
Correction TP de programmation no1
Cours de programmation modulaire

—Licence MI/IM - Info 3—

Structures
La présence aux séances de TPs est obligatoire, et l’assiduité sera prise en compte dans
l’évaluation pour le contrôle continu.

Les exercices un peu plus difficiles sont signalés par le symbole
�

. Pour bien suivre la
progression des travaux pratiques, il faut au moins avoir fait les exercices non marqués comme
difficiles. Si vous n’avez pas eu le temps de les finir en TP, vous devez les finir par vous-même
avant le prochain TP.

1 Exercices sur feuille

x Exercice 1.
Le créateur d’un jeu souhaite pouvoir modéliser des personnages participants à des combats. Un

personnage aura un nom, des points de vie, et un bouclier lui permettant d’arrêter les coups. La
structure de données choisie pour modéliser un personnage est donc la suivante :

1 struct Guerrier {
2 string nom;
3 int ptVie;
4 int bouclier;
5 };

La force des coups qu’il portera à son adversaire sera égale à son nombre de points de vie - 1 et il
sera blessé s’il reçoit un coup d’une force supérieure à la force du bouclier qu’il porte. Un personnage
blessé se verra retirer un nombre de point de vie égal à la différence entre la force du coup reçu et la
force de son bouclier.

1. Spécifier et réaliser la procédure afficheGuerrier permettant d’afficher l’état d’un guerrier,
i.e. son nom, et ses différentes propriétés.

✁

1 /** affiche toutes les infos sur un guerrier
2 * @param g de type Guerrier
3 **/
4 void afficheGuerrier(Guerrier g) {
5 cout << "personnage : " << g.nom << endl;
6 cout << "ptdeVie : " << g.ptVie << endl;
7 cout << "bouclier : " << g.bouclier << endl;
8 }

✁

1

2. Écrire la fonction créeGuerrier qui permet d’initialiser un personnage, sachant qu’il doit
disposer au départ d’exactement 10 points à répartir entre les points de vie du personnage (au
moins deux points) et la force de son bouclier. On devra pouvoir saisir le nom du personnage,
par exemple «Elisa», et lui donner des points de vie, par exemple 7 points. Dans ce cas, la
fonction créeGuerrier devra lui affecter automatiquement un bouclier d’une force égale à
3 = (10− 7).
Vous pouvez utiliser, sans la redéfinir ni la réaliser, la fonction ci-dessous :
int litValeurBornee(string texteAEcrire, int min, int max);
Cette fonction permet, après avoir affiché le texteAEcrire explicitant la valeur attendue, de
saisir une valeur auprès de l’utilisateur, de vérifier qu’elle est bien comprise entre un Min et un
Max, puis de la renvoyer quand elle respecte les bornes données.

✁

1 /** lit une valeur en entier comprise entre min et max
2 * @param texte de type chaine ed caracteres
3 * @param min de type entier
4 * @param max de type entier
5 * @return un entier compris entre min et max
6 **/
7
8 int litValeurBornee(string texte, int min, int max) {
9 int res;

10 cout << texte << endl;
11 do {
12 cout << "entrez un entier compris entre " << min << " et " << max << ": " ;
13 cin >> res ;
14 if (res < min) {
15 cout << "recommencez en donnant une valeur plus elevee" << endl;
16 } else if (res>max) {
17 cout << "recommencez en donnant une valeur plus basse" << endl; }
18 }
19 while ((res < min) or (res > max));
20 return res;
21 }
22
23 /** crée un guerrier
24 * @return un guerrier de type Guerrier
25 **/
26 Guerrier creeGuerrier() {
27 Guerrier g;
28 cout << "donner le nom de votre personnage"<< endl;
29 cin >> g.nom ;
30 g.ptVie = litValeurBornee("nbre de point de vie", 2, 10);
31 g.bouclier = 10 - g.ptVie;
32 return g;
33 }

✁

3. Spécifier et réaliser la fonction forceCoup qui permet de renvoyer la force du coup porté par
un guerrier, calculée comme égale à son nombre de points de vie - 1.

✁

2

1 /** retourne la force d’un guerrier
2 * @param g de type Guerrier
3 * @return un entier
4 **/
5 int forceCoup(Guerrier g) {
6 return g.ptVie - 1;
7 }

✁

4. Spécifier et réaliser une fonction reçoitCoup qui prend en paramètre un guerrier et la force
d’un coup et qui renvoie le guerrier après avoir reçu le coup.

✁
1 /** retourne un guerrier modifie
2 * @param g de type Guerrier
3 * @param f de type entier
4 * @return un Guerrier
5 **/
6 Guerrier recoitCoup(Guerrier g, int f) {
7 int temp;
8 if (f > g.bouclier) {
9 temp = g.ptVie + g.bouclier - f;

10 if (temp >= 0) g.ptVie = temp;
11 else g.ptVie = 0;
12 }
13 return g;
14 }

✁
5. On suppose déjà réalisée la fonction

Guerrier initialiseGuerrierAutomatique(Guerrier G1);
qui permet au concepteur de créer le guerrier G2 qui combattra le guerrier G1 créé par l’utili-
sateur du jeu. Réaliser le programme principal qui crée les deux guerriers, les affiche, enchaîne
les coups qu’ils se portent jusqu’à ce que l’un des deux ne soit plus en état de se battre puis
affiche le nom du gagnant et ses points de vie.

✁

int main() {
Guerrier g1, g2;
g1 = creeGuerrier();
g2 = initialiseGuerrierAutomatique(g1);
while (g1.ptVie > 1 and g2.ptVie > 1) {

afficheGuerrier(g1);
afficheGuerrier(g2);
g2 = recoitCoup(g2, ForceCoup(g1));
if (g2.ptVie > 1) g1 = recoitCoup(g1, ForceCoup(g2));

}
cout << "Gagnant : ";
if (g1.ptVie > g2.ptVie) afficheGuerrier(g1);
else afficheGuerrier(g2);

}

✁

3

2 Exercices sur machine

Pour les redoublants : pour ne pas avoir de collision entre votre travail de l’année dernière et
celui de cette année, il faut supprimer ou renommer votre ancien répertoire ProgMod, par exemple en
tapant, dans un terminal, la commande mv ProgMod ProgMod-2023.

x Exercice 2. (Environnement de travail)
De la même manière qu’au premier semestre, on utilisera un script pour charger les sujets et

soumettre vos travaux. Il faudra exécuter les commandes dans un terminal ayant le répertoire ProgMod
comme répertoire courant (voir détails plus loin).

— Chargement : ./course.py fetch Semaine1
— Soumission : ./course.py submit Semaine1 MonGroupe

Toute séance de travail (chez vous ou à l’université) doit commencer par le chargement
et se terminer par une soumission.

1. Pour mettre en place les dépots en début de semestre taper la commande suivante

git clone https://gitlab.dsi.universite-paris-saclay.fr/L1InfoProgMod/ComputerLab.git ~/ProgMod

Cette commande n’est à faire qu’une seule fois lors du premier TP.
2. Ensuite tout le travail se fera dans le répertoire ProgMod. Pour aller dans ce répertoire taper

la commande
cd ProgMod

dans un terminal.
3. Pour charger le sujet, faire la commande

./course.py fetch Semaine1

Ne pas créer de dossier au préalable, un dossier ProgMod sera automatiquement créé la première
fois que vous faites cette commande.

☞ Si lorsque vous rentrez vos identifiants, vous n’êtes pas reconnu, c’est peut-être que vous
ne vous êtes encore jamais connecté au serveur git de l’université Paris-Saclay. Connectez-vous
sur https://gitlab.dsi.universite-paris-saclay.fr puis une fois la connexion réussie,
essayez à nouveau la commande ./course.py fetch Semaine1 dans le terminal, en faisant
bien attention de taper les mêmes login et mot de passe que lors de votre connection sur git.

☞ Il est possible que sur certaines machines où l’installation de travo se soit mal passée, si
c’est le cas, il faut la commande suivante dans le terminal avant de pouvoir utiliser course.py.

info-111 run bash

Cette commande peux prendre un peu de temps. Signaler le problème à votre enseignant en
lui donnant le numéro de la machine.

4. Vérifier que vous obtenez bien un dossier ProgMod contenant un dossier Semaine1 contenant
des fichiers.

5. N’oubliez pas d’exécuter la commande de soumission à la fin de la séance :

./course.py submit Semaine1 MonGroupe

4

https://gitlab.dsi.universite-paris-saclay.fr

Pour travailler chez vous : Vous pouvez utiliser le serveur JupyterHub (accessible à l’adresse
https://jupyterhub.ijclab.in2p3.fr/) à distance. La même procédure est nécessaire pour tra-
vailler chez vous, y compris la première fois, la commande git clone ... du point 1.

ATTENTION ! La communication entre les salles de TP et JupyterHub, n’est pas automatique.
Elle est faites grâce au fetch et submit que vous faites en début et fin de séance. Il faut donc bien se
rappeler de les faire à chaque fois.

Editeur de texte Vous pouvez utiliser un éditeur de texte de votre choix. Selon votre système
d’exploitation, vous pouvez choisir : sous Linux, jedit, gedit, emacs, VScode et sous Windows,
Notepad++, VScode. Nous conseillons sur les postes à l’université de se connecter sous Linux et
d’utiliser l’éditeur VScode qui se lance par la simple commande code.

Compilateur Un compilateur est nécessaire pour créer un fichier exécutable à partir d’un code
source. Puisque nous développons en C++, ce semestre nous conseillons le compilateur g++. Il est
accessible en ligne de commande (terminal). Normalement, ce compilateur est déjà installé sur votre
machine.

La syntaxe à utiliser pour compiler un fichier est la suivante

clang++ -std=c++11 -Wall fichier.cpp -o nom_programme

Voici quelques explications :
• -std=c++11 : Pour obliger le compilateur à suivre la norme ISO C++11
• -Wall : Pour afficher les messages d’avertissement (Warnings) durant la compilation
• fichier.cpp : Le code source c++ à compiler
• -o nom_programme : Pour spécifier un nom à l’exécutable

Note : en cas de problème, on peut remplacer le compilateur clang++ par g++ mais il a tendance à
avoir de moins bon messages d’erreur.

Si vous avez des messages d’erreur à la compilation, il faut lire ces messages d’erreur en commençant
par le premier pour voir comment corriger votre code ou votre commande de compilation. Vous pouvez
consulter et compléter le document partagé qui contient des explications des messages.

À faire pour vérifier que tout est ok :
6. Vérifier que tout va bien en compilant le programme bonjour.cpp fourni dans l’archive grâce

à la commande :
g++ -std=c++11 -Wall bonjour.cpp -o bonjour

7. Exécuter le programme précédemment compilé (commande ./bonjour).

x Exercice 3. (Conversion Heures/Minutes/Secondes d’une durée)
On représente une durée heure, minute, seconde sous la forme d’un type C++ structuré Duree où

les heures et les minutes seront des entiers et les secondes un réel pour avoir des fractions de seconde.
Par exemple : 5h 20min et 10, 25s sera représenté par la structure

{ .heures = 5; .minutes = 20; .secondes = 10.25 }

1. Ouvrir avec un éditeur de texte le fichier convertHMS.cpp fourni.
2. Compléter la définition du type Duree. Attention ! les champs heures, minutes et secondes

sont au pluriels. Ne pas oublier le «s» à la fin.

5

https://jupyterhub.ijclab.in2p3.fr/
https://codimd.math.cnrs.fr/9jHus89bQl-GAbHhT1eeUg?view

3. Écrire une fonction egalHMS qui prend deux durées et qui retourne si elles sont égales.
4. Tester cette fonction en complétant les tests de la fonction testEgalHMS.

On utilisera cette fonction dans la suite pour les tests.
5. Écrire une fonction

float convertHMS2S(Duree hms)

qui pour une durée exprimée sous la forme « heures, minutes, secondes » retourne la durée
correspondante exprimée en secondes. Ajouter 3 autres tests pour cette fonction. Compiler et
exécuter votre programme pour le vérifier ; ceci est à faire à chaque question dans tous les TPs,
on ne le rappellera plus dans les énoncés, à vous de bien penser à le faire systématiquement.

6. Écrire une fonction
Duree convertS2HMS(float d)

qui pour une durée exprimée en secondes retourne la durée correspondante exprimée sous la
forme « heures, minutes, secondes ». Ajouter 3 autres tests pour cette fonction.

7. Écrire une fonction
void testHMS(Duree hms)

qui vérifie qu’une durée est bien une durée sous la forme « heures, minutes, secondes » correcte.
Une structure hms contient une heure correcte si 0 ≤ hms.heures < 24, 0 ≤ hms.minutes < 60
et 0 ≤ hms.secondes < 60. On écrira les vérifications en utilisant la commande CHECK fournie.
Note : CHECK(condition) permet de tester n’importe quelle condition. C’est juste un raccourci
pour if (not (condition)) cout << "Test failed ...";

8. On va tester à grande échelle nos deux fonctions de conversion. Pour ceci, écrire un programme
qui pour toutes les durées de 0 à 80000 secondes, en avançant de 0, 25s à chaque fois,
— convertit la durée sous la forme « heures, minutes, secondes » ;
— vérifie grâce à la fonction testHMS que le résultat obtenu est bien correct ;
— re-convertit la durée en seconde et vérifie (avec CHECK) que l’on retrouve bien la durée

initiale.

✁

1 #include <iostream>
2 #include <vector>
3 using namespace std;
4
5 /** Infrastructure minimale de test **/
6 #define CHECK(test) if (!(test)) cout << "Test failed in file " << __FILE__ \
7 << " line " << __LINE__ << ": " #test << endl
8
9 struct Duree {

10 int heures;
11 int minutes;
12 float secondes;
13 };
14
15 /** égalité des durées
16 * @param d1, d2 deux Duree
17 * @return true/false selon si d1 et égal à d2
18 **/
19 bool egalHMS(Duree d1, Duree d2) {

6

20 return (d1.heures == d2.heures &&
21 d1.minutes == d2.minutes &&
22 d1.secondes == d2.secondes);
23 }
24
25 void testEgalHMS() {
26 CHECK(egalHMS({10, 10, 2}, {10, 10, 2}));
27 CHECK(not egalHMS({10, 10, 2}, {10, 11, 2}));
28 }
29
30 /** Converti une durée en Heures, Minutes, Secondes en secondes
31 * @param hms de type Duree encodant la durée h:m:s
32 * @return la conversion de hms en secondes
33 **/
34 float convertHMS2S(Duree hms) {
35 return hms.secondes + 60*hms.minutes + 3600*hms.heures;
36 }
37
38 void testConvertHMS2S() {
39 CHECK(convertHMS2S({0, 1, 15}) == 75);
40 CHECK(convertHMS2S({10, 10, 2}) == 36602);
41 }
42
43 /** Converti une durée en secondes en Heures, Minutes, Secondes
44 * @param d un nombre de secondes
45 * @return la conversion de d en Heures, Minutes, Secondes
46 * dans une structure de type Duree
47 **/
48 Duree convertS2HMS(float d) {
49 Duree hms;
50 hms.heures = int(d/3600);
51 hms.minutes = int((d - hms.heures*3600)/60);
52 hms.secondes = d - hms.heures*3600 - hms.minutes*60;
53 return hms;
54 }
55
56 void testConvertS2HMS() {
57 Duree d;
58 d = convertS2HMS(36602);
59 CHECK(egalHMS(d, {10, 10, 2}));
60 d = convertS2HMS(75);
61 CHECK(egalHMS(d, {0, 1, 15}));
62 }
63
64
65 void testHMS(Duree hms) {
66 CHECK(hms.secondes >= 0);
67 CHECK(hms.secondes < 60);
68 CHECK(hms.minutes >= 0);
69 CHECK(hms.minutes < 60);
70 CHECK(hms.heures >= 0);
71 CHECK(hms.heures < 24);
72 }
73
74 int main() {
75 Duree hms;
76 testConvertHMS2S();
77 testConvertS2HMS();
78
79 for (float d=0; d < 8000; d = d + 0.25) {

7

80 hms = convertS2HMS(d);
81 testHMS(hms);
82 CHECK(d == convertHMS2S(hms));
83 }
84 }

✁

x Exercice 4.(Calcul avec les dates).
Il faut d’abord télécharger le fichier d’exemple du cours sur les dates qui se trouve dans la section

Exemples sur le site du module (page du chargé de cours). Ce fichier sera nommé date.cpp et devra
être déposé dans votre répertoire ProgMod/Semaine1. Pour que ce fichier soit pris en compte par le
système d’archivage, il faut ensuite taper dans le répertoire du fichier la commande

git add date.cpp

Cette commande est à noter et à retenir. Elle vous sera en effet utile dès que vous voulez ajouter un
fichier par rapport à ceux qui vous ont été fournis.

On vous demande d’ajouter et de tester les fonctions suivantes :
1. bool avantDate(Date d1, Date d2) qui dit si la date d1 est avant la date d2 ;
2. Date ajouteDate(Date d, int n) qui calcule la date qui suit d de n jours ;
3. int differenceDate(Date d1, Date d2) qui calcule le nombre de jours écoulés entre les

dates d1 et d2 ;
4. Sachant que le 1er janvier 2000 était un samedi, ecrire une fonction int jourDate(Date d)

qui retourne le jour de la semaine d’une date (renvoie 0 pour lundi, 1 pour mardi, . . .).

✁

1 #include<iostream>
2 #include<iomanip>
3 using namespace std;
4
5 /** Infrastructure minimale de test **/
6 #define CHECK(test) if (!(test)) cout << "Test failed in file " << __FILE__ \
7 << " line " << __LINE__ << ": " #test << endl
8
9 struct Date {

10 int jour, mois, annee;
11 };
12
13 /** Affiche une Date sous le format jj/mm/aaaa
14 * @param[in] d : la date
15 **/
16 void afficheDate(Date d) {
17 cout << setfill(’0’) << setw(2) << d.jour << "/"
18 << setfill(’0’) << setw(2) << d.mois << "/" << d.annee;
19 }
20
21 /** Teste si une année est bissextile
22 * @param[in] annee : un entier
23 * @return le booléen correspondant au test
24 **/

8

25 bool estBissextile(int annee) {
26 return (annee % 4 == 0 and annee % 100 != 0) or (annee % 400 == 0);
27 }
28
29 /** Le nombre de jours qu’il y a dans un mois
30 * @param[in] annee : un entier
31 * @param[in] mois : un entier entre 1 et 12
32 * @return le nombre de jours du mois
33 **/
34 int nbJourMois(int mois, int annee) {
35 switch (mois) {
36 case 1 : case 3 : case 5 :
37 case 7 : case 8 : case 10 : case 12 : return 31;
38 case 4 : case 6 : case 9 : case 11 : return 30;
39 case 2 :
40 if (estBissextile(annee)) return 29;
41 else return 28;
42 default: return -1;
43 }
44 }
45
46 /** Teste si une Date est correcte
47 * @param[in] d : une Date
48 * @return le booléen correspondant au test
49 **/
50 bool estCorrecteDate(Date d) {
51 if (d.mois <= 0 or d.mois > 12) return false;
52 if (d.jour <= 0) return false;
53 return d.jour <= nbJourMois(d.mois, d.annee);
54 }
55
56 /** Demande une Date à l’utilisateur
57 * Si la date n’est pas correcte, une nouvelle date est demandée
58 * @return une Date
59 **/
60 Date lireDate() {
61 Date res;
62 bool erreur;
63 do {
64 cout << "jour ? "; cin >> res.jour;
65 cout << "mois ? "; cin >> res.mois;
66 cout << "annee ? "; cin >> res.annee;
67 erreur = not estCorrecteDate(res);
68 if (erreur) cout << "Date incorrecte !" << endl;
69 } while (erreur);
70 return res;
71 }
72
73 /** Le bug de l’an 2000
74 * @return le premier janvier 2000
75 **/
76 Date bugday() {
77 return {1, 1, 2000};
78 }
79
80 /** Le bug de l’an 2000
81 * @param[out] d recoit le bug day
82 **/
83 void bugdayRef(Date &d) {
84 d = {1, 1, 2000};

9

85 }
86
87 /** Lendemain d’une Date
88 * @param[in] d : une date
89 **/
90 Date lendemain(Date d) {
91 d.jour++;
92 if (d.jour > nbJourMois(d.mois, d.annee)) {
93 d.jour = 1;
94 d.mois++;
95 if (d.mois == 13) {
96 d.mois = 1;
97 d.annee++;
98 }
99 }

100 return d;
101 }
102
103 bool avantDate(Date d1, Date d2) {
104 if (d1.annee < d2.annee) return true;
105 if (d1.annee == d2.annee) {
106 if (d1.mois < d2.mois) return true;
107 if (d1.mois == d2.mois) {
108 if (d1.jour < d2.jour) return true;
109 }
110 }
111 return false;
112 }
113
114 void testAvantDate() {
115 CHECK(avantDate({1, 1, 2000}, {1, 1, 2001}) == true);
116 CHECK(avantDate({1, 1, 2001}, {1, 1, 2000}) == false);
117 }
118
119 Date ajouteDate(Date d, int n){
120 d.jour = d.jour + n;
121 if (d.jour > nbJourMois(d.mois, d.annee)) {
122 d.jour = d.jour - nbJourMois(d.mois, d.annee);
123 d.mois++;
124 if (d.mois == 13) {
125 d.mois = 1;
126 d.annee++;
127 }
128 }
129 return d;
130 }
131
132 int differenceDate(Date d1, Date d2){
133 int nbDeJourDeDifference = 0;
134 while (avantDate(d1, d2)) {
135 d1 = lendemain(d1);
136 nbDeJourDeDifference++;
137 }
138 while (avantDate(d2, d1)) {
139 d2 = lendemain(d2);
140 nbDeJourDeDifference++;
141 }
142 return nbDeJourDeDifference;
143 }
144

10

145 void testDifferenceDate() {
146 CHECK(differenceDate({1, 1, 2000}, {1, 1, 2001}) == 366);
147 CHECK(differenceDate({1, 1, 2000}, {5, 1, 2000}) == 4);
148 }
149
150 int jourDate(Date d){
151 int diffJour = differenceDate(d, {1, 1, 2000});
152 int resteDelaDivision = diffJour % 7;
153 switch(resteDelaDivision){
154 case 0 : return 5; //"samedi";
155 case 1: return 6; //"dimanche";
156 case 2: return 0; //"lundi";
157 case 3: return 1; //"Mardi";
158 case 4: return 2; //"Mercredi";
159 case 5: return 3; //"Jeudi";
160 case 6: return 4; //"Vendredi";
161 default: return -1;
162 }
163 }
164
165 void testJourDate() {
166 CHECK(jourDate({1, 1, 2000}) == 5);
167 CHECK(jourDate({8, 1, 2000}) == 5);
168 CHECK(jourDate({24, 1, 2021}) == 6);
169 }
170
171
172 int main() {
173 Date aujourdhui;
174 aujourdhui = lireDate();
175 cout << "Aujoud’hui : ";
176 afficheDate(aujourdhui);
177 cout << endl;
178
179 Date demain = lendemain(aujourdhui);
180
181 cout << "Demain : ";
182 afficheDate(demain);
183 cout << endl;
184
185 cout << "BugDay : ";
186 afficheDate(bugday());
187 cout << endl;
188
189 cout << "BugDay Ref: ";
190 Date d;
191 bugdayRef(d);
192 afficheDate(d);
193 cout << endl;
194
195 int n = 8;
196 testAvantDate();
197 cout << "dans " << n << " jours c’est: ";
198 afficheDate(ajouteDate(aujourdhui,n));
199 cout << endl;
200
201 testDifferenceDate();
202 testJourDate();
203
204 }

11

✁

3 Exercice complémentaire (pas forcément sur les structures)

� x Exercice 5.Calendrier
Le but de cet exercice est d’afficher un calendrier en affichant mois par mois les jours de la semaine.

Voici par exemple l’affichage du mois de février 2013 qui commence un vendredi :

Fevrier
lu ma me je ve sa di
. . . . 1 2 3
4 5 6 7 8 9 10

11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28

Pour ceci, on déclare le nom des mois et leur longueur (dans une année usuelle) en C++ de la manière
suivante :

vector<string> nom_mois = {
"Janvier", "Fevrier", "Mars", "Avril", "Mai", "Juin", "Juillet",
"Aout", "Septembre", "Octobre", "Novembre", "Decembre"

};

vector<int> long_mois = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

Attention : le mois de janvier porte le numéro 0.
1. Dans un premier temps, on suppose que le premier janvier est un lundi. On affichera les jours

du mois en revenant à la ligne chaque dimanche sans se soucier des alignements. On sautera
une ligne à la fin de chaque mois. On pourra utiliser trois compteurs :
— mois pour stocker le numéro du mois en cours d’affichage ;
— j_mois pour stocker le numéro dans le mois du jour en cours d’affichage ;
— j_sem pour stocker le numéro dans la semaine du jour en cours d’affichage.

2. Écrire un programme qui demande à l’utilisateur le jour du premier janvier sous la forme
(0 = lundi, 1 = mardi, 2 = mercredi, etc.) et qui affiche le calendrier de l’année.

✁
Important : Si le compilateur affiche un message d’erreur sur l’initialisation des deux variables
nom_mois et long_mois, le problème viens très probablement du fait que l’étudiant n’a pas configuré
le mode C++11 comme indiqué dans l’introduction du TP.

1 #include <iostream>
2 #include <iomanip>
3 #include <vector>
4 using namespace std;
5
6 vector<string> nom_mois =
7 {

12

8 "Janvier", "Fevrier", "Mars", "Avril", "Mai", "Juin", "Juillet",
9 "Aout", "Septembre", "Octobre", "Novembre", "Decembre"

10 };
11 vector<int> long_mois = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
12
13 int main(void)
14 {
15 int i, j_sem, j_mois, mois;
16 cout << "Quel est le jour du 1er janvier (0=lundi, 1=mardi, ...) ?" << endl;
17 cin >> j_sem;
18 for (mois=0; mois<12; mois++)
19 {
20 cout << " " << nom_mois[mois] << endl;
21 cout << " lu ma me je ve sa di" << endl;
22 for (i=0; i<j_sem % 7; i++) cout << " .";
23 for (j_mois=1; j_mois<=long_mois[mois]; j_mois++)
24 {
25 cout << setw(3) << j_mois;
26 j_sem++;
27 if (j_sem % 7 == 0) cout << endl;
28 }
29 cout << endl << endl;
30 }
31 }

✁

13

	Exercices sur feuille
	Exercices sur machine
	Exercice complémentaire (pas forcément sur les structures)

