unlver5|té. Partiel de Programmation Modulaire

PARIS-SACLAY
—Licence MI/IM - Info 53—

Aucun document n’est autorisé a part la fiche résumé de C++4, ou vous pouviez
consigner des notes manuscrites personnelles au verso. Tous les exercices sont indé-
pendants. Méme si I’on ne sait pas répondre & une question, on peut utiliser la réponse
dans la suite de l'exercice. Une grande importance sera accordée & la qualité de la
rédaction (lisibilité, indentation, ...).

Le baréme est indicatif et pourra changer a la correction.

Durée : 2h00.

» Exercice 1. (Question de cours) — sur 3 points —
Répondre en une ou deux phrases aux questions suivantes :
1. Comment le compilateur fait-il la différence entre la déclaration d’une fonction usuelle et celle
d’une fonction membre (aussi appelée méthode) ?
2. Méme question pour la définition.
3. Qu’est-ce qu’'une conversion implicite 7 Donner deux exemples.

4. Donner un exemple ol 'on a besoin de faire une conversion explicite.

» Exercice 2. (Représentation des nombres en virgule fixe) - sur 10 points —

Dans certaines applications, on a besoin de controéler trés précisément les chiffres aprés la virgule
des nombres. Par exemple, les banques doivent considérer des montants ayant exactement deux chiffres
aprés la virgule. Dans cet exercice, le nombre de chiffres aprés la virgule sera une constante nommeée
NB_CHIFFRES, égale & 6 dans les exemples ci-dessous. On va utiliser les deux définitions de constantes
suivantes :

const int NB_CHIFFRES = 6;
const int P10ONB = pow(10, NB_CHIFFRES); // L’entier 10 d la puissance NB_CHIFFRES

Les nombres seront représentés par une structure contenant deux entiers ot 'on mettra dans avant
les chiffres avant la virgule et dans aprés les autres (exactement NB_CHIFFRES). Le nombre représenté
par la variable v sera

T =v.avant + v.apres/10"5-HFFRES — 4 ayant + v.apres/P10NB.

Pour respecter cette relation, si x est négatif, les deux champs avant et aprés devront étre négatifs
tous les deux. On respectera donc les invariants suivants :
o —1(QVB-CHIFFRES _ nnreq 1(NB-CHIFFRES
e avant et apres ont toujours le méme signe.
Par exemple :
— 3,141562 sera représenté par avant = 3 et apres = 141592.
— 12,0054 = 12,005400 sera représenté par avant = 12 et apres = 5400.
— —35,202314 sera représenté par avant = —35 et apres = —202314.

1. Ecrire la déclaration de la structure Nombre décrite précédemment.

Ecrire une fonction estCorrect qui prend en parameétre un nombre et qui renvoie true si le
nombre vérifie bien les invariants ci-dessus et false sinon.

Proposer, en utilisant l'infrastructure doctest, un cas de test comportant plusieurs tests de la
fonction estCorrect ci-dessus. On fera attention & bien tester tous les comportements.

4. Surcharger 'opérateur d’égalité pour les Nombre.

5. On rappelle que

7.

cout << setw(5) << setfill(’0’) << n;
permet d’afficher le nombre n sur 5 caractéres en remplissant avec des 0 si besoin. Ainsisin = 12,
I’affichage sera 00012. Surcharger I'opérateur d’affichage pour le type Nombre.

Ecrire une fonction abs qui renvoie la valeur absolue d’un Nombre. Le résultat renvoyé sera de
type Nombre.

Surcharger I'opérateur d’addition pour le type Nombre. Le résultat renvoyé sera de type Nombre.

On veut maintenant que Nombre soit une classe, qui contienne

un constructeur a partir de deux entiers représentant les chiffres avant et aprés la virgule;
un constructeur par défaut construisant le nombre 0

une méthode abs (correspondant a la fonction abs précedente).

8. Ecrire la déclaration de la classe.

9. Ecrire la définition des deux constructeurs. Pour le constructeur & partir de deux entiers, si les

10.

invariants ne sont pas vérifiés, on lévera une exception invalid_argument.

Ecrire la définition de la méthode abs.

» Exercice 3. (Jeu de Karkassohn) — sur 7 points —

Le jeu de Karkassohn (qui ressemble & un autre jeu que vous connaissez peut-étre par ailleurs)
est une sorte de puzzle ou 'on pose des piéces carrées sur une grille. Les quatre bords de la piéce
sont orientés chacun selon une direction Nord, Est, Sud ou Ouest. Il peuvent étre occupés soit par un
champ, soit par une route, soit par une forét. De plus, le milieu de la piéce peut étre occupé par une
ville. On a donc déclaré les types suivants :

enum class Bord { Champ, Route, Foret };
enum class Dir { Nord, Est, Sud, Ouest };

struct Piece {
array<Bord, 4> bords;

s

bool ville;

Voici quelques exemples de piéces :

Nord
Forét Forét QChamp . Forét A
g 7 2 2 2 Ville £ % S % Ville &
S = =+ e & < @ = E
@) ©) o
Champ Champ Champ Route
pus piece 1 piece 2 piece 3 piece 4

La piéce 1 a par exemple une forét au nord, une route & l’est, un champ au sud et une route & ’'ouest,
mais pas de ville. La piéce 2 a les mémes bord que la piéce 1 et une ville.

Dans le tableau bords d’une piéce, on rangera les bords dans l'ordre indiqué par I’énumération Dir.
Par exemple, la piéce 1 sera codée par le tableau

0 1 2 3
Forét | Route | Champ | Route

. Déclarer et initialiser en une seule instruction une variable nommée piecel de type Piece pour

représenter la piéce 1 ci-dessus.

Ecrire une fonction opposee qui prend une Dir et qui renvoie la direction opposée. Par exemple,
la direction opposée de Sud est Nord. On demande d’écrire cette fonction en utilisant un switch.
Ecrire une fonction bordPiece qui prend une Piece et une Dir et qui renvoie le bord de la piéce
dans la direction. On demande d’utiliser le codage des types énumérés par un entier sans écrire
ni condition ni switch.

Ecrire une fonction tourne90 qui prend une piéce et qui renvoie la piéce tournée d’'un quart de
tour dans le sens des aiguilles d’une montre. On utilisera une boucle pour les 4 directions en
s’'interdisant d’écrire 4 fois un code similaire. Voici un exemple :

Forét QRoute
e = g3
Z Ville 2 S Ville S
=+ e >
a'at o O -
Champ Route
piece 2 piéce 2 tounée

Reégle de placement des piéces

Lareégle du jeu indique que I'on peut placer deux piéces cote a cote uniquement si les bords adjacents
sont identiques. De plus, il est interdit de placer deux villes cote & cote. Voici un exemple de placement

autorisé :
Forét Champ
o, Ol &
227 |5 Ville £ | 2 5
!
Forét Champ
Forét Forét Champ
8 S E = s
2 2|3 2|3 Ville &
m (@] Q'_)q D Cd -t
Champ Champ Champ
Champ
8 >
Z Ville £
[
o =
Champ

Route Route Route
T 2 |z 2 g g
= z 2 Ville z 2 z
O o ~ S A~ k=

Forét Forét Route

A :oul B : non C : non

On peut, de plus, placer la piece A dans 'emplacement marqué « 7?7 7%, mais ni la piece B (car on
aurait deux villes cote & cote) ni la piece C (car dans la direction Sud, on aurait une Route en face

d’une

Forét).

5. Ecrire une fonction bool estCompatible(Piece pl, Piece p2, Dir d) qui retourne true si

l'on peut placer la piéce p2 dans la direction d de la piéce pl (sans la tourner) en respectant les
régles, et false sinon.

Modélisation du plateau de jeu

Le plateau de jeu est une grille carrée dont la longueur du bord est donnée par la constante ci-
dessous :

const int TATLLEGRILLE = 10;

On représente une case de la grille par le type Case suivant

struct Case {
int joueur;
Piece p;

};

ol joueur contient le numéro du joueur qui a placé la piece dans la case. La valeur -1 signifie que la
case est vide.

6. Déclarer un type Grille pour représenter le plateau de jeu.

7. Ecrire une fonction bool okGrille(const Grille &gr) qui teste si la grille respecte les régles
du jeu. Indication : si la piéce en position (3,4) est compatible avec la piéce en position (3, 3)
(dans la direction Sud), alors automatiquement la piéce en position (3, 3) est compatible avec la
piéce en position (3,4) dans la direction Nord. Il n’est pas utile de tester les deux compatibilités.
La méme chose est vraie dans le sens Est Ouest.

