
Correction partiel de Programmation Modulaire

—Licence MI/IM/MNSI - Info 3—

Aucun document n’est autorisé à part la fiche résumé de C++, où vous pouviez
consigner des notes manuscrites personnelles au verso. Tous les exercices sont indé-
pendants. Même si l’on ne sait pas répondre à une question, on peut utiliser la réponse
dans la suite de l’exercice. Une grande importance sera accordée à la qualité de la
rédaction (lisibilité, indentation,...).
Le barème est indicatif et pourra changer à la correction.
Durée : 2h00.

x Exercice 1. (Question de cours) – sur 3 points –
Répondre en une ou deux phrases aux questions suivantes
1. Que veux dire «surcharger une fonction» ? Que fait le compilateur quand il voit une surcharge de fonction ?

Donner un exemple.

!
C’est quand deux fonctions différentes portent le même nom mais avec des types de paramètres différents. Le com-
pilateur choisit la fonction dont le type des paramètres correspond.
Exemple : abs pour les float et les int.

!

2. Qu’est ce qu’une «méthode» ? Comment appelle-t-on une méthode depuis le programme ? Donner un
exemple.

!
C’est une fonction qui est déclarée à l’intérieur d’une classe (fonction membre). On appelle une méthode sur un objet
de la classe avec la notation pointée.
Exemple : la méthode size des vector. Appel avec v.size().

!

x Exercice 2. (Entiers signés) – sur 8 points –
On rappelle qu’en C++ le type unsigned représente des entiers sans signe. Le but de cet exercice est de représenter

les entiers relatifs (avec signe) sur une machine qui ne dispose que des entiers naturels (positifs). On s’interdit donc
d’utiliser le type int, on utilisera seulement unsigned. Pour simplifier, on va supposer que la multiplication de
deux unsigned donne toujours un résultat correct (pas de débordement de capacité).

1. On veut représenter les entiers relatifs par une structure comportant deux champs, l’un de type booléen
pour le signe (positif est codé par true, et négatif par false) et l’autre champ de type unsigned pour la
valeur absolue. Écrire la déclaration de la structure Relatif pour coder les entiers relatifs.

!

9 struct Relatif {
10 bool signe;
11 unsigned vabs;
12 };

!

2. Écrire une fonction abs qui retourne la valeur absolue d’un Relatif. Le résultat retourné sera de type
Relatif.

!

16 Relatif abs(Relatif a) {
17 return {true, a.vabs};
18 }

!

1



3. Surcharger l’opérateur d’égalité pour les Relatif.

!

21 bool operator==(Relatif x, Relatif y) {
22 return x.signe == y.signe and x.vabs == y.vabs;
23 }

!

4. Proposer en utilisant l’infrastructure doctest un cas de test comportant plusieurs tests pour l’opérateur
d’égalité. On fera attention à bien tester tous les comportements.

!

33 TEST_CASE("Fonction abs sur les Relatif") {
34 CHECK(Relatif{true, 3} == Relatif{true, 3});
35 CHECK(Relatif{false, 3} == Relatif{false, 3});
36 CHECK_FALSE(Relatif{true, 3} == Relatif{false, 3});
37 CHECK_FALSE(Relatif{false, 3} == Relatif{false, 4});
38 }

!

5. En utilisant l’égalité précédemment définie, proposer un cas de test comportant plusieurs tests pour la
fonction abs.

!

41 TEST_CASE("Fonction abs sur les Relatif") {
42 CHECK(abs(Relatif{true, 3}) == Relatif{true, 3});
43 CHECK(abs(Relatif{false, 3}) == Relatif{true, 3});
44 CHECK(abs(Relatif{false, 5}) == Relatif{true, 5});
45 CHECK(abs(Relatif{true, 5}) == Relatif{true, 5});
46 }

!

6. Surcharger l’opérateur de multiplication pour les nombres Relatif.

!

50 Relatif operator*(Relatif a, Relatif b) {
51 return {a.signe == b.signe, a.vabs * b.vabs};
52 }

ou bien

1 Relatif operator*(Relatif a, Relatif b) {
2 Relatif res;
3 res.vabs = a.vabs * b.vabs;
4 res.signe = (a.signe == b.signe);
5 return res;
6 }

!

7. On veut maintenant que Relatif soit une classe, qui contienne un constructeur à partir d’un unsigned,
ainsi qu’une méthode abs (correspondant la fonction abs précédente). Écrire la déclaration de la classe.

!

!

9 struct Relatif {
10 bool signe;
11 unsigned vabs;
16 Relatif(unsigned);
17 Relatif abs() const;
18 };

!

2



!

!

8. Écrire la définition du constructeur (en dehors de la classe).

!
27 Relatif::Relatif(unsigned x) : signe{true}, vabs{x} {}

!

9. Écrire la définition de la méthode abs.

!
22 Relatif Relatif::abs() const {
23 return {true, vabs};
24 }

!

x Exercice 3. (Bibliothèque) – sur 9 points –
Une bibliothèque municipale prête à ses adhérents au plus 10 livres (ou BDs ou journaux) par adhérent et ce,

pour une durée de 3 semaines maximum. Les prêts sont gratuits mais les retours en retard sont payants : tout
retard est facturé 0, 20 euros par exemplaire et par jour de retard. La bibliothèque souhaite mettre en place un
système informatique sommaire pour gérer les prêts à ses adhérents et les pénalités dues. Pour ce faire, on attribue
à chaque adhérent un numéro d’adhérent auquel on associe son nom, son adresse, ainsi que la liste des exemplaires
empruntés, avec pour chaque exemplaire, sa date limite de retour théorique (date d’emprunt + 21 jours). On utilise
les déclarations suivantes :

1 enum class Categorie {livre, BD, journal};
2
3 struct Exemplaire {
4 int nref; // le numéro de référence
5 Categorie cat;
6 string titre;
7 Date dretour; // date limite de retour
8 };
9
10 struct Adherent {
11 int nA; // le numéro de l’adherent
12 string nom;
13 string adresse;
14 vector<Exemplaire> pret;
15 };

On suppose de plus déjà défini et écrit par ailleurs, un type structuré Date avec les opérateurs suivants (où d, d1
sont des Date et i est un entier) :

— d + i, ajoute un entier à une date et retourne la date avancée de cet entier ;
— l’opérateur d1 - d, qui calcule la différence entre d1 et la date de retour d. Il retourne 0 si d1 précède ou

est égale à d (la date de retour d n’a pas été dépassée), et le nbre de jours de dépassement d1 - d sinon
— L’operateur d’affichage d’une date.

On ne demande pas d’écrire les fonctions de manipulation des dates.

Le but de ce problème est de gérer les emprunts et d’écrire des lettres de rappels en cas de retard trop grand.
Voici un exemple succinct de lettre de rappel (on ne demande pas de faire une belle présentation) :
Lettre de rappel de la bibliothèque
No : 42, Nom : Florent, Addr : 2, rue de nulle part
Ref : 2324, Cat : livre, Titre : L’outsider, Retour : 12/03/2022
Ref : 5351, Cat : BD, Titre : Isnogood, Retour : 02/05/2022
Ref : 1242, Cat : journal, Titre : Pour la Science, Retour : 14/04/2022

Suite à vos retard, vous avez une pénalite de 45 Euros

On vous demande d’écrire les fonctions suivantes :
1. L’opérateur d’affichage qui imprime une catégorie.

3



!

162 ostream& operator<<(ostream& out, Categorie c) {
163 switch (c) {
164 case Categorie::livre : out << "livre"; break;
165 case Categorie::BD : out << "BD"; break;
166 case Categorie::journal : out << "journal"; break;
167 }
168 return out;
169 }

!

2. L’opérateur d’affichage qui imprime les informations relatives à un exemplaire donné.

!

172 ostream& operator<<(ostream& out, Exemplaire e) {
173 out << "Ref : " << e.nref << ", Cat : " << e.cat
174 << ", Titre : " << e.titre << ", Retour : " << e.dretour;
175 return out;
176 }

!

3. L’opérateur d’affichage qui, étant donné un adhérent, imprime son nom et son adresse, ainsi que les infor-
mations relatives aux exemplaires empruntés.

!

179 ostream& operator<<(ostream& out, Adherent a) {
180 out << "No : " << a.nA << ", Nom : " << a.nom
181 << ", Addr : " << a.adresse << endl;
182 for (int i = 0; i < a.pret.size(); i++) out << " " << a.pret[i] << endl;
183 return out;
184 }

!

4. La procédure void emprunter(Adherent &a, Exemplaire e, Date d) qui étant donnés un adhérent, une
date du jour, et un exemplaire permet d’ajouter l’exemplaire donné à la liste des emprunts de cet adhérent,
s’il n’a pas déjà atteint son nombre d’emprunts maximum. Dans le cas contraire, on signalera une exception
de type runtime_error avec le message «Emprunt interdit».

!

188 void emprunter(Adherent &a, Exemplaire e, Date d) {
189 if (a.pret.size() >= 10)
190 throw runtime_error("Emprunt interdit");
191 e.dretour = d + 21;
192 a.pret.push_back(e);
193 }

!

5. La fonction calculPenalite qui étant donnés un adhérent et une date du jour, retourne la somme due par
cet adhérent (éventuellement 0).

!

197 float calculPenalite(Adherent a, Date d) {
198 int njour = 0;
199 for (int i = 0; i < a.pret.size(); i++)
200 njour += d - a.pret[i].dretour;
201 return 0.20*njour;
202 }

!

6. Proposez un type permettant de représenter l’ensemble des adhérents de la bibliothèque.

4



!

206 using Biblio = vector<Adherent>;

!

7. La procédure lettresDeRappel utilisant les fonctions précédentes et qui permet, pour une bibliothèque et
à une date donnée, d’afficher à l’écran les lettres de rappel à envoyer à chaque adhérent de la bibliothèque
ayant plus de 15 euros de pénalité. Pour chaque retard, la fonction affiche l’adhérent (avec les exemplaires
qu’il détient encore) ainsi que le montant de sa pénalité.

!

210 void lettresDeRappel(Biblio b, Date d) {
211 for (Adherent a : b) { // Ou mieux, for (const Adherent &a : b)
212 float p = calculPenalite(a, d);
213 if (p > 15) {
214 cout << "Lettre de rappel de la bibliothèque " << endl;
215 cout << a << "Suite à vos retard, vous avez une pénalite de "
216 << p << " Euros " << endl;
217 }
218 }
219 }

!

8. La procédure retour qui étant donnés un adhérent, une date du jour, et la référence d’un exemplaire permet
de retirer l’exemplaire considéré de la liste des emprunts de cet adhérent. La fonction devra retourner
l’éventuel montant des pénalités de retard correspondant à cet exemplaire. Si la référence ne correspond à
aucun exemplaire emprunté, on signalera une exception.

!

223 int cherche(Adherent &a, int ref) {
224 for (int i = 0; i < a.pret.size(); i++)
225 if (a.pret[i].nref == ref) return i;
226 return -1;
227 }
228 float retour(Adherent &a, Date d, int ref) {
229 int pos = cherche(a, ref);
230 if (pos == -1) throw runtime_error("Reference non trouvée");
231 Exemplaire e = a.pret[pos];
232 float p = (d - a.pret[pos].dretour)*0.2;
233 a.pret[pos] = a.pret.back(); // on remplace par le dernier emprunté.
234 a.pret.pop_back();
235 return p;
236 }

!

5


