsewherein
physical memory.

Seealso FCSE, MVA, and PA.
the cache entry to be replaced

A location in the program that is monitored. If the value stored there changes, the
debugger halts execution of the program.

See also Breakpoint

Glossary-8
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Write-back In awrite-back cache, datais only written to main memory when it isforced out of the
cache. Otherwise writes by the processor update only the cache. (Also known as
copy-back)

Write buffer Buffered writes can be written to memory by AHB while ARM 10E continues reading

instructions and data from | Cache and DCache. ARM 10E can also continue writing to
DCache and the write buffer.

Write-through In awrite-through cache, dataiswritten to main memory at the same time asthe cache
is updated.

ARM DDI 0237A Copyright © 2001 ARM Limited. All rights reserved. Glossary-9
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Index

Theitemsin thisindex are listed in alphabetical order, with symbols and numerics appearing at the end. The
references given are to page numbers.

A

AHB
busreset 7-4
clock source 7-3
RETRY during lin€fill or castout
7-8
signals 7-3

SPLIT during linefill or castout 7-8

AHB signals
HADDRD[31:0] 7-3
HADDRI[31:0] 7-3
HBURSTD[2:0] 7-3, 7-8
HBURSTI[2:0] 7-3, 7-8
HCLK 7-3,7-9
HPROTD[3:0] 7-3,7-8
HPROTI[3:0] 7-3, 7-8
HRDATAD[63:0] 7-3
HRDATAI[63:0] 7-3
HREADYD 7-4
HREADYI 7-4
HRESETN 7-4
HRESPI[1:0] 7-4

HSIZED[2:0] 7-4,7-7
HSIZEI[2:0] 7-4,7-7
HTRANSD[1:0] 7-5, 7-7
HTRANSI[1:.0] 7-4,7-7
HWDATAD[63:0] 7-5
HWRITED 7-5
HWRITElI 7-5
Alignment fault
priority 4-30
Alignment fault checking 4-29
enabling 3-9
ALU pipeline 11-2
Arbiter
DBIU mastership 7-6
DBIU request 7-6
IBIU mastership 7-6
IBIU request 7-6
locked DBIU transfers 7-6
Arbiter signals
HBUSREQD 7-6
HBUSREQI 7-6
HGRANTD 7-6
HGRANTI 7-6

HLOCKD 7-6
HLOCKI 7-6
ARM10 pipeline
relation to CP pipeline 8-2
ARM1020DFTRESET signal 12-14
Asynchronous reset inputs 12-13
A1020DFTCKEN signal 12-3, 12-5,
12-10
in ATPG test 12-39
in cache upload mode 12-41
in external test wrapper mode
12-43, 12-44
in functional mode 12-40
A1020DFTGCKEN signa
in BIST test 12-40
A1020DFTRESET signal 12-3,12-13,
12-17
in ATPG test 12-39
in BIST test 12-40
in cache upload mode 12-41
in external test wrapper mode
12-43, 12-44
in functional mode 12-40
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Index

A1020DFTWCKEN signa 12-10
description 12-4
in ATPG test 12-39
inBIST test 12-41
in cache upload mode 12-41
in external test wrapper mode
12-43, 12-44
in functional mode 12-40
A1020MUXINSEL signal
in ATPG test 12-39
in cache upload mode 12-41
in external test wrapper mode
12-43, 12-44
in functional mode 12-40
A1020MUXOUTSEL signal
inATPG test 12-39
in cache upload mode 12-41
in external test wrapper mode
12-43, 12-44
in functional mode 12-40
A1020RSTSAFE signd 12-14
description 12-4
in ATPG test 12-39
inBIST test 12-41
in cache upload mode 12-41
in external test wrapper mode
12-43, 12-44
in functional mode 12-40
A1020SAFE signal 12-14
description 12-4
in ATPG test 12-39
inBIST test 12-41
in cache upload mode 12-41
in external test wrapper mode
12-43, 12-44
in functional mode 12-40
A1020SCANEN signa  12-3
in ATPG test 12-39
inBIST test 12-40
in cache upload mode 12-41
in external test wrapper mode
12-43, 12-44
in functional mode 12-40
A1020SCANIN signa
in external test wrapper mode 12-44
A1020SCANIN[23:0] signals 12-27
BIST block under test selection
12-21
BIST dataword selection 12-21

BIST engine control  12-20
BIST instruction register 12-19
BIST pattern selection 12-21
inATPG test 12-39
in BIST test 12-18
in cache upload mode 12-42
in external test wrapper mode 12-43
in functional mode 12-40
reset values for BIST test 12-28
test completion values followed by
new test 12-30
A1020SCANMODE signal  12-3,
12-17
in BIST test 12-40
A1020SCANOUT signa
inATPG test 12-39
in cache upload mode 12-42
in external test wrapper mode
12-43, 12-44
in functional mode 12-40
A1020SCANOUT[23:0] signals 12-3,
12-8
BIST failureflags 12-25
in BIST test 12-18
mapping 12-24
wrapper scan chain configurations
12-6
A1020TEST signa  12-3
inATPG test 12-39
in BIST test 12-41
in cache upload mode 12-41
in external test wrapper mode
12-43, 12-44
in functional mode 12-40
A1020TESTCFG[2:0] signas 12-3,
12-24, 12-27, 12-28
in BIST test 12-41
upload and downl oad configurations
12-18
A1020WCLK signa 12-8, 12-9, 12-10
description 12-4
gating by A1020DFTWCKEN
12-10
A1020WMUXINSEL signal 12-2
description 12-4
in BIST test 12-41
A1020WMUXOUTSEL signal 12-2
description 12-4
in BIST test 12-41

A1020WSCANEN signal  12-9

description 12-4

in ATPG test 12-39

inBIST test 12-41

in cache upload mode 12-41

in external test wrapper mode

12-43, 12-44

in functional mode 12-40
A1020WSCANIN signa

in external test wrapper mode 12-44
A1020WSCANIN signals 12-8
A1020WSCANIN[2:0] signal

in external test wrapper mode 12-43
A1020WSCANIN[2:0] signals

description 12-5
A1020WSCANOUT signal

in external test wrapper mode

12-43, 12-44

A1020WSCANOUT[2:0] signals 12-8

description 12-4

B

Barrel shifter 2-5,2-9
Big-endian operation

selection 3-9
BIST block under test selection 12-20
BIST dataword selection 12-21
BIST engine control selection 12-20
BIST failure addresses 12-25
BIST failure flag

toggling 12-24
BIST instruction register 12-19
BIST pattern selection 12-21
BIST patterns

Bang 12-23

ColMarch 12-23

PttnFail 12-23

ReadCkbd 12-22

ReadSolids 12-23

RowMarch 12-23

WriteCkbd 12-22

WriteSolids  12-23
BIST_DONE[9] signa 12-32
Branch folding 6-3, 11-2
Branch instructions

cyclecounts 11-8
Branch phantom 6-3
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Branch prediction 2-5, 6-1-6-7, 11-2,
11-8
enabling 3-9
Branches
cyclecount 11-2
Breakpoint 10-3
Buffered write
definition 7-14
BYPASS instruction 9-4
BYPASYS1:0] signals 14-8

C

Cache lockdown register (CP15 R9)
3-4,3-22
programming 3-22
Cache memory 5-1-5-18
associativity 5-2
locking 5-2
replacement 5-2
size 52
Cache typeregister (CP15 R0) 3-4,
3-6,37
CAM BIST 12-20
Capture-DR state  9-5
Castout buffer 7-14
CLAMP instruction 9-4
CLAMPZ ingtruction 9-4
CLKTESTCTL[3:0]
programming 14-6
CLKTESTCTL[3:0] signals 14-6
CLKTESTOUT signal  14-7
viewing internal clocks 14-6
Clock generator
CLKTESTCTL[3:0] programming
14-6
GCLK derivation 14-4
glitch-free operation 14-9
HCLK derivation 14-4
/0 signals 14-6
PLL duty cycle sensitivity 14-3
VCO bypass mode 14-4
seealso PLL
Clock generator signas
BYPASS[1:0] 14-8
CLKTESTCTL[3:0] 14-6
CLKTESTOUT 14-6, 14-7
GCLK 14-6, 14-7, 14-8

HCLK 14-6, 14-7, 14-8
HDIV[3:.0] 14-8
MCLK 14-7
MDIV[7:0] 14-8
NPORES 14-6
PCONFIGIN[5:0] 14-7
PCONFIGOUT[1:.0] 14-7
POWERDN 14-7
XTAL1 14-6,14-7, 14-8
XTAL2EN 14-6
Clock signals
A1020WCLK 12-8, 12-9, 12-10
GCLK 7-9,12-8,12-9, 12-10, 14-6,
14-8
HCLK 7-3,7-9,12-8,12-10, 12-14,
14-6, 14-8
HCLK/GCLK relationship 7-9
TCK 12-8,12-9,12-14
Condensed Reference Format (CRF)
12-18, 12-26
Condition code check
bounced CP ingtruction 8-44
SWI instruction 11-9
Condition fail cycles 11-4
Condition passcycles 11-3
Context ID register (CP15 R13) 3-4,
3-25
Control register 1 (CP15R1) 3-4, 3-9,
4-3, 4-21, 4-29, 4-33, 6-2, 6-5,
7-13
Control register 2 (CP15 R15) 3-33,
4-4
CP pipeline 8-2, 8-7, 8-8, 8-18
CP15 PLL configuration register
BYPASS[1:0] programming 14-8
HDIV[3:0] programming 14-8
MDIV[7:0] programming 14-8

D

DataAbort 4-17,4-34
address 3-16
DMMU fault addressregister 4-29
DMMU level 1 trandlation fault 4-9
DMMU level 2 trandation fault
4-13
example serviceroutine 4-38
Databusinterface unit 7-2

Index

addressbus 7-3
burst transfer type 7-3, 7-8
castout buffer 7-14
databus 7-3
protection control  7-3, 7-8
daveready signal 7-4
daveresponse signas 7-4
transfer direction 7-5
transfer size 7-4, 7-7
transfer type 7-5, 7-7
write buffer 7-12, 7-13
write databus 7-5
Data processing instructions
cyclecounts 11-5
DataTLB
invalidating 3-21
DCache
and swap instructions 5-12
cleaning 3-17,5-2, 5-7, 5-8, 5-13,
5-17
datastreaming 5-15
dirty bit 5-7
effect of reset on 5-8, 5-17
enabling 3-9, 5-8
invalidating 3-17, 5-8
linefills 5-7
load streaming 5-15
locking 5-7
replacement 5-7,5-11, 5-12
second load miss 5-15
size 5-2
vaid bit 5-7
write-back bit 5-7
write-back (WB) operation 5-2
write-through (WT) operation 5-2
Debug status and control register
enabling halt mode 9-3
DevicelD register (CP15R0) 3-4, 3-6,
3-7
Dirty data
definition 3-18
Domain access control register (CP15
R3) 3-4,3-12, 4-3,4-21, 4-28,
4-33
Domain access permissions 4-21
Domain fault 4-21, 4-28, 4-29
priority 4-30
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E

Example programs 14-11
External abort

priority 4-30
External test mode 12-14
EXTEST instruction 9-4

F

Fast branch adder 2-5
Fast context switch 3-26
example 3-26
Fast interrupt bit, Fl
halving write buffer size 7-13
Fast interrupts

enabling 3-9
Fault address register (CP15 R6) 3-4,
3-16, 4-3
Fault status register (CP15 R5) 3-4,
3-14,4-3

Fine page table descriptor 4-19
trandation fault 4-26

G

GCLK
derivation 14-4
GCLK signal 12-8, 12-9, 12-10, 14-6,
14-7,14-8
gating by A1020DFTCKEN 12-10
write buffer operation 7-12

H

HADDRD[31:0] signals 7-3
HADDRI[31:] signds 7-3

HALT instruction 9-4, 9-6

Halt mode 9-2, 9-3

HCLK signal 7-3, 12-8, 12-10, 12-14,
14-6, 14-7, 14-8

write buffer operation 7-12
HDIV[3:0] signals 14-8
HGRANTD signal 7-6
HGRANTI signa 7-6
HIGHZ instruction 9-4
Hit-under-miss

enabling 5-14
Hit-Under-Miss (HUM) operation 2-2
HLOCKD signa 7-6
HLOCKI signa 7-6
HPROTD[3:0] signals 7-3, 7-8
HPROTI[3:0] signals 7-3, 7-8
HRDATAD[63:0] signals 7-3
HRDATAI[63:0] signals 7-3
HREADYD signal 7-4
HREADYI signa 7-4
HRESETN signa  7-4, 12-13

inBIST test 12-41

in cache upload mode 12-42

in external test wrapper mode

12-43, 12-44

HRESPD[1:0] signals 7-4
HRESPI[1:0] signals 7-4
HSIZED[2:0] signals 7-4, 7-7
HSIZEI[2:0] signals 7-4, 7-7
HTRANSDI[1:0] signals 7-5, 7-7
HTRANSI[1:0] signas 7-4, 7-7
HWDATAD[63:0] signals 7-5
HWRITED signal 7-5
HWRITEI signa 7-5

|Cache
effect of reset on 5-3, 5-17
enabling 3-9
invaidating 3-17, 5-2,5-3, 5-17
prefetching 3-17
replacement 5-3, 5-4, 5-5

IDCODE instruction 9-4

IMB sequence 6-8-6-10

Index cache operations register (CP15

R7) 3-4,3-17,3-20

programming 3-19

Input wrapper cell 12-11

Instruction bus interface unit  7-2
addressbus 7-3
burst transfer type 7-3, 7-8
databus 7-3
protection control  7-3, 7-8
slaveready signal  7-4
slaveresponse signals 7-4
transfer direction 7-5
transfer size 7-4, 7-7
transfer type 7-4, 7-7

Instruction memory barrier 6-8-6-10

Instruction TLB
invalidating 3-21

Integer core 2-3

Integer unit 2-2

Internal test mode 12-2

INTEST instruction 9-4, 9-6

J

JTAG ingtructions 9-4

L

Level 1trandation table 3-12
Little-endian operation
selection 3-9
Load instructions
cyclecounts 11-10
Load multiple instructions
cyclecounts 11-14
Loadsto PC
cyclecounts 11-10
Load/store multiple instructions

description 10-2 size 52 cyclecounts 11-10
HBURSTD[2:0] signals 7-3, 7-8 |Cache hit L oad/store operation
HBURSTI[2:0] signdls 7-3, 7-8 definition 5-4 autonomous operation 2-2
HBUSREQD signal 7-6 |Cache miss Load/store unit 2-2, 2-9, 11-2
HBUSREQI signal 7-6 definition 5-4 autonomous operation 2-9
HCLK ICache victim L1 and L2 write ports 2-9
derivation 14-4 definition 5-4 Sl and S2 read ports  2-9
Index-4 Copyright © 2001 ARM Limited. All rights reserved. ARM DDI 0237A



LSU pipeline 11-9

M

MCLK signal 14-7
MDIV[7:0] signals 14-8
MDIV[7:0]:M divider restrictions 14-5
Memory BIST 12-18-12-32
memory BIST 12-4
Memory management unit
enabling 3-9
MMU
access permissions  4-21
client access 4-21
domain fault 4-21, 4-28
manager access 4-21
page trandation fault 4-26
permission fault 4-28
section trandlation fault  4-26
MMU protection
enabling 3-9
Monitor mode
description 10-2
MRS instructions
cyclecounts 11-9
MSR instructions
cyclecounts 11-9
Multiply instructions
cyclecounts 11-7

N

NPORESsignal 14-6
NTRST signal 12-13
in cache upload mode 12-42

O

Output wrapper cell 12-2, 12-11

P

Page table descriptor fetch 4-2, 4-5,
4-6, 4-32
and external aborts 4-25

coarse large page table 4-13
coarse pagetable 4-9,4-11
coarse small pagetable 4-15
finelarge page table 4-17
fine pagetable 4-10, 4-16
fine small pagetable 4-19
finetiny pagetable 4-20
integer unit during 4-24
level 1 4-6
level 2 4-6,4-11
PCONFIGINI[5:0] signals 14-7
PCONFIGOUT([1:0] signals 14-7
Permission fault 4-22, 4-28, 4-29
priority 4-30
Phase locked loop (PLL)
see also Clock generator
Pipeline stages
Decode 2-4
Execute 2-4
Fetch 2-4
Issue 2-4
Memory 2-4
Write 2-4
PLL 14-11
H divider 14-8
lock-detect signal  14-7
programing examples 14-11
terms and specifications 14-11
see also Clock generator
PLL configuration register 14-11
PLL configuration register (CP15 R15)
3-4,3-28
programming 3-28
PLL duty cycle sensitivity 14-3
Power manager receive data register
(CP15R15) 3-30
Power manager status register (CP15
R15) 3-29
Power manager transmit data register
(CP15R15) 3-31
POWERDN signal  14-7
Prefetch Abort 4-17, 4-29, 4-34
example serviceroutine 4-38
IMMU fault status register  4-29
IMMU level 1 trandation fault 4-9
IMMU level 2trandation fault 4-13
Prefetch buffer 2-4, 2-5, 6-2, 6-3, 6-4,
6-6, 6-7, 11-2
Prefetch unit 2-2, 2-5

Index

branch folding 6-3
branch phantom 6-3
branch prediction 6-1-6-8
flushing 11-2
speculative prefetching 6-3
ProcessID 3-5
after reset 3-26
changing 3-26, 5-17
using 3-26
Process ID register (CP15 R13) 3-4,
3-25

R

Random victim replacement
selection 3-9
Reset
effect on DCache 5-17
effect on ICache 5-3, 5-17
HCLK and GCLK during 14-4
Reset dedicated wrapper cell 12-12
RESTART instruction 9-4, 9-6
Result cycles 11-4
ROM protection
enabling 3-9
Round-robin victim replacement
selection 3-9

S

SAMPLE/PRELOAD instruction 9-4
Scan chain
clocks 12-8
lengths 12-6
SCANIN[23:0] signals 12-3, 12-8
wrapper scan chain configurations
12-6
SCANMODE signa
in ATPG test 12-39
in cache upload mode 12-41
in external test wrapper mode
12-43, 12-44
in functional mode 12-40
SCANMUX12 signa  12-5, 12-6
and scan chain configuration 12-6
description 12-4
in ATPG test 12-39
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Index

in cache upload mode 12-42

in external test wrapper mode
12-43, 12-44

in functional mode 12-40

wrapper scan chain configurations

12-6
SCANMUX6 signa  12-5, 12-6

and scan chain configuration 12-6

and wrapper scan chain
configuration 12-7
description 12-5
inATPG test 12-39
in cache upload mode 12-42
in external test wrapper mode
12-43, 12-44
in functional mode 12-40
SCAN_N instruction 9-4, 9-5
SCORETEST signal 12-2
description 12-5
inATPG test 12-39

in external test wrapper mode 12-44

SCORETESTsigna  12-5
Second load miss 5-14, 5-15
Self-modifying code
BitBIt code 6-10
loading code from disk  6-9
self-decompressing code 6-10
Serial coretest mode 12-2
SFRESETN signal  12-13
inBIST test 12-41
in cache upload mode 12-42
in external test wrapper mode
12-43, 12-44
Shared wrapper cell 12-8, 12-14
Shift-DR state 9-5
Soft TLB
enabling 3-33
Speculative prefetching 6-3
Store instructions
cyclecounts 11-10
Store multiple instructions
cyclecounts 11-14
SWI instruction
cyclecounts 11-9

selecting after PC load 3-9
TCK signa 12-8, 12-9, 12-14
TDI signd

in cache upload mode 12-42
TDO signal

in cache upload mode 12-42
Test Access Port (TAP) 9-2
Test port coresignals 12-3
TLB entries

invalidating 3-13
TLB lockdown register (CP15 R10)

3-4,4-4

programming 3-23
TLB miss 4-6

priority 4-30
TLB operationsregister 3-20
TLB operations register (CP15 R8)

3-4,4-4
TMSsignal

in cache upload mode 12-42
Trandation fault 4-8

coarse pagetable 4-13

fine pagetable 4-17

level 1 4-9

level 2 4-11, 4-12, 4-17

page 4-26

priority 4-30

section 4-26

Trandation lookaside buffer 4-2, 4-5
invalidating TLB entries 4-24, 4-33

size 4-5
soft TLB instructions 4-34
TLB miss 4-5, 4-6

Trangdlation table base register (CP15

R2) 3-4,3-12,4-3,4-33
Translation table descriptor
Chit 53

U

UDLTEST signa 12-5, 12-15

and scan chain configuration 12-6

description 12-5
inATPG test 12-39
in cache upload mode 12-42

in serial coretest mode 12-2
Update-DR state 9-5

V A cacheoperationsregister (CP15R7)

3-4,3-17, 3-20
programming 3-20
VCO bypass mode 14-4

VCO(max)
addendum 14-5

Vector locations
selection 3-9

Victim replacement
selection 3-9

wW

Watchpoint 10-3
Wrapper clock 12-8, 12-10
ininternal test mode 12-2
Wrapper scan chain
configurations 12-6
Wrapper test signals  12-4
Write buffer
back of queue pointer 7-13
bypassing 7-14
clock speed 7-12
effect of reset on 5-8
emptying 3-17, 4-24, 7-14
enabling 3-9, 5-8
front of queue pointer 7-13
halving size 7-13
memory coherency 4-24

X

XTAL1signad 14-6,14-7, 14-8
XTALZ2EN signal 14-6

T in external test wrapper mode Zero-cyclebranch 2-5, 6-2, 6-3, 6-5
12-43, 12-44

T bit in functional mode 12-40
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