
Correction partiel de Programmation
Modulaire

�Licence MI/IM - Info 3�

Aucun document n'est autorisé à part la �che résumé de C++, où vous pouviez
consigner des notes manuscrites personnelles au verso. Tous les exercices sont indé-
pendants. Même si l'on ne sait pas répondre à une question, on peut utiliser la réponse
dans la suite de l'exercice. Une grande importance sera accordée à la qualité de la
rédaction (lisibilité, indentation, ...).
Le barème est indicatif et pourra changer à la correction.
Durée : 2h00.

xExercice 1. (Question de cours) � sur 3 points �

Répondre en une ou deux phrases aux questions suivantes :

1. Comment le compilateur fait-il la di�érence entre la déclaration d'une fonction usuelle et celle
d'une fonction membre (aussi appelée méthode) ?

✁
Une méthode est déclarée a l'intérieur de la déclaration de la struct alors qu'une fonction usuelle est
déclarée en dehors de tout bloc.

✁

2. Même question pour la dé�nition.

✁
Lors de la dé�nition, on écrit NomDeLaClasse::nom_de_la_fonction pour signaler que c'est une méthode
appartenant à la classe NomDeLaClasse.

✁

3. Qu'est-ce qu'une conversion implicite ? Donner deux exemples.

✁
Une conversion implicite permet de mettre une valeur d'un type là où un autre type est attendu. La
valeur est alors convertie automatiquement. Exemple :

int i = true; // conversion de bool -> int
float j = 1; // conversion de int -> float

Attention dans

int i = 5;
cout << i;

Attention, cout << x où x est un entier n'est pas une conversion de int vers string, mais une surcharge
prédé�nie de l'opérateur <<.

✁

4. Donner un exemple où l'on a besoin de faire une conversion explicite.

1



✁

int i, j;
float f = float(i)/float(j) // sinon la compilateur fait une division entière.

Autre exemple :

enum class Couleur {Bleu, Vert};
int i = int(Couleur::Bleu); // pas de conversion implicite

Attention, les conversions entre int et string (par exemple int("10") ou string(5)) ne marchent pas
en C++ (ni implicitement ni explicitement), pour convertir un int en string il faut passer par to_string.

✁

xExercice 2. (Représentation des nombres en virgule �xe) � sur 10 points �

Dans certaines applications, on a besoin de contrôler très précisément les chi�res après la virgule
des nombres. Par exemple, les banques doivent considérer des montants ayant exactement deux chi�res
après la virgule. Dans cet exercice, le nombre de chi�res après la virgule sera une constante nommée
NB_CHIFFRES, égale à 6 dans les exemples ci-dessous. On va utiliser les deux dé�nitions de constantes
suivantes :

const int NB_CHIFFRES = 6;
const int P10NB = pow(10, NB_CHIFFRES); // L'entier 10 à la puissance NB_CHIFFRES

Les nombres seront représentés par une structure contenant deux entiers où l'on mettra dans avant

les chi�res avant la virgule et dans après les autres (exactement NB_CHIFFRES). Le nombre représenté
par la variable v sera

x = v.avant+ v.apres/10NB_CHIFFRES = v.avant+ v.apres/P10NB .

Pour respecter cette relation, si x est négatif, les deux champs avant et après devront être négatifs
tous les deux. On respectera donc les invariants suivants :

• −10NB_CHIFFRES < apres < 10NB_CHIFFRES

• avant et apres ont toujours le même signe.

Par exemple :

� 3,141562 sera représenté par avant = 3 et apres = 141592.

� 12,0054 = 12, 005400 sera représenté par avant = 12 et apres = 5400.

� −35,202314 sera représenté par avant = −35 et apres = −202314.

1. Écrire la déclaration de la structure Nombre décrite précédemment.

✁

struct Nombre {
int avant, apres;

};

✁

2. Écrire une fonction estCorrect qui prend en paramètre un nombre et qui renvoie true si le
nombre véri�e bien les invariants ci-dessus et false sinon.

2



✁

bool estCorrect(Nombre n) {
return ((-P10NB < n.apres) and (n.apres < P10NB)) and

(n.avant * n.apres) >= 0;
// Equivalent à n.avant >=0 and n.apres >= 0 or n.avant <=0 and n.apres <= 0

}

✁

3. Proposer, en utilisant l'infrastructure doctest, un cas de test comportant plusieurs tests de la
fonction estCorrect ci-dessus. On fera attention à bien tester tous les comportements.

✁

TEST_CASE("fonction estcorrect") {
CHECK(estCorrect({0, 0}));
CHECK(estCorrect({1, 0}));
CHECK(estCorrect({-1, 0}));
CHECK(estCorrect({-1, -5360}));
CHECK(estCorrect({0, 100000}));
CHECK(estCorrect(demi));
CHECK_FALSE(estCorrect({0, 5360000}));
CHECK_FALSE(estCorrect({0, 1000000}));
CHECK_FALSE(estCorrect({0, -1000000}));
CHECK_FALSE(estCorrect({-1, 1000}));

}

✁

4. Surcharger l'opérateur d'égalité pour les Nombre.

✁

62 bool operator==(Nombre x, Nombre y) {
63 return x.avant == y.avant and x.apres == y.apres;
64 }

✁

5. On rappelle que

cout << setw(5) << setfill('0') << n;

permet d'a�cher le nombre n sur 5 caractères en remplissant avec des 0 si besoin. Ainsi si n = 12,
l'a�chage sera 00012. Surcharger l'opérateur d'a�chage pour le type Nombre.

✁

49 ostream& operator<< (ostream &out, Nombre n) {
50 if (n.avant < 0 or n.apres < 0) out << "-";
51 out << abs(n.avant) << "," << setw(NB_CHIFFRES) << setfill('0') << abs(n.apres);
52 return out;
53 }
54 /*
55 ATTENTION ! La ligne :
56 out << n.avant << "," << setw(NB_CHIFFRES) << setfill('0') << abs(n.apres);
57 n'affiche pas correctement {0, -5} qui doit être affiché en -0,5
58 */

✁

3



6. Écrire une fonction abs qui renvoie la valeur absolue d'un Nombre. Le résultat renvoyé sera de
type Nombre.

✁

76 Nombre abs(Nombre a) {
77 return {abs(a.avant), abs(a.apres)};
78 /* Autre possibilité:
79 if (a.avant < 0 or a.apres < 0) return {-a.avant, -a.apres};
80 else return a;
81 On peut aussi la condition mettre (a.avant <= 0 and a.apres <= 0)
82 qui correspond à a négatif ou nul.
83 */
84 }

✁

7. Surcharger l'opérateur d'addition pour le type Nombre. Le résultat renvoyé sera de type Nombre.

✁

96 Nombre operator+(Nombre a, Nombre b) {
97 int s = (a.avant + b.avant) * P10NB + a.apres + b.apres;
98 return {s / P10NB, s % P10NB};
99 }

100 /* Variante : */
101 Nombre somme(Nombre a, Nombre b) {
102 Nombre res = {a.avant + b.avant, a.apres + b.apres};
103 // On verifie que après est bien dans ]-P10NB, P10NB[
104 if (res.apres <= -P10NB) {
105 res.apres += P10NB; res.avant--;
106 }
107 if (res.apres >= P10NB) {
108 res.apres -= P10NB; res.avant++;
109 }
110 // Il reste les cas où les signes diffèrent:
111 // Par exemple {-4,-500000} + {1,700000} donne {-3, 200000}
112 // qui faut changer en {-2,800000} C'est -4.5 + 1,7 = -2.8
113 if (res.avant > 0 and res.apres < 0) {
114 res.apres += P10NB; res.avant--;
115 }
116 if (res.avant < 0 and res.apres > 0) {
117 res.apres -= P10NB; res.avant++;
118 }
119 return res;
120 }

✁

On veut maintenant que Nombre soit une classe, qui contienne

� un constructeur à partir de deux entiers représentant les chi�res avant et après la virgule ;

� un constructeur par défaut construisant le nombre 0 ;

� une méthode abs (correspondant à la fonction abs précédente).

8. Écrire la déclaration de la classe.

4



✁

16 struct Nombre {
17 int avant, apres;
18
19 Nombre();
20 Nombre(int av, int ap);
21 Nombre abs() const;
22 };

✁

9. Écrire la dé�nition des deux constructeurs. Pour le constructeur à partir de deux entiers, si les
invariants ne sont pas véri�és, on lèvera une exception invalid_argument.

✁

26 Nombre::Nombre() : avant{0}, apres{0} {}
27 Nombre::Nombre(int av, int ap) : avant{av}, apres{ap} {
28 if (not (-P10NB < apres and apres < P10NB and avant * apres >= 0))
29 throw invalid_argument("Mauvais nombre");
30 }

✁

10. Écrire la dé�nition de la méthode abs.

✁

34 Nombre Nombre::abs() const {
35 return {std::abs(avant), std::abs(apres)};
36 }

✁

xExercice 3. (Jeu de Karkassohn) � sur 7 points �

Le jeu de Karkassohn (qui ressemble à un autre jeu que vous connaissez peut-être par ailleurs)
est une sorte de puzzle où l'on pose des pièces carrées sur une grille. Les quatre bords de la pièce
sont orientés chacun selon une direction Nord, Est, Sud ou Ouest. Il peuvent être occupés soit par un
champ, soit par une route, soit par une forêt. De plus, le milieu de la pièce peut être occupé par une
ville. On a donc déclaré les types suivants :

enum class Bord { Champ, Route, Foret };
enum class Dir { Nord, Est, Sud, Ouest };

struct Piece {
array<Bord, 4> bords;
bool ville;

};

5



Voici quelques exemples de pièces :

E
st

Nord

O
u
es
t

Sud

Forêt

Champ

R
ou
teR

ou
te

pièce 1

Ville

Forêt

Champ

R
ou
teR

ou
te

pièce 2

Champ

Champ

F
orêt

C
h
am

p

pièce 3

Ville

Forêt

Route

C
h
am

p

C
h
am

p

pièce 4

La pièce 1 a par exemple une forêt au nord, une route à l'est, un champ au sud et une route à l'ouest,
mais pas de ville. La pièce 2 a les mêmes bord que la pièce 1 et une ville.

Dans le tableau bords d'une pièce, on rangera les bords dans l'ordre indiqué par l'énumération Dir.
Par exemple, la pièce 1 sera codée par le tableau

0 1 2 3
Forêt Route Champ Route

1. Déclarer et initialiser en une seule instruction une variable nommée piece1 de type Piece pour
représenter la pièce 1 ci-dessus.

✁

21 Piece piece1 {{{Bord::Foret, Bord::Route, Bord::Champ, Bord::Route}}, false};
22 // Variante {{Bord::Foret, Bord::Route, Bord::Champ, Bord::Route}, false};

✁

2. Écrire une fonction opposee qui prend une Dir et qui renvoie la direction opposée. Par exemple,
la direction opposée de Sud est Nord. On demande d'écrire cette fonction en utilisant un switch.

✁

27 Dir opposee(Dir d) {
28 switch (d) {
29 case Dir::Nord : return Dir::Sud;
30 case Dir::Est : return Dir::Ouest;
31 case Dir::Sud : return Dir::Nord;
32 case Dir::Ouest : return Dir::Est;
33 // ATTENTION: Ne pas mettre de default :
34 // ca empèche la vérification que l'on a pas oublié de cas.
35 }
36 }

✁

3. Écrire une fonction bordPiece qui prend une Piece et une Dir et qui renvoie le bord de la pièce
dans la direction. On demande d'utiliser le codage des types énumérés par un entier sans écrire
ni condition ni switch.

✁

52 Bord bordPiece(Piece p, Dir d) {
53 return p.bords[int(d)];
54 }

✁

6



4. Écrire une fonction tourne90 qui prend une pièce et qui renvoie la pièce tournée d'un quart de
tour dans le sens des aiguilles d'une montre. On utilisera une boucle pour les 4 directions en
s'interdisant d'écrire 4 fois un code similaire. Voici un exemple :

Ville

Forêt

Champ

R
ou
teR

ou
te

pièce 2

Ville

Route

Route

F
orêt

C
h
am

p

pièce 2 tounée

✁

58 Piece tourne90(Piece p) {
59 Piece res;
60 for (int i=0; i<4; i++)
61 res.bords[(i+1) % 4] = p.bords[i];
62 res.ville = p.ville;
63 return res;
64 }

✁

Règle de placement des pièces

La règle du jeu indique que l'on peut placer deux pièces côte à côte uniquement si les bords adjacents
sont identiques. De plus, il est interdit de placer deux villes côte à côte. Voici un exemple de placement
autorisé :

Forêt

Champ

R
ou
teR

ou
te

Forêt

Champ

R
ou
teR

ou
te

Ville

Champ

Champ

F
orêt

R
ou
te

Ville

Forêt

Forêt

C
h
am

p

C
h
am

p

Champ

Champ

F
orêt

C
h
am

p

Ville

Champ

Champ

F
orêt

R
ou
te

? ? ?
Route

Forêt

C
h
am

p

C
h
am

p

A : oui

Ville

Route

Forêt

C
h
am

pR
ou
te

B : non

Route

Route

C
h
am

pR
ou
te

C : non

On peut, de plus, placer la pièce A dans l'emplacement marqué � ? ? ?�, mais ni la pièce B (car on
aurait deux villes côte à côte) ni la pièce C (car dans la direction Sud, on aurait une Route en face
d'une Forêt).

5. Écrire une fonction bool estCompatible(Piece p1, Piece p2, Dir d) qui retourne true si
l'on peut placer la pièce p2 dans la direction d de la pièce p1 (sans la tourner) en respectant les
règles, et false sinon.

7



✁

78 bool estCompatible(Piece p1, Piece p2, Dir d) {
79 return (bordPiece(p1, d) == bordPiece(p2, opposee(d)))
80 and not (p1.ville and p2.ville);
81 // Les conditions (p1.ville == p2.ville) ou bien (p1.ville != p2.ville)
82 // sont fausses.
83 }

✁

Modélisation du plateau de jeu

Le plateau de jeu est une grille carrée dont la longueur du bord est donnée par la constante ci-
dessous :

const int TAILLEGRILLE = 10;

On représente une case de la grille par le type Case suivant

struct Case {
int joueur;
Piece p;

};

où joueur contient le numéro du joueur qui a placé la pièce dans la case. La valeur -1 signi�e que la
case est vide.

6. Déclarer un type Grille pour représenter le plateau de jeu.

✁

98 using Grille = array<array<Case, TAILLEGRILLE>, TAILLEGRILLE>;

Alternatives :

1 typedef array<array<Case, TAILLEGRILLE>, TAILLEGRILLE> Grille;

ou

1 struct Grille {
2 array<array<Case, TAILLEGRILLE>, TAILLEGRILLE> plateau;
3 };

✁

7. Écrire une fonction bool okGrille(const Grille &gr) qui teste si la grille respecte les règles
du jeu. Indication : si la pièce en position (3, 4) est compatible avec la pièce en position (3, 3)
(dans la direction Sud), alors automatiquement la pièce en position (3, 3) est compatible avec la
pièce en position (3, 4) dans la direction Nord. Il n'est pas utile de tester les deux compatibilités.
La même chose est vraie dans le sens Est Ouest.

✁

8



102 bool okGrille(const Grille &gr) {
103 for (int x = 0; x < TAILLEGRILLE - 1; x++) {
104 for (int y = 0; y < TAILLEGRILLE; y++) {
105 if (gr[x][y].joueur != -1 and gr[x+1][y].joueur != -1
106 and not estCompatible(gr[x][y].p, gr[x+1][y].p, Dir::Est))
107 return false;
108 }
109 }
110 for (int x = 0; x < TAILLEGRILLE; x++) {
111 for (int y = 0; y < TAILLEGRILLE - 1; y++) {
112 if (gr[x][y].joueur != -1 and gr[x][y+1].joueur != -1
113 and not estCompatible(gr[x][y].p, gr[x][y+1].p, Dir::Sud))
114 return false;
115 }
116 }
117 return true;
118 }

✁

9


