[] . . .
universite Correction partiel de Programmation
PARIS-SACLAY Modulaire

—Licence MI/IM - Info 3—

Aucun document n’est autorisé & part la fiche résumé de C++, ol vous pouviez
consigner des notes manuscrites personnelles au verso. Tous les exercices sont indé-
pendants. Méme si I’on ne sait pas répondre & une question, on peut utiliser la réponse
dans la suite de l’exercice. Une grande importance sera accordée a la qualité de la
rédaction (lisibilité, indentation, ...).

Le baréme est indicatif et pourra changer & la correction.

Durée : 2h00.

» Exercice 1. (Question de cours) — sur 3 points —

Répondre en une ou deux phrases aux questions suivantes :

1. Comment le compilateur fait-il la différence entre la déclaration d’une fonction usuelle et celle
d’une fonction membre (aussi appelée méthode) ?

Une méthode est déclarée a l'intérieur de la déclaration de la struct alors qu’une fonction usuelle est
déclarée en dehors de tout bloc.

Lors de la définition, on écrit NomDeLaClasse: :nom_de_la_fonction pour signaler que c’est une méthode
appartenant a la classe NomDeLaClasse.

Une conversion implicite permet de mettre une valeur d’'un type la ot un autre type est attendu. La
valeur est alors convertie automatiquement. Exemple :

int i = true; // conversion de bool -> int
float j = 1; // conversion de int -> float

Attention dans

int i = 5;
cout << ij;

Attention, cout << x ol x est un entier n’est pas une conversion de int vers string, mais une surcharge
prédéfinie de 'opérateur <<.

4. Donner un exemple ot I’on a besoin de faire une conversion explicite.

int i, j;
float f = float(i)/float(j) // sinon la compilateur fait une division entiére.
Autre exemple :

enum class Couleur {Bleu, Vert};
int i = int(Couleur::Bleu); // pas de conversion implicite

Attention, les conversions entre int et string (par exemple int("10") ou string(5)) ne marchent pas
en C++ (ni implicitement ni explicitement), pour convertir un int en string il faut passer par to_string.

» Exercice 2. (Représentation des nombres en virgule fixe) - sur 10 points —

Dans certaines applications, on a besoin de controler trés précisément les chiffres aprés la virgule
des nombres. Par exemple, les banques doivent considérer des montants ayant exactement deux chiffres
aprés la virgule. Dans cet exercice, le nombre de chiffres aprés la virgule sera une constante nommeée
NB_CHIFFRES, égale & 6 dans les exemples ci-dessous. On va utiliser les deux définitions de constantes
suivantes :

const int NB_CHIFFRES = 6;
const int P1ONB = pow(10, NB_CHIFFRES); // L’entier 10 & la puissance NB_CHIFFRES

Les nombres seront représentés par une structure contenant deux entiers ot 'on mettra dans avant
les chiffres avant la virgule et dans aprés les autres (exactement NB_CHIFFRES). Le nombre représenté
par la variable v sera

T = v.avant + v.apres/10"5-HFFRES — 4 avant + v.apres/P10NB.

Pour respecter cette relation, si x est négatif, les deux champs avant et aprés devront étre négatifs
tous les deux. On respectera donc les invariants suivants :
o —1(QVB-CHIFFRES _ gnraq](NB-CHIFFRES
e avant et apres ont toujours le méme signe.
Par exemple :
— 3,141562 sera représenté par avant = 3 et apres = 141592.
— 12,0054 = 12,005400 sera représenté par avant = 12 et apres = 5400.
— —35,202314 sera représenté par avant = —35 et apres = —202314.

1. Ecrire la déclaration de la structure Nombre décrite précédemment.

struct Nombre {
int avant, apres;

2. Ecrire une fonction estCorrect qui prend en parameétre un nombre et qui renvoie true si le
nombre vérifie bien les invariants ci-dessus et false sinon.

62
63
64

49
30
o1
92
93
54
55
56
57
38

bool estCorrect(Nombre n) {
return ((-P10NB < n.apres) and (n.apres < P10NB)) and
(n.avant * n.apres) >= 0;
// Equivalent & n.avant >=0 and n.apres >= 0 or n.avant <=0 and n.apres <= 0

Proposer, en utilisant 'infrastructure doctest, un cas de test comportant plusieurs tests de la
fonction estCorrect ci-dessus. On fera attention & bien tester tous les comportements.

TEST_CASE("fonction estcorrect") {
CHECK (estCorrect ({0, 03}));
CHECK (estCorrect ({1, 0}));
CHECK (estCorrect({-1, 0}));
CHECK (estCorrect({-1, -53603}));
CHECK (estCorrect ({0, 100000}));
CHECK (estCorrect (demi)) ;
CHECK_FALSE (estCorrect ({0, 5360000}));
CHECK_FALSE(estCorrect ({0, 1000000}));
CHECK_FALSE(estCorrect ({0, -1000000}));
CHECK_FALSE(estCorrect({-1, 1000}));

}
""""""""""""""""""""""""""""""""""""""" =
Surcharger 'opérateur d’égalité pour les Nombre.
T
bool operator==(Nombre x, Nombre y) {
return x.avant == y.avant and x.apres == y.apres;
}
""""""""""""""""""""""""""""""""""""""" a<g

On rappelle que
cout << setw(5) << setfill(’0’) << n;

permet d’afficher le nombre n sur 5 caractéres en remplissant avec des 0 si besoin. Ainsi sin = 12,
I’affichage sera 00012. Surcharger 'opérateur d’affichage pour le type Nombre.

ostream¥ operator<< (ostream &out, Nombre n) {
if (n.avant < O or n.apres < 0) out << "-";
out << abs(n.avant) << "," << setw(NB_CHIFFRES) << setfill(’0’) << abs(n.apres);
return out;
}
/*
ATTENTION ! La ligne :
out << m.avant << ", " << setw(NB_CHIFFRES) << setfill(’0’) << abs(n.apres);
n’affiche pas correctement {0, -5} qui doit étre affiché en -0,5
*/

76
7
78
79
80
81
82
83
84

Ecrire une fonction abs qui renvoie la valeur absolue d'un Nombre. Le résultat renvoyé sera de
type Nombre.

Nombre abs(Nombre a) {
return {abs(a.avant), abs(a.apres)};

/* Autre possibilité:

if (a.avant < 0 or a.apres < 0) return {-a.avant, -a.apres};

else return a;

On peut aussti la condition metire (a.avant <= 0 and a.apres <= 0)

qut correspond a a négatif ou nul.

*/
}
""" =
Surcharger U'opérateur d’addition pour le type Nombre. Le résultat renvoyé sera de type Nombre.

Nombre operator+(Nombre a, Nombre b) {
int s = (a.avant + b.avant) * P10NB + a.apres + b.apres;
return {s / P10NB, s % P10ONB};
}
/* Variante : */
Nombre somme(Nombre a, Nombre b) {
Nombre res = {a.avant + b.avant, a.apres + b.apres};
// On verifie que aprés est bien dans]-P10NB, P10NB[
if (res.apres <= -P10NB) {
res.apres += P10NB; res.avant--;

}

if (res.apres >= P10NB) {
res.apres -= P10NB; res.avant++;

}

// Il reste les cas ot les signes différent:
// Par ezemple {-4,-500000} + {1,700000} donne {-3, 200000}
// qui faut changer en {-2,800000} C’est -4.5 + 1,7 = -2.8
if (res.avant > 0 and res.apres < 0) {

res.apres += P10NB; res.avant--;

}

if (res.avant < O and res.apres > 0) {
res.apres -= P10NB; res.avant++;

}

return res;

On veut maintenant que Nombre soit une classe, qui contienne

— un constructeur & partir de deux entiers représentant les chiffres avant et aprés la virgule;

— un constructeur par défaut construisant le nombre 0;

— une méthode abs (correspondant & la fonction abs précédente).

8. Ecrire la déclaration de la classe.

16 struct Nombre {

17 int avant, apres;

18

19 Nombre() ;

20 Nombre(int av, int ap);
21 Nombre abs() const;
22},

9. Ecrire la définition des deux constructeurs. Pour le constructeur a partir de deux entiers, si les
invariants ne sont pas vérifiés, on lévera une exception invalid_argument.

26 Nombre: :Nombre() : avant{0}, apres{0} {}
27 Nombre: :Nombre(int av, int ap) : avant{av}, apres{ap} {
28 if (not (-P10NB < apres and apres < P10NB and avant * apres >= 0))

29 throw invalid_argument("Mauvais nombre");
30 }

___ e
10. Ecrire la définition de la méthode abs.

O e
34 Nombre Nombre::abs() const {
35 return {std::abs(avant), std::abs(apres)};
36 }

___ e

» Exercice 3. (Jeu de Karkassohn) — sur 7 points —

Le jeu de Karkassohn (qui ressemble & un autre jeu que vous connaissez peut-étre par ailleurs)
est une sorte de puzzle ou 'on pose des piéces carrées sur une grille. Les quatre bords de la piéce
sont orientés chacun selon une direction Nord, Est, Sud ou Ouest. Il peuvent étre occupés soit par un
champ, soit par une route, soit par une forét. De plus, le milieu de la piéce peut étre occupé par une
ville. On a donc déclaré les types suivants :

enum class Bord { Champ, Route, Foret };
enum class Dir { Nord, Est, Sud, Ouest };

struct Piece {
array<Bord, 4> bords;
bool ville;

};

Voici quelques exemples de piéces :

Nord

Forét Forét QCham) Forét A
. g = S =S 3 =
E 2 13 e 2 Ville 2 2 = S Ville 2
g o =8 Q = = [©d =) B
fa'at @ a'at o) &) - &) =

Champ Champ Champ Route

pns piece 1 piéce 2 piece 3 piéce 4

La piéce 1 a par exemple une forét au nord, une route a ’est, un champ au sud et une route a I’'ouest,
mais pas de ville. La piéce 2 a les mémes bord que la piéce 1 et une ville.

Dans le tableau bords d’une piéce, on rangera les bords dans 'ordre indiqué par I’énumération Dir.
Par exemple, la piéce 1 sera codée par le tableau

21
22

27
28
29
30
31
32
33
34
35
36

52
93
54

0 1 2 3
Forét | Route | Champ | Route

. Déclarer et initialiser en une seule instruction une variable nommée piecel de type Piece pour

représenter la piéce 1 ci-dessus.

Piece piecel {{{Bord::Foret, Bord::Route, Bord::Champ, Bord::Route}}, false};
// Variante {{Bord::Foret, Bord::Route, Bord::Champ, Bord::Route}, false};

Ecrire une fonction opposee qui prend une Dir et qui renvoie la direction opposée. Par exemple,
la direction opposée de Sud est Nord. On demande d’écrire cette fonction en utilisant un switch.

Dir opposee(Dir d) {
switch (d) {
case Dir::Nord : return Dir::Sud;
case Dir::Est : return Dir::Quest;
case Dir::Sud : return Dir::Nord;
case Dir::0uest : return Dir::Est;
// ATTENTION: Ne pas mettre de default :
// ca empéche la vérification que l’on a pas oublié de cas.

Ecrire une fonction bordPiece qui prend une Piece et une Dir et qui renvoie le bord de la piéce
dans la direction. On demande d’utiliser le codage des types énumérés par un entier sans écrire
ni condition ni switch.

Bord bordPiece(Piece p, Dir d) {
return p.bords[int(d)];

4. Ecrire une fonction tourne90 qui prend une piéce et qui renvoie la piéce tournée d’un quart de
tour dans le sens des aiguilles d’une montre. On utilisera une boucle pour les 4 directions en
s'interdisant d’écrire 4 fois un code similaire. Voici un exemple :

Forét QRoute
8 = 3
2 Ville £ E Ville £
o+ = D>
a'at o) O <+
Champ Route
piece 2 piece 2 tounée
T
58 Piece tourne90(Piece p) {
59 Piece res;
60 for (int i=0; i<4; i++)
61 res.bords[(i+1) % 4] = p.bords[il;
62 res.ville = p.ville;
63 return res;
64 1}

Régle de placement des piéces

La régle du jeu indique que ’on peut placer deux piéces cote a céte uniquement si les bords adjacents
sont identiques. De plus, il est interdit de placer deux villes cote & cote. Voici un exemple de placement
autorisé :

Forét Champ
o, Ol &
29279 g Ville 5| 8 g
[& Ville & | @ =
5 g 6 & QR,oute a Route A Route A
Forét Champ CEG = % Ville g % g
i
Forét Forét Champ 5 g ° g ~ g
£ T Jle 0= Forét Forét Route
g s |3 = | 3 Ville =3 -
et Sl Tl & A :oul B : non C : non
Champ Champ Champ
Champ
8 >
g Ville g
o =
Champ

On peut, de plus, placer la piéce A dans 'emplacement marqué « 7?7 ?7», mais ni la piéce B (car on
aurait deux villes cote a cote) ni la piece C (car dans la direction Sud, on aurait une Route en face
d’une Forét).

5. Ecrire une fonction bool estCompatible(Piece pl, Piece p2, Dir d) qui retourne true si
l'on peut placer la piéce p2 dans la direction d de la piéce pl (sans la tourner) en respectant les
régles, et false sinon.

78 bool estCompatible(Piece pl, Piece p2, Dir d) {

79 return (bordPiece(pl, d) == bordPiece(p2, opposee(d)))

80 and not (pl.ville and p2.ville);

81 // Les conditions (pl.ville == p2.ville) ou bien (pl.ville != p2.ville)
82 // sont fausses.

83 }

Modélisation du plateau de jeu
Le plateau de jeu est une grille carrée dont la longueur du bord est donnée par la constante ci-
dessous :

const int TAILLEGRILLE = 10;

On représente une case de la grille par le type Case suivant

struct Case {
int joueur;
Piece p;

};

oll joueur contient le numéro du joueur qui a placé la piéce dans la case. La valeur -1 signifie que la
case est vide.

6. Déclarer un type Grille pour représenter le plateau de jeu.

98 using Grille = array<array<Case, TAILLEGRILLE>, TAILLEGRILLE>;

Alternatives :

1 typedef array<array<Case, TAILLEGRILLE>, TAILLEGRILLE> Grille;

ou

1 struct Grille {
array<array<Case, TAILLEGRILLE>, TAILLEGRILLE> plateau;

[\

7. Ecrire une fonction bool okGrille(const Grille &gr) qui teste si la grille respecte les régles
du jeu. Indication : si la piéce en position (3,4) est compatible avec la piéce en position (3, 3)
(dans la direction Sud), alors automatiquement la piéce en position (3, 3) est compatible avec la
piéce en position (3,4) dans la direction Nord. Il n’est pas utile de tester les deux compatibilités.
La méme chose est vraie dans le sens Est Ouest.

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

bool okGrille(const Grille &gr) {
for (int x = 0; x < TAILLEGRILLE - 1; x++) {
for (int y = 0; y < TAILLEGRILLE; y++) {
if (grlx][y].joueur != -1 and grlx+1][y].joueur != -1
and not estCompatible(gr[x] [y].p, grix+1]1[y].p, Dir::Est))
return false;
}
}
for (int x = 0; x < TAILLEGRILLE; x++) {
for (int y = 0; y < TAILLEGRILLE - 1; y++) {
if (grlx][y].joueur != -1 and grlx] [y+1].joueur != -1
and not estCompatible(gr[x] [y].p, grlx] [y+1].p, Dir::Sud))
return false;
}
}

return true;

