
Correction TP de programmation no2
Cours de programmation modulaire

—Licence MI L1 S2 - Info 3—

Structures et énumérations
Dans cette séance, nous allons travailler avec les types énumérés et les structures.

Rappel : Toute séance de travail (chez vous ou à l’université) doit commencer par un charge-
ment et se terminer par une soumission (les commandes suivantes doivent être lancée dans
le répertoire ProgMod) :

— Chargement : ./course.py fetch Semaine2
— Soumission : ./course.py submit Semaine2 MonGroupe

Dans certaines salles, suite à un problème d’installation le compilateur clang++ ne fonctionne
pas. La commande pour compiler est alors :

g++ -std=c++11 -Wall nom_programme.cpp -o nom_programme

Enfin, pensez non seulement à compiler, mais aussi à exécuter et tester vos fonctions dès que
possible.

On rappelle qu’un type énuméré est un type dont la liste complète des valeurs est connue. Par
exemple, on peut déclarer un type Jour de la manière suivante :

enum class Jour { lundi, mardi, mercredi, jeudi, vendredi, samedi, dimanche };

On peut alors déclarer et initialiser des variables de type Jour :

Jour aujourdhui = Jour::lundi;

et tester leurs valeurs :

if (aujourdhui == Jour::mardi) ...

x Exercice 1.(Logique floue)
Dans cet exercice, on veut faire de la logique booléenne en présence de valeurs inconnues. On va

donc avoir une logique à trois valeurs de vérité vrai, faux et inconnu. On appelle parfois ces valeurs
de vérité des Triléens. Les opérateurs usuels et, ou, non gardent leurs sens habituels si on les applique
sur vrai ou faux. La valeur inconnu veut dire que l’on ne sait pas si la valeur est vrai, ou faux. On
va cependant essayer de prévoir le résultat du calcul au mieux avec ce que l’on sait.

Quelques exemples :
— non(inconnu) = inconnu. En effet, sachant que non(vrai) = faux et non(faux) = vrai, on ne

peut pas prévoir le résultat.
— vrai ou inconnu = vrai. En effet, comme dans les deux cas vrai ou vrai = vrai et

vrai ou faux = vrai, le résultat est toujours vrai, on est sûr que le résultat est vrai.
— vrai et inconnu = inconnu. En effet, comme vrai et vrai = vrai et vrai et faux = faux,

on ne peut pas prévoir le résultat.

1. Dans le fichier logic.cpp, on a déclaré un type enuméré Tril, ainsi qu’une fonction de saisie.
Lire les déclarations correspondantes, et vérifiez que vous les comprenez. Puis écrire le code
de la fonction affiche pour le type Tril. Enfin pour vérifier le fonctionnement correct de la
saisie et de l’affichage, ajoutez un appel dans le main (et compilez et exécutez et vérifiez ce que
ça donne, à faire à chaque question même si on ne le rappelle pas !).

1

2. Compléter les deux fonctions from_bool, qui convertit un bool en Tril, et to_bool qui conver-
tit un Tril en bool. Pour cette dernière fonction, si l’on essaye de convertir inconnu, on
déclenchera une erreur (exception) avec la commande

throw logic_error("Impossible de convertir inc en bool");

Vérifier votre fonction sur plusieurs cas, en particulier vérifier que l’erreur est bien signalée.
3. Écrire la fonction non et compléter la fonction de tests pour non ;
4. Ajouter un test pour vérifier l’égalité non(non(v)) = v pour toutes les valeurs de vérité v ;
5. Écrire la fonction et ;
6. Écrire une fonction de test pour et. Pour tester de nombreux cas, on vérifiera aussi que pour

toute valeur de vérité a et b, on a les deux identités :

a et a = a a et b = b et a.

� x Exercice 2.(Logique floue – avancée)
Cet exercice est pour les étudiants rapides qui ont fait l’exercice précédent en moins de une heure.

Si vous n’êtes pas dans ce cas, passez directement à l’exercice suivant. Si vous êtes dans ce cas,
commencez cet exercice mais n’y passez pas trop de temps, il faut garder du temps pour l’exercice
suivant.

Les opérateurs ou, et et non de la logique booléenne, vérifient les identités suivantes :

• Idempotence :
— a ou a = a
— a et a = a
• Commutativité :

— a ou b = b ou a
— a et b = b et a
• Associativité

— a ou (b ou c) = (a ou b) ou c
— a et (b et c) = (a et b) et c

• Distributivité
— a et (b ou c) = (a et b) ou (a et c).
— a ou (b et c) = (a ou b) et (a ou c).
• Règles de de Morgan

— non(a ou b) = (non a) et (non b)
— non(a et b) = (non a) ou (non b)

Il se trouve que ces identités restent vraies dans notre logique à trois valeurs ! Elles fournissent un
bon moyen de tester nos fonctions.

7. Reprendre le fichier de l’exercice précédent et ajouter une fonction ou.
8. Pour bien tester les fonctions ou, et et non, on vérifiera les identités ci-dessus pour toute valeur

de vérité a et b et c.

✁

1 // pour l’exercice de logique floue
2 #include <iostream>
3 #include <vector>
4 #include <string>
5 #include <exception>
6 #include <ctype.h> // tolower
7 using namespace std;
8
9 /** Infrastructure minimale de test **/

10 #define CHECK(test) if (!(test)) cout << "Test failed in file " << __FILE__ \

2

11 << " line " << __LINE__ << ": " #test << endl
12
13 // Cette ordre permet d’utiliser l’astuce de min et max pour et et ou
14 enum class Tril { faux, inc, vrai };
15
16 // Mieux : utiliser un array (voir la suite du cours)
17 const vector<string> TrilNom = { "faux", "inconnu", "vrai" };
18 string to_string(Tril t) {
19 return TrilNom[int(t)];
20 }
21
22 void affiche(Tril t) {
23 switch (t) {
24 case Tril::vrai : cout << "vrai"; break;
25 case Tril::faux : cout << "faux"; break;
26 case Tril::inc : cout << "inc"; break;
27 }
28 }
29
30
31 Tril saisie() {
32 char c;
33 bool ok = false;
34 Tril res;
35 do {
36 cout << "Donner un tril (v/f/i) : ";
37 cin >> c;
38 switch (c) {
39 case ’v’ : case ’V’ : res = Tril::vrai; ok = true; break;
40 case ’f’ : case ’F’ : res = Tril::faux; ok = true; break;
41 case ’i’ : case ’I’ : res = Tril::inc; ok = true; break;
42 default : cout << "erreur !" << endl;
43 }
44 } while (not ok);
45 return res;
46 }
47
48 Tril saisieVariante() {
49 char c;
50 while (1) { // boucle infine on sort par un return
51 cout << "Donner un tril (v/f/i) : ";
52 cin >> c;
53 c = tolower(c); // conversion en minuscule
54 switch (c) {
55 case ’v’ : return Tril::vrai;
56 case ’f’ : return Tril::faux;
57 case ’i’ : return Tril::inc;
58 }
59 cout << "erreur !" << endl;
60 }
61 }
62
63
64 Tril from_bool(bool b) {
65 if (b) return Tril::vrai;
66 else return Tril::faux;
67 }
68
69 bool to_bool(Tril t) {
70 bool res;

3

71 switch (t) {
72 case Tril::vrai : res = true; break;
73 case Tril::faux : res = false; break;
74 case Tril::inc :
75 throw logic_error("Impossible de convertir Tril::inc en bool");
76 }
77 return res;
78 }
79
80
81 Tril non(Tril t) {
82 if (t == Tril::inc) return t;
83 return from_bool(not to_bool(t));
84 }
85
86
87 // Mieux : utiliser un array (voir la suite du cours)
88 const vector<Tril> all_Tril = { Tril::faux, Tril::vrai, Tril::inc };
89
90 void test_non() {
91 CHECK(non(Tril::vrai) == Tril::faux);
92 CHECK(non(Tril::faux) == Tril::vrai);
93 for (int i=0; i<3; i++) {
94 Tril a = Tril(i);
95 CHECK(non(non(a)) == a);
96 }
97 // Variante en utilisant un foreach
98 for (Tril t : all_Tril) {
99 CHECK(non(non(t)) == t);

100 }
101
102 // CHECK(Tril::vrai == true); // Ne compile pas ! C’est normal !
103 }
104
105 Tril et(Tril a, Tril b) {
106 if (a == Tril::inc || b == Tril::inc) {
107 if (a == Tril::faux || b == Tril::faux) return Tril::faux;
108 else return Tril::inc;
109 }
110 return from_bool(to_bool(a) && to_bool(b));
111 }
112
113 Tril et_astuce(Tril a, Tril b) {
114 return min(a, b);
115 }
116
117 Tril ou(Tril a, Tril b) {
118 if (a == Tril::inc || b == Tril::inc) {
119 if (a == Tril::vrai || b == Tril::vrai) return Tril::vrai;
120 else return Tril::inc;
121 }
122 return from_bool(to_bool(a) || to_bool(b));
123 }
124
125 Tril ou_astuce(Tril a, Tril b) {
126 return max(a, b);
127 }
128
129 void test_et() {
130 // Vérifie que les deux méthodes de calcul retournent le même résultat

4

131 for (int i=0; i<3; i++) {
132 Tril a = Tril(i);
133 for (int j=0; j<3; j++) {
134 Tril b = Tril(j);
135 CHECK(et(a, b) == et_astuce(a, b));
136 }
137 }
138 // Idempotence
139 for (int i=0; i<3; i++) {
140 Tril a = Tril(i);
141 CHECK(et(a, a) == a);
142 }
143 // Commutativité
144 for (int i=0; i<3; i++) {
145 Tril a = Tril(i);
146 for (int j=0; j<3; j++) {
147 Tril b = Tril(j);
148 CHECK(et(a, b) == et(b, a));
149 }
150 }
151 // Associativité
152 for (int i=0; i<3; i++) {
153 Tril a = Tril(i);
154 for (int j=0; j<3; j++) {
155 Tril b = Tril(j);
156 for (int k=0; k<3; k++) {
157 Tril c = Tril(k);
158 CHECK(et(et(a, b), c) == et(a, et(b, c)));
159 }
160 }
161 }
162 }
163
164 void test_ou() {
165 // Vérifie que les deux méthodes de calcul retournent le même résultat
166 for (Tril a : all_Tril) {
167 for (Tril b : all_Tril) {
168 CHECK(ou(a, b) == ou_astuce(a, b));
169 }
170 }
171 // Idempotence
172 for (Tril a : all_Tril) CHECK(ou(a,a) == a);
173 // Commutativité
174 for (int i=0; i<3; i++) {
175 Tril a = Tril(i);
176 for (int j=0; j<3; j++) {
177 Tril b = Tril(j);
178 CHECK(ou(a, b) == ou(b, a));
179 }
180 }
181 // Associativité
182 for (int i=0; i<3; i++) {
183 Tril a = Tril(i);
184 for (int j=0; j<3; j++) {
185 Tril b = Tril(j);
186 for (int k=0; k<3; k++) {
187 Tril c = Tril(k);
188 CHECK(ou(ou(a, b), c) == ou(a, ou(b, c)));
189 }
190 }

5

191 }
192 }
193
194 void test_et_ou() {
195 for (int i=0; i<3; i++) {
196 Tril a = Tril(i);
197 for (int j=0; j<3; j++) {
198 Tril b = Tril(j);
199 for (int k=0; k<3; k++) {
200 Tril c = Tril(k);
201 // Distributivité
202 CHECK(et(a, ou(b, c)) == ou(et(a, b), et(a, c)));
203 CHECK(ou(a, et(b, c)) == et(ou(a, b), ou(a, c)));
204 // Règle de de Morgan
205 CHECK(non(ou(a, b)) == et(non(a), non(b)));
206 CHECK(non(et(a, b)) == ou(non(a), non(b)));
207 }
208 }
209 }
210 }
211
212 int main() {
213 test_non();
214 test_et();
215 test_ou();
216 test_et_ou();
217
218 Tril t = saisie();
219 cout << "non (" << to_string(t) << ") = " << to_string(non(t)) << endl;
220 cout << endl;
221 return EXIT_SUCCESS;
222 }

✁

6

x Exercice 3.(Bridge)
Le Bridge est un jeu de cartes qui se joue à 4 joueurs avec un jeu de 52 cartes, i.e. 13 cartes de

chaque couleur dont les valeurs appartiennent au type énuméré ValeurCarte suivant (Remarque : les
noms des valeurs d’un type énuméré doivent commencer par une lettre, d’où les noms v2, v3. . .).
Les valeurs seront :

enum class ValeurCarte { v2, v3, v4, v5, v6, v7, v8, v9, v10, Valet, Dame, Roi, As };

dans chacune des couleurs du type énuméré :

enum class CouleurCarte { pique, coeur, carreau, trefle };

Chacun des 4 joueurs reçoit aléatoirement une main, c’est-à-dire 13 cartes, dont il doit évaluer la
force.

On choisit de se donner les représentations suivantes pour une carte, et pour une main de 13 cartes.

1 struct Carte {
2 ValeurCarte valeur;
3 CouleurCarte couleur;
4 };
5
6 using MainJ = array<Carte, 13>;

La force d’une main prend en compte deux aspects : les points d’Honneurs (ptH) et les points de
Distribution (ptD).

Les points d’Honneurs d’une main s’évaluent en sommant la valeur de chacune des cartes pré-
sentes dans la main : chaque As vaut 4 points, chaque Roi, 3 points, chaque Dame 2 points et
chaque Valet 1 point, les autres cartes ne valent rien. Le tableau ptHCarte est un tableau d’entiers
(array<int, 13>) qui associe à chaque valeur de carte son nombre de points d’honneurs. Il est donné
dans une constante globale.

ptHCarte :
v2 v3 v4 v5 v6 v7 v8 v9 v10 Valet Dame Roi As
0 0 0 0 0 0 0 0 0 1 2 3 4

Les points de Distribution s’évaluent en décomptant 3 points pour une chicane (pas de carte dans
une couleur), 2 points pour 1 singleton (1 seule carte dans une couleur) et 1 point pour 1 doubleton
(2 cartes dans une couleur).

Exemple de main :
0 1 2 3 4 5 6 7 8 9 10 11 12
As Roi v10 v2 As Dame v10 v9 v8 v7 v4 Valet v6
♠ ♠ ♠ ♠ ♡ ♡ ♡ ♡ ♡ ♡ ♡ ♣ ♣

La main présentée dans le tableau ci-dessus vaut donc : ptH = 14 et ptD = 4 (3 points pour
la chicane à carreau + 1 point pour le doubleton à trèfle).

1. Dans le fichier bridge.cpp, réalisez la fonction nbreCarteCouleur qui prend en entrée une
MainJ et une CouleurCarte et qui renvoie le nombre de cartes de la main qui ont la couleur
donnée. Complétez les tests de cette fonction. Exécutez pour vérifier (à faire à chaque question,
on ne le précisera plus).

✁

1 int nbreCarteCouleur(MainJ m, CouleurCarte c) {
2 // retourne le nbre de Cartes de la main qui ont la couleur donnee //
3 int nb = 0;

7

4 for (int i = 0; i < 13; i++) {
5 if (m[i].couleur == c) nb++ ;
6 }
7 return nb;
8 }

✁

2. Réalisez la fonction evaluePtD qui prend en entrée une MainJ et renvoie son nombre de points
de Distribution (ptD).

✁
1 int evaluePtD(MainJ m) {
2 int nb, som = 0;
3 for (int i=0; i<4 ; i++) {
4 CouleurCarte coul = CouleurCarte(i);
5 nb = nbreCarteCouleur(m, coul);
6 if (nb < 3) som += (3 - nb); // Trop de Cartes, pas de points
7 /* Lorsque le nombre de Cartes d’une couleur (ie. nb) est inférieur a 3,
8 les points de distribution augmentent comme nb diminue */
9 }

10 return som;
11 }

✁

3. Réalisez la fonction evaluePtH qui prend en entrée une MainJ et qui renvoie son nombre de
points d’honneurs (ptH).

✁
1 int evaluePtH(MainJ m) {
2 int som = 0;
3 for (int i = 0; i < 13; i++) {
4 /* Le parametre m est un tableau de Carte, donc m[i] est une Carte
5 et m[i].valeur est son champ valeurCarte */
6 som = som + pointHCarte(m[i].valeur);
7 }
8 return som;
9 }

✁

4. On souhaite supprimer le tableau ptHCarte. Réalisez la fonction pointHCarte permettant de
le remplacer. Complétez la fonction de tests correspondante.

✁
1 int pointHCarte(ValeurCarte vc){
2 int res;
3 switch (vc) {
4 case ValeurCarte::Valet : res = 1; break;
5 case ValeurCarte::Dame : res = 2; break;
6 case ValeurCarte::Roi : res = 3; break;
7 case ValeurCarte::As : res = 4; break;
8 default : res = 0;
9 }

10 return res;
11 }

8

✁

✁
Voici la correction complète :

1 // pour l’exercice de bridge
2 #include <iostream>
3 #include <vector>
4 #include <array>
5 #include <string>
6 using namespace std;
7
8 /** Infrastructure minimale de test **/
9 #define CHECK(test) if (!(test)) cout << "Test failed in file " << __FILE__ \

10 << " line " << __LINE__ << ": " #test << endl
11
12 enum class CouleurCarte {pique, coeur, carreau, trefle};
13
14 enum class ValeurCarte {
15 v2, v3, v4, v5, v6, v7, v8, v9, v10, Valet, Dame, Roi, As};
16
17 struct Carte {
18 CouleurCarte couleur;
19 ValeurCarte valeur;
20 };
21
22 using MainJ = array<Carte, 13>;
23
24 MainJ exemple1 = {{
25 {CouleurCarte::pique, ValeurCarte::As},
26 {CouleurCarte::pique, ValeurCarte::Roi},
27 {CouleurCarte::pique, ValeurCarte::v10},
28 {CouleurCarte::pique, ValeurCarte::v2},
29 {CouleurCarte::coeur, ValeurCarte::As},
30 {CouleurCarte::coeur, ValeurCarte::Dame},
31 {CouleurCarte::coeur, ValeurCarte::v10},
32 {CouleurCarte::coeur, ValeurCarte::v9},
33 {CouleurCarte::coeur, ValeurCarte::v8},
34 {CouleurCarte::coeur, ValeurCarte::v7},
35 {CouleurCarte::coeur, ValeurCarte::v4},
36 {CouleurCarte::trefle, ValeurCarte::Valet},
37 {CouleurCarte::trefle, ValeurCarte::v6}
38 }};
39
40 MainJ exemple2 = {{
41 {CouleurCarte::pique, ValeurCarte::v2},
42 {CouleurCarte::coeur, ValeurCarte::As},
43 {CouleurCarte::coeur, ValeurCarte::v9},
44 {CouleurCarte::trefle, ValeurCarte::As},
45 {CouleurCarte::trefle, ValeurCarte::Roi},
46 {CouleurCarte::trefle, ValeurCarte::Dame},
47 {CouleurCarte::trefle, ValeurCarte::Valet},
48 {CouleurCarte::trefle, ValeurCarte::v10},
49 {CouleurCarte::carreau, ValeurCarte::As},
50 {CouleurCarte::carreau, ValeurCarte::v10},
51 {CouleurCarte::carreau, ValeurCarte::v9},

9

52 {CouleurCarte::carreau, ValeurCarte::v7},
53 {CouleurCarte::carreau, ValeurCarte::v6}
54 }};
55
56 array<int, 13> ptHCarte { 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4 };
57 int pointHCarteSimple(ValeurCarte vc) {
58 return ptHCarte[int(vc)];
59 }
60
61 // la fonction qui remplace le tableau, avec vc de type valeurCarte
62 int pointHCarte(ValeurCarte vc){
63 int res;
64 switch (vc) {
65 case ValeurCarte::Valet : res = 1; break;
66 case ValeurCarte::Dame : res = 2; break;
67 case ValeurCarte::Roi : res = 3; break;
68 case ValeurCarte::As : res = 4; break;
69 default : res = 0;
70 }
71 return res;
72 }
73
74 int pointHCarteAlt(ValeurCarte v){
75 int vc = int(v);
76 if (vc < 9) return 0;
77 else return vc - 8;
78 }
79
80 void test_pointHCarte() {
81 // on vérifie que les trois fonctions donnent la même valeur:
82 for (int i = 0; i < 13; i++) {
83 ValeurCarte v = ValeurCarte(i);
84 CHECK(pointHCarteSimple(v) == pointHCarte(v));
85 CHECK(pointHCarteAlt(v) == pointHCarte(v));
86 }
87 }
88
89 int nbreCarteCouleur(MainJ m, CouleurCarte c) {
90 // retourne le nbre de Cartes de la main qui ont la couleur donnee //
91 int nb = 0;
92 for (int i = 0; i < 13; i++) {
93 if (m[i].couleur == c) nb++ ;
94 }
95 return nb;
96 }
97
98 void test_nbreCarteCouleur() {
99 CHECK(nbreCarteCouleur(exemple1, CouleurCarte::pique) == 4);

100 CHECK(nbreCarteCouleur(exemple1, CouleurCarte::coeur) == 7);
101 CHECK(nbreCarteCouleur(exemple1, CouleurCarte::carreau) == 0);
102 CHECK(nbreCarteCouleur(exemple1, CouleurCarte::trefle) == 2);
103 CHECK(nbreCarteCouleur(exemple2, CouleurCarte::pique) == 1);
104 CHECK(nbreCarteCouleur(exemple2, CouleurCarte::coeur) == 2);
105 CHECK(nbreCarteCouleur(exemple2, CouleurCarte::carreau) == 5);
106 CHECK(nbreCarteCouleur(exemple2, CouleurCarte::trefle) == 5);
107 }
108
109 int evaluePtD(MainJ m) {
110 int nb, som = 0;
111 for (int i=0; i<4 ; i++) {

10

112 CouleurCarte coul = CouleurCarte(i);
113 nb = nbreCarteCouleur(m, coul);
114 if (nb < 3) som += (3 - nb); // Trop de Cartes, pas de points
115 /* Lorsque le nombre de Cartes d’une couleur (ie. nb) est inférieur a 3,
116 les points de distribution augmentent comme nb diminue */
117 }
118 return som;
119 }
120
121 void test_evaluePtD() {
122 CHECK(evaluePtD(exemple1) == 4);
123 CHECK(evaluePtD(exemple2) == 3);
124 }
125
126 int evaluePtH(MainJ m) {
127 int som = 0;
128 for (int i = 0; i < 13; i++) {
129 /* Le parametre m est un tableau de Carte, donc m[i] est une Carte
130 et m[i].valeur est son champ valeurCarte */
131 som = som + pointHCarte(m[i].valeur);
132 }
133 return som;
134 }
135
136 void test_evaluePtH() {
137 CHECK(evaluePtH(exemple1) == 14);
138 CHECK(evaluePtH(exemple2) == 18);
139 }
140
141 int main() {
142 test_pointHCarte();
143 test_nbreCarteCouleur();
144 test_evaluePtD();
145 test_evaluePtH();
146 }

✁

� x Exercice 4.(Pour aller plus loin sur les cartes)
Dans cet exercice nous reprenons le fichier de l’exercice précédent. On demande de :
1. Écrire une fonction pour saisir une carte.
2. Écrire une fonction pour saisir une main.
3. Améliorer la fonction précédente en vérifiant qu’il n’y a pas deux fois la même carte dans la

main.
4. Écrire une fonction pour afficher une main. On pourra faire deux affichages :

— Un affichage texte simple (en utilisant par exemple les lettres V, D, R et A pour valet,
dame, roi et as et T, K, C, P pour trefle, carreau, coeur, pique).

— Un affichage en utilisant les caractères unicodes. Vous trouverez un exemple dans le fichier
carteUni.cpp.

5. Écrire une fonction qui crée un jeu complet et le mélange. Indication : On stockera toutes
les cartes dans un vecteur qui représentera le jeu de carte. On mélangera ensuite ce vecteur
en répétant un grand nombre de fois l’échange de deux cartes tirées au hasard (voir plus
loin). Remarque : ce n’est pas une bonne manière de faire (certains jeux ont plus de chance
d’apparaître que d’autres), mais ça ira dans un premier temps.

11

6. Écrire une fonction qui, ayant mélangé le jeu, distribue les cartes à 4 joueurs.

12

Comment faire du hasard

Les machines ne savent pas faire de l’aléatoire. Elles ont un comportement déterministe. Du coup,
on utilise du pseudo-aléatoire : On calcule une suite mathématique, qui ressemble beaucoup à de
l’aléatoire mais qui n’en est pas. Un bon exemple est les décimales du nombre π. En pratique, on
utilise des genres de suite récurrente (i.e. de la forme u(n+ 1) = f(u(n))), je vous ai mis un exemple
donné par la norme POSIX.1-2001 à la fin du sujet. Bien évidement, si l’on démarre avec la même
valeur pour u(0) on obtient toujours la même suite. Cette initialisation s’appelle la «graine aléatoire».
Si vous ne l’initialisez pas, le programme prendra toujours la même et donc vous aurez toujours la
même suite. Si vous initialisez deux fois avec la même graine vous aurez la même suite.

La fonction rand() retourne un tel nombre au hasard. Si vous utilisez la fonction rand(), il faut
d’abord faire un unique appel à

void srand(unsigned int seed);

pour initialiser la graine. Cette appel doit être fait une seule fois, en général au début du main.
Une solution est de l’initialiser avec le nombre de secondes écoulées depuis le 1er janvier 1970 par la
commande

srand(time(NULL));

Voici un exemple

1 #include <iostream>
2 #include <cstdlib>
3 #include <ctime>
4 using namespace std;
5
6 int main(){
7 srand(time(NULL));
8 cout << "Nombres au hasard : ";
9 for (int i = 0; i<5; i++)

10 cout << rand() % 100 << " ";
11 cout << endl;
12 return 0;
13 }

La librairie standard C++ fournit des générateurs aléatoires beaucoup plus versatiles (choix de la
distribution...), mais plus complexes d’utilisation.

Enfin, aucun de ces générateurs n’est de qualité suffisante pour les applications cryptographiques :
si l’on connaît quelques valeurs, on peut facilement prévoir la suite... Il faut alors passer par des
mécanismes beaucoup plus sophistiqués faisant intervenir le monde physique (par exemple, la dernière
décimale du temps en nanoseconde entre deux appuis de touche sur le clavier)...

1 static unsigned long next = 1;
2
3 /* RAND_MAX assumed to be 32767 */
4 int myrand(void) {
5 next = next * 1103515245 + 12345;
6 return((unsigned)(next/65536) % 32768);
7 }
8
9 void mysrand(unsigned int seed) {

10 next = seed;
11 }

13

