
Travaux Pratiques de programmation
Cours de programmation modulaire

—Licence MI/IM/MNSI - Info 3—

Révisions: classes, tests, compilation séparée
Ce TP va vous servir à réviser les notions vues précédemment. L’objectif est de faire les
exercices en appliquant la méthode de compilation séparée avec les fichiers .hpp, .cpp et
Makefile ainsi que l’infrastructure de tests doctest. Si vous créez de nouveaux fichiers,
pensez dès la création à faire la commande

git add nomDuFichier

Vous devez d’abord avoir fini le TP9 avant de passer à ce TP10. Ce TP10 sert de
révisions pour ceux qui ont fini les TP précédents.

xExercice 1. (Gestion de réservation de courts de tennis) On souhaite écrire une application
pour gérer des réservations de courts de tennis. L’application permettra à un club de gérer un nombre
quelconque de courts et il pourra préciser ses horaires d’ouverture (identiques pour tous ses courts). Les
réservations se font par tranches d’une ou plusieurs heures. On s’occupe uniquement des réservations
pour la journée courante, sans se soucier si une réservation est effectuée pour un créneau horaire
dépassé. Les règles sont les suivantes :

— On ne peut pas réserver un créneau en dehors des heures d’ouverture ;
— Un adhérent peut réserver plusieurs créneaux dans la même journée mais il ne peut pas occuper

plusieurs courts à une même heure ;
— Une réservation concerne toujours un unique court (on ne répartit pas sur plusieurs courts une

demande de réservation qui ne tiendrait pas sur un seul court).
Les adhérents sont représentés par leur numéro (un entier strictement positif) : chaque adhérent

a un numéro différent, supposé correct. On définit les types ci-dessous pour modéliser le planning
d’occupation des courts. Chaque court du club sera désigné par un nom distinct, fixé à sa création.

1 struct Court {
2 string nom;
3 // Planning d’occupation de ce court:
4 // Chaque case correspond à une heure,
5 // en particulier la 1ere case correspond à l’heure d’ouverture du club.
6 // Pour une heure donnée, la case contient soit le numéro de l’adhérent
7 // qui a réservé ce court à cette heure, soit 0 si le court est libre
8 vector<int> occupation;
9 };
10
11 struct Club {
12 vector<Court> listeCourts; // liste des courts du club
13 int hdebut; // heure d’ouverture du club (ex. 8h)
14 int hfin; // heure de fermeture du club (ex. 20h)
15 };

1



Pour chacune des fonctions ci-dessous, on n’oubliera pas d’écrire des tests et de les
lancer ! ! !

1. Écrire un fichier Makefile permettant de compiler les fichiers Club.cpp, Club.hpp et
Club-main.cpp fournis (ne pas modifier ces fichiers dans cette question). Compilez puis exé-
cutez pour vérifier que cela fonctionne (indique 0 tests effectués, avec succès).

2. Écrire un constructeur pour un Club. On passe les horaires d’ouverture et de fermeture. Après
exécution du constructeur, les horaires du club sont fixés mais le club ne contient encore aucun
court. On supposera les heures correctes et l’heure de fermeture postérieure à l’heure d’ouver-
ture.

3. Surcharger l’opérateur d’affichage pour le planning d’occupation d’un club (1) : pour chaque
court on affiche son nom et pour chaque créneau occupé le numéro de l’adhérent concerné,
en regroupant les créneaux successifs occupés par le même adhérent (exemple : 8h-11h : 25,
13h-14h : 32 pour un court qui ne serait occupé que de 8h à 11h par l’adhérent 25 et de 13h à
14h par l’adhérent 32).

4. Écrire une méthode d’ajout d’un court à un club. On passe en paramètre le nom du court. La
méthode renvoie true si l’ajout a été possible, false sinon. Initialisez le planning d’occupation
du court de façon à faciliter les réservations ultérieures.

5. Écrire une méthode de réservation d’un créneau sur un court donné. La méthode prend en
paramètre un numéro d’adhérent, le nom du court, l’heure de démarrage et la durée du créneau.
La méthode renvoie true si la réservation est possible et met à jour le planning d’occupation,
et false sinon. Dans cette méthode, pour pouvoir réserver un court, on demande uniquement
de vérifier qu’il ne soit pas déjà occupé (peu importe par qui et peu importe les autres courts).

bool reserveCourt(string nom, int adhérent, int deb, int duree);

6. Écrire une méthode qui renvoie true si un adhérent donné a une réservation enregistrée à
une heure donnée sur l’un des courts (parmi tous ceux du club). On suppose les paramètres
corrects.

7. Écrire une méthode de réservation d’un créneau sur un court quelconque. La méthode prend
en paramètre un numéro d’adhérent, l’heure de démarrage et la durée du créneau demandé.
La méthode renvoie true si la réservation est possible sur un des courts et met à jour le
planning d’occupation, et false sinon. La méthode doit procéder à l’ensemble des vérifications
nécessaires.

bool reserve(int adherent, int debut, int duree);

8. Écrire un programme principal qui appelle les différentes méthodes pour permettre à un utili-
sateur de réserver des cours ou de vérifier si un cours l’est déjà.

(1). On écrit cette méthode d’abord pour aider à comprendre comment accéder aux diverses informations. On suppose
bien sûr que la méthode est appliquée à un club pour lequel les informations pertinentes auront été entrées grâce aux
méthodes qui suivent.

2



��xExercice 2. (Encore plus de nombres !)
Voici quelques suggestions de travaux intéressants pour ceux qui vont vite :
Au TP7 nous avons travaillé sur les entiers naturels. Vous pouvez reprendre ce travail et l’utiliser

dans une nouvelle classe Relatif qui code un entier relatif (positif ou négatif). Cette classe a deux
attributs, la valeur absolue qui est de type Naturel et le signe qui sera d’un nouveau type énuméré.

Attention : il n’y a qu’un seul zéro et il est positif !

1. Créer deux fichiers .hpp et .cpp pour les entiers naturels à partir de ce que vous avez fait la
semaine dernière.

2. Créer deux nouveaux fichiers .hpp et .cpp pour les entiers relatifs. On définira les mêmes
méthodes et opérateurs que pour les naturels. Bien tout tester rigoureusement.

3. Plus difficile : surcharger l’opérateur de multiplication pour les naturels puis pour les relatifs.
Bien tester.

4. Encore plus difficile : surcharger les opérateurs de division et de reste pour les naturels puis
pour les relatifs. Bien tester.

5. En utilisant l’algorithme d’euclide (voir le fichier du cours sur les rationels), vous pouvez main-
tenant calculer les pgcd et les ppcm !

6. Si vous êtes arrivé ici, vous pouvez maintenant reprendre le fichier sur les rationnels vu en
cours et l’adapter pour qu’il marche avec vos nombres naturels et relatifs : le numérateur est
un relatif et le dénominateur un naturel non nul.

3


