. Correction TP de programmation n°4
UAn|\S/%£5|£e Cours de programmation modulaire
PARIS-SACLAY —Licence MI/IM - Info 3—

Les tests avec doctest

Dans cette séance de travaux pratique, nous nous familiarisons avec l'infrastructure de
test doctest. Cette infrastructure sera utilisée systématiquement dans les séances suivantes.
Il est donc important de ne pas se contenter de répondre aux questions mais aussi d’explorer
ce concept et son utilisation pour voir ce qui est faisable et ce qui ne ’est pas.

Nous en profiterons pour revoir les structs et la surcharge d’opérateurs.

» Exercice 1. (On fait des tests avec doctest)

1. Ouvrir le fichier puissance. cpp et coder la fonction int puissance(int nombre, int exposant)
qui calcule la puissance de nombre par la valeur de exposant.

int res=1;

for (int i=1; i<=exposant; i++) {
res = res*nombre;

}

return res;

Tk W N

2. Pour pouvoir faire des tests avec doctest, il suffit que le fichier doctest.h soit dans le méme
répertoire que le fichier puissance. cpp.
— Remarquer les deux lignes du fichier puissance.cpp qui permettent d’inclure doctest :

1 #define DOCTEST_CONFIG_IMPLEMENT
2 #include "doctest.h"

— Remarquer aussi les 4 lignes & partir du main qui permettent de lancer tous les tests
doctest :

1 int main(int argc, const char** argv){

2 doctest: :Context context(argc, argv) 5

3 int test_result = context.run();

4 if (context.shouldExit()) return test_result;

— Enfin, remarquer les deux lignes qui permettent de définir 'opération de test ainsi qu’une
proposition de test :

1 TEST_CASE("Test de la fonction puissance") {

2 CHECK (puissance(10, 0) == 1);

3. Proposer d’autres tests pertinents avec doctest pour la fonction
int puissance(int nombre, int exposant).

=N =

© 00 ~JO Ui W

O O 00O ULk W -

[y

CHECK (puissance(1, 1) == 1);
CHECK(puissance(2, 1) == 2);
CHECK (puissance(3, 2) == 9);
CHECK (puissance(10, 5) == 100000) ;

[doctest] doctest version is "2.4.0"
[doctest] run with "--help" for options

[doctest] test cases: 1] 1 passed | 0 failed | 0 skipped
[doctest] assertions: 5 | 5 passed | 0 failed |
[doctest] Status: SUCCESS!
1

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

65536

131072

262144

524288

1048576

. Ajouter un test volontairement faux, compiler et lancer les tests. Vérifier que lerreur est bien
reportée.

[doctest] doctest version is "2.4.0"
[doctest] run with "--help" for options

puissance.cpp:25:
TEST CASE: Test de la fonction puissance

puissance.cpp:28: ERROR: CHECK(puissance(1l, 1) == 5) is NOT correct!
values: CHECK(1 ==5)

© 00O Ut WN

[doctest] test cases: 1] 0 passed | 1 failed | 0 skipped
[doctest] assertions: 5 | 4 passed | 1 failed |
[doctest] Status: FAILURE!
1

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

65536

131072

262144

524288

1048576

. Remplacer le CHECK du test faux par un CHECK_FALSE, recompiler et vérifier que I’erreur n’ap-

parait plus. Note : ce test avec CHECK_FALSE est trés probablement inutile ici. On va néanmoins
le conserver pour ’exemple.

. Exécuter votre programme avec la commande ./puissance -h. Cela va afficher l'aide (help)

de toutes les options que vous pouvez essayer.

. Essayer en particulier ce que font les appels ./puissance -s et ./puissance -d.

[doctest] doctest version is "2.4.0"
[doctest] run with "--help" for options

puissance.cpp:25:
TEST CASE: Test de la fonction puissance

puissance.cpp:26: SUCCESS: CHECK(puissance(10, 0) == 1) is correct!
values: CHECK(1 ==1)

puissance.cpp:28: ERROR: CHECK(puissance(1l, 1) == 5) is NOT correct!
values: CHECK(1 ==5)

puissance.cpp:29: SUCCESS: CHECK(puissance(2, 1) == 2) is correct!
values: CHECK(2 == 2)

puissance.cpp:30: SUCCESS: CHECK(puissance(3, 2) == 9) is correct!
values: CHECK(9 == 9)

puissance.cpp:31: SUCCESS: CHECK(puissance(10, 5) == 100000) is correct!
values: CHECK(100000 == 100000)

[doctest] test cases:
[doctest] assertions:
[doctest] Status: FAILURE!
1

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

65536

131072

262144

524288

1048576

1|
5|

0 passed |
4 passed |

1 failed |
1 failed |

0 skipped

» Exercice 2. (Surcharge et tests doctest de fonctions pour les dates) Vous avez déja codé
plusieurs fonctions sur le sujet des dates dans la premiére séance de TP. On va donc se baser sur
ce que vous aviez codé pour effectuer des surcharges d’opérateurs pour la manipulation des dates et
utiliser ensuite doctest pour réaliser des tests sur un certain nombre de fonctions.

On vous demande d’ouvrir le fichier date-doctest.cpp et de :

1.

Coder la surcharge de l'opérateur d’affichage << pour afficher une Date sous le format
jj/mm/aaaa.

/** Surcharge de << pour afficher une Date sous le format jj/mm/aaaa
* @param[in] d : Date
**/
std: :ostream& operator<< (std::ostream &out, Date d) {

//

out << setfill(’0’) << setw(2) << d.jour << "/"

<< setfill(’0’) << setw(2) << d.mois << "/" << d.annee;
return out;

7/

. Le main fourni contient des affichages de dates. Compiler et exécuter votre programme pour

vérifier votre opérateur d’affichage. Comme doctest lance tous les tests y compris ceux des
fonctions que vous n’avez pas encore écrites, doctest signale qu’un certains nombre de tests
ont échoués, mais vous devez voir ensuite s’afficher deux dates.

Les fonctions suivantes seront testées directement avec doctest au fur et & mesure en vérifiant que
les tests correspondant passent.

3.

Coder la surcharge de I'opérateur == pour vérifier que deux dates d1 et d2 sont égales.

/** Surcharge de == pour verifier que deuz dates dl et d2 sont egales
* @param[in] dl : Date
* @param[in] d2 : Date
* @return le booléen correspondant au test
*x/
bool operator==(Date d1, Date d2) {
//

return dl.jour == d2.jour and dl.mois == d2.mois and dl.annee == d2.annee;

//

46
47
48

50
51
52
53
54
55
56

/** Surcharge de != pour verifier que deux dates dl et d2 sont differentes
* @param[in] d1 : Date
* @param[in] d2 : Date

* Q@return le booléen correspondant au test
**/
bool operator!=(Date di, Date d2) {
//
return not (d1 == d2);
//
}
''' =
. On vous a donné un exemple de test doctest pour ces deux derniéres surcharges, proposer

d’autres tests pertinents.

TEST_CASE("surcharge == et !=") {
CHECK (Date{1, 1, 2000} == Date{1, 1, 2000});
//
CHECK (Date{14, 7, 2021} == Date{14, 7, 2021});
CHECK (Date{14, 2, 1994} == Date{14, 2, 1994});
CHECK_FALSE(Date{14, 2, 1994} == Date{15, 2, 1994});
CHECK(Date{1, 1, 2000} != Date{10, 1, 2000});
CHECK (Date{1, 1, 2000} !'= Date{1, 1, 2020});
CHECK_FALSE(Date{1, 1, 2000} != Date{1, 1, 2000});
//

TEST_CASE("fonction estBissextile") {
CHECK (estBissextile(2000)); // année multiple de 400
//
CHECK (estBissextile(2020)); // année multiple de 4
CHECK (estBissextile(40)); // année multiple de 4
CHECK_FALSE(estBissextile(2021)); // année non multiple de /
CHECK_FALSE(estBissextile(1900)); // année multiple de 100
7/

. Proposer des tests pertinents pour la fonction fournie

int nbJourMois(int mois, int annee). Parmi les tests, il faut aussi vérifier que si le
mois est invalide (-1, 0 ot 13 par exemple), une exception est bien levée. Pour ceci, on utilise
CHECK_THROWS_AS.

114 TEST_CASE("fonction nbJourMois") {

115 CHECK (nbJourMois(2, 2000) == 29);

116 //

117 CHECK (nbJourMois(6, 2020) == 30);

118 CHECK (nbJourMois(12, 2021) == 31);

119 CHECK (nbJourMois(2, 1900) == 28);

120 CHECK_THROWS_AS (nbJourMois(-4, 1900), range_error);

121 CHECK_THROWS_AS (nbJourMois(0, 1900), range_error) ;
122 CHECK_THROWS_AS(nbJourMois(13, 1900), range_error);
123 //

124 3}

8. Coder la surcharge de l'opérateur de lecture >> pour lire une Date (jj mm aaaa). Il
faut bien évidemment vérifier que la date lue est correcte en utilisant la fonction fournie
bool estCorrecteDate(d) qui vérifie si la date d est correcte. Si ce n’est pas le cas, on lévera
une exception.

P
138
139 /** Surcharge de >> pour lire une Date
140 »+/
141 std::istream¥ operator>> (std::istream &in, Date &d) {
142 //
143 in >> d.jour >> d.mois >> d.annee;
144 if (not estCorrecteDate(d)) {
145 throw runtime_error("Date incorrecte !");
146 }
147 return in;
148 //
149 %

9. Dé-commenter dans le main les lignes qui font la saisie de la date aujourdhui et vérifier que
tout marche bien.

10. Coder la surcharge de 'opérateur < qui dit si la date d1 est avant la date d2. On demande de
n’utiliser ni boucle ni la fonction lendemain.

170

171 /#* Surcharge de < pour verifier st une date dl est avant une date d2
172 * @param[in] d1 : Date

173 * @param[in] d2 : Date

174 * @return le booléen correspondant au test

175 #x/

176 bool operator<(Date d1, Date d2) {

177 //

178 if (dl.annee < d2.annee) return true;
179 if (dl.annee == d2.annee) {

180 if (dl.mois < d2.mois) return true;
181 if (d1.mois == d2.mois) {

182 if (dl.jour < d2.jour) return true;

183 }
184 }
185 return false;
186 //
187 '}
''' =2
11. Proposer des tests pertinents pour la fonction de surcharge précedente <.
T
191 TEST_CASE("surcharge <") {
192 CHECK_FALSE(Date{1, 1, 2000} < Date{1, 1, 1999});
193 //
194 CHECK (Date{14, 7, 2021} < Date{15, 7, 2021});
195 CHECK_FALSE(Date{14, 2, 1994} < Date{14, 1, 1994});
196 CHECK (Date{1, 1, 2000} < Date{10, 2, 2000});
197 //
198 }
''' =2

12. Coder la surcharge de I'opérateur + qui ajoute un nombre de jours n & une date d. On supposera
que n est positif et lévera une exception si ce n’est pas le cas. On pourrait faire une version
simple en utilisant la fonction lendemain, mais elle ne serait pas trés efficace. Il est mieux de
faire une version sans appel a lendemain (et sans passer par tous les jours de d a d+n).

P e
203 Date operator+(Date d, int n){
204 //
205 if (n < 0) throw range_error("ajout d’un nombre négatif & une date");

206 d.jour = d.jour + n;
207 while (d.jour > nbJourMois(d.mois, d.annee)) {

208 d.jour = d.jour - nbJourMois(d.mois, d.annee);
209 d.moist++;

210 if (d.mois == 13) {

211 d.mois = 1;

212 d.annee++;

213 }

214 }

215 return d;

216 //

217 3}

13. Proposer des tests pertinents pour 'opérateur +.

221
222
223
224
225
226
227
228
229

14.

233
234
235
236
237
238
239
240
241
242
243

15.

247
248
249
250
251
252
253
254

16.

273
274
275
276
277
278
279
280
281

TEST_CASE("Operateur + ") {
CHECK((Date{1, 1, 2000} + 8) == Date{9, 1, 2000});
//
CHECK((Date{31, 12, 1999} + 5) == Date{5, 1, 2000});
CHECK((Date{28, 2, 2020} + 2) == Date{1, 3, 2020});
CHECK((Date{28, 2, 2020} + 0) == Date{28, 2, 2020});
CHECK_THROWS_AS((Date{1, 1, 2000} + (-1)), range_error);
//

Coder la surcharge de I'opérateur - qui calcule le nombre de jours écoulés entre les dates d2 et
d1. On supposera que d1 est aprés d2 et levera une exception si ce n’est pas le cas.

int operator-(Date d1, Date d2){
//
if (d1 < d2) throw range_error("difference de date invalide");
int nbDeJourDeDifference = 0;
while (d2 < d1) {
d2 = lendemain(d2);
nbDeJourDeDifferencet+;

}
return nbDeJourDeDifference;
//
}
''' a<§
Proposer des tests pertinents pour 'opérateur -
T
TEST_CASE("Operateur - ") {
CHECK((Date{1, 1, 2001} - Date{1, 1, 2000}) == 366);
//
CHECK((Date{5, 1, 2000} - Date{1, 1, 2000}) == 4);
CHECK((Date{19, 9, 2013} - Date{19, 9, 2013}) == 0);
CHECK_THROWS_AS((Date{1, 1, 2000} - Date{5, 1, 2000}), range_error);
//
}
''' =2

Proposer des tests pertinents pour la fonction int jourDate(Date d) qui retourne le jour de
la semaine d’une date (renvoie 0 pour lundi, 1 pour mardi, ...).

TEST_CASE("fonction jourDate") {
CHECK (jourDate({1, 1, 2000}) == 5);
//
CHECK (jourDate(Date{8, 1, 2000}) == 5);
CHECK (jourDate(Date{24, 1, 2000}) == 0
CHECK(jourDate(Date{17, 2, 2021}) == 2
CHECK (jourDate(Date{18, 2, 2021}) == 3
//

)3
); //jour de TD le mercred:
); //jour de TD le jeudi

@ » Exercice 3. S’il vous reste du temps, reprendre le jeu d’échec du TD 3, le compléter et
ajouter des tests avec doctest (voir exercices 2 et 5 du TD3, & compléter aussi selon vos
propres idées).

Pour installer doctest dans le répertoire du TD 3 il suffit de copier le fichier doctest.h et de
l’ajouter au fichiers pris en compte par Git et les scripts Travo avec

git add doctest.h

De méme, vous pouvez reprendre la calcul de racine carrée du TD 3, le compléter et ajouter des
tests avec doctest (voir exercices 3 et 4 du TD3).

10

