* Correction TP de programmation n°2

université Cours de ti dulai
programmation modulaire
PARIS-SACLAY —Licence MI L1 S2 - Info 83—

Structures et énumérations
Dans cette séance, nous allons travailler avec les types énumérés et les structures.

Rappel : Toute séance de travail (chez vous ou a l'université) doit commencer par un charge-
ment et se terminer par une soumission (les commandes suivantes doivent étre lancée dans
le répertoire ProgMod) :

— Chargement : ./course.py fetch Semaine2

— Soumission : ./course.py submit Semaine2 MonGroupe

Dans certaines salles, suite & un probléme d’installation le compilateur clang++ ne fonctionne
pas. La commande pour compiler est alors :

gt++ -std=c++11 -Wall nom_programme.cpp -0 nom_programme

Enfin, pensez non seulement & compiler, mais aussi & exécuter et tester vos fonctions dés que
possible.

On rappelle qu'un type énuméré est un type dont la liste compléte des valeurs est connue.

exemple, on peut déclarer un type Jour de la maniére suivante :

enum class Jour { lundi, mardi, mercredi, jeudi, vendredi, samedi, dimanche };

On peut alors déclarer et initialiser des variables de type Jour :

Jour aujourdhui = Jour::lundi;

et tester leurs valeurs :

if (aujourdhui == Jour::mardi) ...

» Exercice 1.(Logique floue)

Par

Dans cet exercice, on veut faire de la logique booléenne en présence de valeurs inconnues. On va
donc avoir une logique a trois valeurs de vérité vrai, faux et inconnu. On appelle parfois ces valeurs
de vérité des Triléens. Les opérateurs usuels et, ou, non gardent leurs sens habituels si on les applique
sur vrai ou faux. La valeur inconnu veut dire que I’on ne sait pas si la valeur est vrai, ou faux. On

va cependant essayer de prévoir le résultat du calcul au mieux avec ce que l’on sait.

Quelques exemples :

— non(inconnu) = inconnu. En effet, sachant que non(vrai) = faux et non(faux) = vrai, on ne

peut pas prévoir le résultat.

— vrai ou inconnu = vrai. En effet, comme dans les deux cas vrai ou vrai = vrai et

vrai ou faux = vrai, le résultat est toujours vrai, on est str que le résultat est vrai.

— vrai et inconnu = inconnu. En effet, comme vrai et vrai = vrai et vrai et faux = faux,

on ne peut pas prévoir le résultat.

1. Dans le fichier logic.cpp, on a déclaré un type enuméré Tril, ainsi qu’une fonction de saisie.
Lire les déclarations correspondantes, et vérifiez que vous les comprenez. Puis écrire le code
de la fonction affiche pour le type Tril. Enfin pour vérifier le fonctionnement correct de la
saisie et de affichage, ajoutez un appel dans le main (et compilez et exécutez et vérifiez ce que

¢a donne, a faire & chaque question méme si on ne le rappelle pas!).

—_

OO OO Ui WN =

2. Compléter les deux fonctions from_bool, qui convertit un bool en Tril, et to_bool qui conver-
tit un Tril en bool. Pour cette derniére fonction, si I'on essaye de convertir inconnu, on
déclenchera une erreur (exception) avec la commande

throw logic_error("Impossible de convertir inc en bool");

Vérifier votre fonction sur plusieurs cas, en particulier vérifier que l'erreur est bien signalée.

Ecrire la fonction et ;

AR

Ecrire la fonction non et compléter la fonction de tests pour non;

Ajouter un test pour vérifier ’égalité non(non(v)) = v pour toutes les valeurs de vérité v;

Ecrire une fonction de test pour et. Pour tester de nombreux cas, on vérifiera aussi que pour

toute valeur de vérité a et b, on a les deux identités :

aeta=a

@ » Exercice 2.(Logique floue — avancée)

aetb="bet a.

Cet exercice est pour les étudiants rapides qui ont fait ’exercice précédent en moins de une heure.
Si vous n’étes pas dans ce cas, passez directement & l'exercice suivant. Si vous étes dans ce cas,
commencez cet exercice mais n’y passez pas trop de temps, il faut garder du temps pour 'exercice

suivant.

Les opérateurs ou, et et non de la logique booléenne, vérifient les identités suivantes :

e Idempotence :
—aoua=a
— aeta=a

e Commutativiteé :
—aoub=boua
— aetb=beta

e Associativité
— aou(bouc)=(aoubd)ouc
—aet(betc)=(aetb)etc

o Distributivité
— a et (bouc)=(aetbh)ou(aetc).
— aou(betc)=(aoubd)et (aouc).
o Régles de de Morgan
— non(a ou b) = (non a) et (non b)
— non(a et b) = (non a) ou (non b)

11 se trouve que ces identités restent vraies dans notre logique a trois valeurs! Elles fournissent un

bon moyen de tester nos fonctions.

7. Reprendre le fichier de I’exercice précédent et ajouter une fonction ou.

8. Pour bien tester les fonctions ou, et et non, on vérifiera les identités ci-dessus pour toute valeur

de vérité a et b et c.

// pour l’ezercice de logique floue
#include <iostream>

#include <vector>

#include <string>

#include <exception>

#include <ctype.h> // tolower
using namespace std;

/** Infrastructure minimale de test **/

#define CHECK(test) if (!(test)) cout << "Test failed in file " << __FILE_ _ \

<< " line " << __LINE__ << ": " #test << endl

// Cette ordre permet d’utiliser l’astuce de min et max pour et et ou
enum class Tril { faux, inc, vrai };

// Mieuz : utiliser un array (voir la suite du cours)
const vector<string> TrilNom = { "faux", "inconnu", "vrai" };
string to_string(Tril t) {
return TrilNom[int(t)];
}

void affiche(Tril t) {
switch (t) {
case Tril::vrai : cout << "vrai"; break;
case Tril::faux : cout << "faux"; break;
case Tril::inc : cout << "inc"; break;

}

Tril saisie() {
char c;
bool ok = false;
Tril res;
do {
cout << "Donner un tril (v/f/i) : ";
cin >> c;
switch (c) {
case ’v’ : case ’V’ : res = Tril::vrai; ok = true; break;
case ’f’ : case ’F’ : res = Tril::faux; ok = true; break;
case ’i’ : case ’I’ : res = Tril::inc; ok = true; break;
default : cout << "erreur !" << endl;
}
} while (not ok);
return res;

}

Tril saisieVariante() {
char c;
while (1) { // boucle infine on sort par un return
cout << "Donner un tril (v/f/i) : ";
cin >> c;
c = tolower(c); // conversion en minuscule
switch (c) {
case ’v’ : return Tril::vrai;
case ’f’ : return Tril::faux;
case ’i’ : return Tril::inc;
}
cout << "erreur !" << endl;
}
}

Tril from_bool(bool b) {
if (b) return Tril::vrai;
else return Tril::faux;

}

bool to_bool(Tril t) {
bool res;

71 switch (t) {

72 case Tril::vrai : res = true; break;

73 case Tril::faux : res = false; break;

74 case Tril::inc :

75 throw logic_error("lmpossible de convertir Tril::inc en bool");
76 }

7 return res;

78 }

79

80

81 Tril non(Tril t) {

82 if (t == Tril::inc) return t;

83 return from_bool(not to_bool(t));
84 %

87 // Mieuz : utiliser un array (voir la suite du cours)
88 const vector<Tril> all_Tril = { Tril::faux, Tril::vrai, Tril::inc };

90 void test_non() {

91 CHECK (non(Tril::vrai) == Tril::faux);
92 CHECK(non(Tril: :faux) == Tril::vrai);
93 for (int i=0; i<3; i++) {

94 Tril a = Tril(i);

95 CHECK(non(non(a)) == a);

96 }

97 // Variante en utilisant un foreach
98 for (Tril t : all_Tril) {

99 CHECK (non(non(t)) == t);

100 }

101

102 // CHECK(Tril::vrai == true); // Ne compile pas ! C’est normal !
103 }

105 Tril et(Tril a, Tril b) {
106 if (a == Tril::inc || b == Tril::inc) {

107 if (a == Tril::faux || b == Tril::faux) return Tril::faux;
108 else return Tril::inc;

109 }

110 return from_bool(to_bool(a) && to_bool(b));

111 3}

112

113 Tril et_astuce(Tril a, Tril b) {

114 return min(a, b);

115 }

116

117 Tril ou(Tril a, Tril b) {
118 if (a == Tril::inc || b == Tril::inc) {

119 if (a == Tril::vrai || b == Tril::vrai) return Tril::vrai;
120 else return Tril::inc;

121 }

122 return from_bool(to_bool(a) || to_bool(b));

123 %}

124

125 Tril ou_astuce(Tril a, Tril b) {

126 return max(a, b);

127 }

128

129 void test_et() {

130 // Vérifie que les deux méthodes de calcul retournent le méme résultat

131 for (int i=0; i<3; i++) {

132 Tril a = Tril(i);

133 for (int j=0; j<3; j++) {

134 Tril b = Tril(j);

135 CHECK(et(a, b) == et_astuce(a, b));
136 }

137 }

138 // Idempotence
139 for (int i=0; i<3; i++) {

140 Tril a = Tril(i);
141 CHECK(et(a, a) == a);
142 }

143 // Commutativité
144 for (int i=0; i<3; i++) {

145 Tril a = Tril(i);

146 for (int j=0; j<3; j++) {

147 Tril b = Tril(j);

148 CHECK(et(a, b) == et(b, a));
149 }

150 }

151 // Associativité
152 for (int i=0; i<3; i++) {

153 Tril a = Tril(i);

154 for (int j=0; j<3; j++) {

155 Tril b = Tril(j);

156 for (int k=0; k<3; k++) {

157 Tril ¢ = Tril(k);

158 CHECK(et(et(a, b), c) == et(a, et(b, c)));
159 }

160 }

161 }

162 }

163

164 void test_ou() {

165 // Vérifie que les deux méthodes de calcul retournent le méme résultat
166 for (Tril a : all_Tril) {

167 for (Tril b : all_Tril) {

168 CHECK(ou(a, b) == ou_astuce(a, b));

169 }

170 }

171 // Idempotence

172 for (Tril a : all_Tril) CHECK(ou(a,a) == a);
173 // Commutativité

174 for (int i=0; i<3; i++) {

175 Tril a = Tril(i);

176 for (int j=0; j<3; j++) {

177 Tril b = Tril(j);

178 CHECK(ou(a, b) == ou(b, a));
179 }

180 }

181 // Associativité
182 for (int i=0; i<3; i++) {

183 Tril a = Tril(i);

184 for (int j=0; j<3; j++) {

185 Tril b = Tril(j);

186 for (int k=0; k<3; k++) {

187 Tril ¢ = Tril(k);

188 CHECK (ou(ou(a, b), c) == ou(a, ou(b, c)));
189 }

190 }

191 }

192 3}

193

194 void test_et_ou() {

195 for (int i=0; i<3; i++) {

196 Tril a = Tril(i);

197 for (int j=0; j<3; j++) {

198 Tril b = Tril(j);

199 for (int k=0; k<3; k++) {

200 Tril ¢ = Tril(k);

201 // Distributivité

202 CHECK(et(a, ou(b, c)) == oulet(a, b), et(a, ¢)));
203 CHECK(ou(a, et(b, c)) == et(ou(a, b), ou(a, c)));
204 // Régle de de Morgan

205 CHECK (non(ou(a, b)) == et(non(a), non(b)));

206 CHECK (non(et(a, b)) == ou(non(a), non(b)));

207 }

208 }

209 }

210 }

211

212 int main() {
213 test_non();
214 test_et();
215 test_ou();
216 test_et_ou();

217
218 Tril t = saisie();
219 cout << "non (" << to_string(t) << ") = " << to_string(non(t)) << endl;

220 cout << endl;
221 return EXIT_SUCCESS;
222 }

S U W N =

» Exercice 3.(Bridge)

Le Bridge est un jeu de cartes qui se joue & 4 joueurs avec un jeu de 52 cartes, i.e. 13 cartes de
chaque couleur dont les valeurs appartiennent au type énuméré ValeurCarte suivant (Remarque : les
noms des valeurs d’un type énuméré doivent commencer par une lettre, d’ou les noms v2, v3...).
Les valeurs seront :

enum class ValeurCarte { v2, v3, v4, vb, v6, v7, v8, v9, v10, Valet, Dame, Roi, As };

dans chacune des couleurs du type énuméré :

enum class CouleurCarte { pique, coeur, carreau, trefle };

Chacun des 4 joueurs regoit aléatoirement une main, c’est-a-dire 13 cartes, dont il doit évaluer la
force.

On choisit de se donner les représentations suivantes pour une carte, et pour une main de 13 cartes.

struct Carte {
ValeurCarte valeur;
CouleurCarte couleur;

}
using MainJ = array<Carte, 13>;

La force d’une main prend en compte deux aspects : les points d’Honneurs (ptH) et les points de
Distribution (ptD).

Les points d’Honneurs d’une main s’évaluent en sommant la valeur de chacune des cartes pré-
sentes dans la main : chaque As vaut 4 points, chaque Roi, 3 points, chaque Dame 2 points et
chaque Valet 1 point, les autres cartes ne valent rien. Le tableau ptHCarte est un tableau d’entiers
(array<int, 13>) qui associe a chaque valeur de carte son nombre de points d’honneurs. Il est donné
dans une constante globale.

ptHCarte : v2 v3 vd vbh v6 v7 v8 v9 v10 Valet Dame Roi As
[0Jo0Jo0JoJoJoJoOoJoOJoO[t [2 [3]4]

Les points de Distribution s’évaluent en décomptant 3 points pour une chicane (pas de carte dans
une couleur), 2 points pour 1 singleton (1 seule carte dans une couleur) et 1 point pour 1 doubleton
(2 cartes dans une couleur).

0 1 2 3 4) 6 7 8 9 10 11 12
Exemple de main : | As | Roi | v10 | v2 | As | Dame | v10 | vO | v8 | v7 | v4 | Valet | v6
O A A MO Q (VAR IRV VI VI V) L) [

La main présentée dans le tableau ci-dessus vaut donc : ptH = 14 et ptD = 4 (3 points pour
la chicane & carreau + 1 point pour le doubleton a tréfle).

1. Dans le fichier bridge.cpp, réalisez la fonction nbreCarteCouleur qui prend en entrée une
MainJ et une CouleurCarte et qui renvoie le nombre de cartes de la main qui ont la couleur
donnée. Complétez les tests de cette fonction. Exécutez pour vérifier (& faire a chaque question,
on ne le précisera plus).

P
1 int nbreCarteCouleur(MainJ m, CouleurCarte c) {
2 // retourne le nbre de Cartes de la main qui ont la couleur donnee //

3 int nb = 0;

0 3 O Uk

= O © 000 Uik W

— =

© 00 ~JO Ui W

= O ©00JO0 Ul WwWwN K+

— =

for (int i = 0; 1 < 13; i++) {
if (m[i].couleur == c) nb++ ;
}

return nb;

. Réalisez la fonction evaluePtD qui prend en entrée une MainJ et renvoie son nombre de points
de Distribution (ptD).

int evaluePtD(MainJ m) {

int nb, som = 0;

for (int i=0; i<4 ; i++) {
CouleurCarte coul = CouleurCarte(i);
nb = nbreCarteCouleur(m, coul);
if (nb < 3) som += (3 - mb); // Trop de Cartes, pas de points
/* Lorsque le nombre de Cartes d’une couleur (ie. mb) est inférieur a 3,

les points de distribution augmentent comme nb diminue */
}

return som;

. Reéalisez la fonction evaluePtH qui prend en entrée une MainJ et qui renvoie son nombre de
points d’honneurs (ptH).

int evaluePtH(MainJ m) {
int som = 0;
for (int i = 0; i < 13; i++) {
/* Le parametre m est un tableau de Carte, donc m[i] est une Carte
et m[i].valeur est son champ valeurCarte */
som = som + pointHCarte(m[i] .valeur);
}

return som;

. On souhaite supprimer le tableau ptHCarte. Réalisez la fonction pointHCarte permettant de
le remplacer. Complétez la fonction de tests correspondante.

int pointHCarte(ValeurCarte vc){

int res;

switch (ve) {
case ValeurCarte::Valet : res = 1; break;
case ValeurCarte::Dame : res = 2; break;
case ValeurCarte::Roi : res = 3; break;
case ValeurCarte::As : res = 4; break;
default : res = 0;

}

return res;

}

© 00 ~JO Ui W

Voici la correction compléte :

// pour l’ezercice de bridge
#include <iostream>
#include <vector>
#include <array>
#include <string>
using namespace std;

/** Infrastructure minimale de test **/
#define CHECK(test) if (!(test)) cout << "Test failed in file " << __FILE _ \

<< " line " << __LINE__ << ":

enum class CouleurCarte {pique, coeur, carreau, trefle};

enum class ValeurCarte {

v2, v3, v4, vb, v6, v7, v8, v9, vi0, Valet, Dame, Roi, As};

struct Carte {

CouleurCarte couleur;

},

ValeurCarte valeur;

using MainJ = array<Carte, 13>;

MainJ exemplel = {{

{CouleurCarte:
{CouleurCarte:
{CouleurCarte:
{CouleurCarte:
{CouleurCarte:
{CouleurCarte:
{CouleurCarte:
{CouleurCarte:
{CouleurCarte:
{CouleurCarte:
{CouleurCarte:
{CouleurCarte:
{CouleurCarte:

i3

:pique,
:pique,
:pique,
:pique,
:coeur,
:coeur,
:coeur,
:coeur,
:coeur,
:coeur,
:coeur, ValeurCarte:
:trefle, ValeurCarte::Valet},
:trefle, ValeurCarte:

ValeurCarte:
ValeurCarte:
ValeurCarte:
ValeurCarte:
ValeurCarte:
ValeurCarte:
ValeurCarte:
ValeurCarte:
ValeurCarte:
ValeurCarte:

:As},
:Roil},
:v10},
:v2},
:As},
:Dame},
:v10},
:v9},
:v8},
T},
:va},

:v6}

MainJ exemple2 = {{

{CouleurCarte::
{CouleurCarte:
{CouleurCarte:
{CouleurCarte:
{CouleurCarte:
{CouleurCarte:
{CouleurCarte:
{CouleurCarte:
{CouleurCarte:
{CouleurCarte:
{CouleurCarte:

pique, ValeurCarte::v2},

:coeur, ValeurCarte::As},
:coeur, ValeurCarte::v9},
:trefle, ValeurCarte:
:trefle, ValeurCarte:
:trefle, ValeurCarte:
:trefle, ValeurCarte:
:trefle, ValeurCarte:
:carreau, ValeurCarte::As},
:carreau, ValeurCarte::vi0},
:carreau, ValeurCarte::v9},

:As},
:Roi},
:Dame},
:Valet},
:v10},

" #test << endl

52 {CouleurCarte: :carreau, ValeurCarte::v7},
53 {CouleurCarte: :carreau, ValeurCarte: :v6}
54 1}

56 array<int, 13> ptHCarte { O, 0, 0, O, O, 0, 0, 0, O, 1, 2, 3, 4 };
57 int pointHCarteSimple(ValeurCarte vc) {

58 return ptHCarte[int(vc)];

59 }

61 // la fonction qui remplace le tableau, avec vc de type valeurCarte
62 int pointHCarte(ValeurCarte vc){

63 int res;

64 switch (vc) {

65 case ValeurCarte::Valet : res = 1; break;
66 case ValeurCarte: :Dame : res = 2; break;
67 case ValeurCarte::Roi : res = 3; break;
68 case ValeurCarte::As : res = 4; break;
69 default : res = 0;

70 }

71 return res;

72}

73

74 int pointHCarteAlt(ValeurCarte v){
75 int vc = int(v);
76 if (vc < 9) return O;

7 else return vc - 8;

78}

79

80 void test_pointHCarte() {

81 // on vérifie que les trois fonctions donnent la méme valeur:
82 for (int 1 = 0; i < 13; i++) {

83 ValeurCarte v = ValeurCarte(i);

84 CHECK (pointHCarteSimple(v) == pointHCarte(v));

85 CHECK (pointHCarteAlt(v) == pointHCarte(v));

86 }

87 }

88

89 int nbreCarteCouleur(MainJ m, CouleurCarte c) {

90 // retourne le nbre de Cartes de la main qui ont la couleur donnee //

91 int nb = 0;
92 for (int 1 = 0; i < 13; i++) {

93 if (m[i].couleur == c) nb++ ;
94 }

95 return nb;

96 }

97

98 void test_nbreCarteCouleur() {

99 CHECK (nbreCarteCouleur (exemplel, CouleurCarte::pique) == 4);
100 CHECK (nbreCarteCouleur(exemplel, CouleurCarte::coeur) == 7);
101 CHECK (nbreCarteCouleur (exemplel, CouleurCarte::carreau) == 0);
102 CHECK (nbreCarteCouleur (exemplel, CouleurCarte::trefle) == 2);
103 CHECK (nbreCarteCouleur (exemple2, CouleurCarte::pique) == 1);
104 CHECK (nbreCarteCouleur (exemple2, CouleurCarte::coeur) == 2);
105 CHECK (nbreCarteCouleur (exemple2, CouleurCarte::carreau) == 5);
106 CHECK (nbreCarteCouleur (exemple2, CouleurCarte::trefle) == 5);
107 3}

109 int evaluePtD(MainJ m) {

110 int nb, som = 0;
111 for (int i=0; i<4 ; i++) {

10

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

CouleurCarte coul = CouleurCarte(i);
nb = nbreCarteCouleur(m, coul);

if

(mb < 3) som += (3 - nb); // Trop de Cartes, pas de points

/* Lorsque le nombre de Cartes d’une couleur (ie. nb) est inférieur a 3,

}

les points de distribution augmentent comme nb diminue */

return som;

}

void test_evaluePtD() {
CHECK (evaluePtD(exemplel) == 4);
CHECK (evaluePtD(exemple2) == 3);

}

int evaluePtH(MainJ m) {
int som = 0;
for (int 1 = 0; i < 13; i++) {
/* Le parametre m est un tableau de Carte, donc m[i] est une Carte

et m[i].valeur est son champ valeurCarte */

som = som + pointHCarte(m[i].valeur);

}

return som;

}

void test_evaluePtH() {
CHECK (evaluePtH(exemplel) == 14);
CHECK (evaluePtH(exemple2) == 18);

}

int main() {
test_pointHCarte() ;
test_nbreCarteCouleur() ;
test_evaluePtD();
test_evaluePtH();

4

1.
2.
3.

4.

» Exercice 4.(Pour aller plus loin sur les cartes)

Dans cet exercice nous reprenons le fichier de I'exercice précédent. On demande de :

Ecrire une fonction pour saisir une carte.
Ecrire une fonction pour saisir une main.

Améliorer la fonction précédente en vérifiant qu’il n'y a pas deux fois la méme carte dans la

main.

Ecrire une fonction pour afficher une main. On pourra faire deux affichages :

— Un affichage texte simple (en utilisant par exemple les lettres V, D, R et A pour valet,
dame, roi et as et T, K, C, P pour trefle, carreau, coeur, pique).

— Un affichage en utilisant les caractéres unicodes. Vous trouverez un exemple dans le fichier
cartelUni.cpp.

. Ecrire une fonction qui crée un jeu complet et le mélange. Indication : On stockera toutes

les cartes dans un vecteur qui représentera le jeu de carte. On mélangera ensuite ce vecteur
en répétant un grand nombre de fois I’échange de deux cartes tirées au hasard (voir plus
loin). Remarque : ce n’est pas une bonne maniére de faire (certains jeux ont plus de chance
d’apparaitre que d’autres), mais ¢a ira dans un premier temps.

11

6. Ecrire une fonction qui, ayant mélangé le jeu, distribue les cartes a 4 joueurs.

12

O© 00O Ul W+

R O OO Uk W+

— =

Comment faire du hasard

Les machines ne savent pas faire de ’aléatoire. Elles ont un comportement déterministe. Du coup,
on utilise du pseudo-aléatoire : On calcule une suite mathématique, qui ressemble beaucoup a de
l’aléatoire mais qui n’en est pas. Un bon exemple est les décimales du nombre 7. En pratique, on
utilise des genres de suite récurrente (i.e. de la forme u(n + 1) = f(u(n))), je vous ai mis un exemple
donné par la norme POSIX.1-2001 & la fin du sujet. Bien évidement, si 'on démarre avec la méme
valeur pour u(0) on obtient toujours la méme suite. Cette initialisation s’appelle la «graine aléatoirey.
Si vous ne linitialisez pas, le programme prendra toujours la méme et donc vous aurez toujours la
méme suite. Si vous initialisez deux fois avec la méme graine vous aurez la méme suite.

La fonction rand () retourne un tel nombre au hasard. Si vous utilisez la fonction rand (), il faut
d’abord faire un unique appel a

void srand(unsigned int seed);

pour initialiser la graine. Cette appel doit étre fait une seule fois, en général au début du main.
Une solution est de 'initialiser avec le nombre de secondes écoulées depuis le ler janvier 1970 par la
commande

srand(time(NULL)) ;

Voici un exemple

#include <iostream>
#include <cstdlib>
#include <ctime>
using namespace std;

int main(){
srand(time(NULL)) ;
cout << "Nombres au hasard : ";
for (int i = 0; i<5; i++)
cout << rand() % 100 << " ";
cout << endl;
return 0;

}

La librairie standard C++ fournit des générateurs aléatoires beaucoup plus versatiles (choix de la
distribution...), mais plus complexes d’utilisation.

Enfin, aucun de ces générateurs n’est de qualité suffisante pour les applications cryptographiques :
si 'on connait quelques valeurs, on peut facilement prévoir la suite... Il faut alors passer par des
mécanismes beaucoup plus sophistiqués faisant intervenir le monde physique (par exemple, la derniére
décimale du temps en nanoseconde entre deux appuis de touche sur le clavier)...

static unsigned long next = 1;

/* RAND_MAX assumed to be 32767 */
int myrand(void) {
next = next * 1103515245 + 12345;
return((unsigned) (next/65536) 7, 32768);
}

void mysrand(unsigned int seed) {
next = seed;

3

13

