
Correction TP de programmation no4
Cours de programmation modulaire

—Licence MI/IM - Info 3—

Les tests avec doctest
Dans cette séance de travaux pratique, nous nous familiarisons avec l’infrastructure de
test doctest. Cette infrastructure sera utilisée systématiquement dans les séances suivantes.
Il est donc important de ne pas se contenter de répondre aux questions mais aussi d’explorer
ce concept et son utilisation pour voir ce qui est faisable et ce qui ne l’est pas.

Nous en profiterons pour revoir les structs et la surcharge d’opérateurs.

x Exercice 1. (On fait des tests avec doctest)
1. Ouvrir le fichier puissance.cpp et coder la fonction int puissance(int nombre, int exposant)

qui calcule la puissance de nombre par la valeur de exposant.

✁

1 int res=1;
2 for (int i=1; i<=exposant; i++) {
3 res = res*nombre;
4 }
5 return res;

✁

2. Pour pouvoir faire des tests avec doctest, il suffit que le fichier doctest.h soit dans le même
répertoire que le fichier puissance.cpp.
— Remarquer les deux lignes du fichier puissance.cpp qui permettent d’inclure doctest :

1 #define DOCTEST_CONFIG_IMPLEMENT
2 #include "doctest.h"

— Remarquer aussi les 4 lignes à partir du main qui permettent de lancer tous les tests
doctest :

1 int main(int argc, const char** argv){
2 doctest::Context context(argc, argv);
3 int test_result = context.run();
4 if (context.shouldExit()) return test_result;

— Enfin, remarquer les deux lignes qui permettent de définir l’opération de test ainsi qu’une
proposition de test :

1 TEST_CASE("Test de la fonction puissance") {
2 CHECK(puissance(10, 0) == 1);

3. Proposer d’autres tests pertinents avec doctest pour la fonction
int puissance(int nombre, int exposant).

1

✁

1 CHECK(puissance(1, 1) == 1);
2 CHECK(puissance(2, 1) == 2);
3 CHECK(puissance(3, 2) == 9);
4 CHECK(puissance(10, 5) == 100000);

✁

4. Compiler et exécuter votre programme. Regarder et analyser ce que votre programme affiche.

✁

1 [doctest] doctest version is "2.4.0"
2 [doctest] run with "--help" for options
3 ===
4 [doctest] test cases: 1 | 1 passed | 0 failed | 0 skipped
5 [doctest] assertions: 5 | 5 passed | 0 failed |
6 [doctest] Status: SUCCESS!
7 1
8 2
9 4

10 8
11 16
12 32
13 64
14 128
15 256
16 512
17 1024
18 2048
19 4096
20 8192
21 16384
22 32768
23 65536
24 131072
25 262144
26 524288
27 1048576

✁

5. Ajouter un test volontairement faux, compiler et lancer les tests. Vérifier que l’erreur est bien
reportée.

✁

1 [doctest] doctest version is "2.4.0"
2 [doctest] run with "--help" for options
3 ===
4 puissance.cpp:25:
5 TEST CASE: Test de la fonction puissance
6
7 puissance.cpp:28: ERROR: CHECK(puissance(1, 1) == 5) is NOT correct!
8 values: CHECK(1 == 5)
9

10 ===

2

11 [doctest] test cases: 1 | 0 passed | 1 failed | 0 skipped
12 [doctest] assertions: 5 | 4 passed | 1 failed |
13 [doctest] Status: FAILURE!
14 1
15 2
16 4
17 8
18 16
19 32
20 64
21 128
22 256
23 512
24 1024
25 2048
26 4096
27 8192
28 16384
29 32768
30 65536
31 131072
32 262144
33 524288
34 1048576

✁

6. Remplacer le CHECK du test faux par un CHECK_FALSE, recompiler et vérifier que l’erreur n’ap-
paraît plus. Note : ce test avec CHECK_FALSE est très probablement inutile ici. On va néanmoins
le conserver pour l’exemple.

7. Exécuter votre programme avec la commande ./puissance -h. Cela va afficher l’aide (help)
de toutes les options que vous pouvez essayer.

8. Essayer en particulier ce que font les appels ./puissance -s et ./puissance -d.

✁

1 [doctest] doctest version is "2.4.0"
2 [doctest] run with "--help" for options
3 ===
4 puissance.cpp:25:
5 TEST CASE: Test de la fonction puissance
6
7 puissance.cpp:26: SUCCESS: CHECK(puissance(10, 0) == 1) is correct!
8 values: CHECK(1 == 1)
9

10 puissance.cpp:28: ERROR: CHECK(puissance(1, 1) == 5) is NOT correct!
11 values: CHECK(1 == 5)
12
13 puissance.cpp:29: SUCCESS: CHECK(puissance(2, 1) == 2) is correct!
14 values: CHECK(2 == 2)
15
16 puissance.cpp:30: SUCCESS: CHECK(puissance(3, 2) == 9) is correct!
17 values: CHECK(9 == 9)
18
19 puissance.cpp:31: SUCCESS: CHECK(puissance(10, 5) == 100000) is correct!
20 values: CHECK(100000 == 100000)
21

3

22 ===
23 [doctest] test cases: 1 | 0 passed | 1 failed | 0 skipped
24 [doctest] assertions: 5 | 4 passed | 1 failed |
25 [doctest] Status: FAILURE!
26 1
27 2
28 4
29 8
30 16
31 32
32 64
33 128
34 256
35 512
36 1024
37 2048
38 4096
39 8192
40 16384
41 32768
42 65536
43 131072
44 262144
45 524288
46 1048576

✁

4

x Exercice 2. (Surcharge et tests doctest de fonctions pour les dates) Vous avez déjà codé
plusieurs fonctions sur le sujet des dates dans la première séance de TP. On va donc se baser sur
ce que vous aviez codé pour effectuer des surcharges d’opérateurs pour la manipulation des dates et
utiliser ensuite doctest pour réaliser des tests sur un certain nombre de fonctions.

On vous demande d’ouvrir le fichier date-doctest.cpp et de :
1. Coder la surcharge de l’opérateur d’affichage << pour afficher une Date sous le format

jj/mm/aaaa.

✁

17
18 /** Surcharge de << pour afficher une Date sous le format jj/mm/aaaa
19 * @param[in] d : Date
20 **/
21 std::ostream& operator<< (std::ostream &out, Date d) {
22 //
23 out << setfill(’0’) << setw(2) << d.jour << "/"
24 << setfill(’0’) << setw(2) << d.mois << "/" << d.annee;
25 return out;
26 //
27 }

✁

2. Le main fourni contient des affichages de dates. Compiler et exécuter votre programme pour
vérifier votre opérateur d’affichage. Comme doctest lance tous les tests y compris ceux des
fonctions que vous n’avez pas encore écrites, doctest signale qu’un certains nombre de tests
ont échoués, mais vous devez voir ensuite s’afficher deux dates.

Les fonctions suivantes seront testées directement avec doctest au fur et à mesure en vérifiant que
les tests correspondant passent.

3. Coder la surcharge de l’opérateur == pour vérifier que deux dates d1 et d2 sont égales.

✁

32
33 /** Surcharge de == pour verifier que deux dates d1 et d2 sont egales
34 * @param[in] d1 : Date
35 * @param[in] d2 : Date
36 * @return le booléen correspondant au test
37 **/
38 bool operator==(Date d1, Date d2) {
39 //
40 return d1.jour == d2.jour and d1.mois == d2.mois and d1.annee == d2.annee;
41 //
42 }

✁

4. Coder la surcharge de l’opérateur != pour vérifier que deux dates d1 et d2 sont différentes.

✁

5

46
47 /** Surcharge de != pour verifier que deux dates d1 et d2 sont differentes
48 * @param[in] d1 : Date
49 * @param[in] d2 : Date
50 * @return le booléen correspondant au test
51 **/
52 bool operator!=(Date d1, Date d2) {
53 //
54 return not (d1 == d2);
55 //
56 }

✁

5. On vous a donné un exemple de test doctest pour ces deux dernières surcharges, proposer
d’autres tests pertinents.

✁

60 TEST_CASE("surcharge == et !=") {
61 CHECK(Date{1, 1, 2000} == Date{1, 1, 2000});
62 //
63 CHECK(Date{14, 7, 2021} == Date{14, 7, 2021});
64 CHECK(Date{14, 2, 1994} == Date{14, 2, 1994});
65 CHECK_FALSE(Date{14, 2, 1994} == Date{15, 2, 1994});
66 CHECK(Date{1, 1, 2000} != Date{10, 1, 2000});
67 CHECK(Date{1, 1, 2000} != Date{1, 1, 2020});
68 CHECK_FALSE(Date{1, 1, 2000} != Date{1, 1, 2000});
69 //
70 }

✁

6. Proposer des tests pertinents pour la fonction fournie bool estBissextile(int annee).

✁

83 TEST_CASE("fonction estBissextile") {
84 CHECK(estBissextile(2000)); // année multiple de 400
85 //
86 CHECK(estBissextile(2020)); // année multiple de 4
87 CHECK(estBissextile(40)); // année multiple de 4
88 CHECK_FALSE(estBissextile(2021)); // année non multiple de 4
89 CHECK_FALSE(estBissextile(1900)); // année multiple de 100
90 //
91 }

✁

7. Proposer des tests pertinents pour la fonction fournie
int nbJourMois(int mois, int annee). Parmi les tests, il faut aussi vérifier que si le
mois est invalide (-1, 0 où 13 par exemple), une exception est bien levée. Pour ceci, on utilise
CHECK_THROWS_AS.

6

✁

114 TEST_CASE("fonction nbJourMois") {
115 CHECK(nbJourMois(2, 2000) == 29);
116 //
117 CHECK(nbJourMois(6, 2020) == 30);
118 CHECK(nbJourMois(12, 2021) == 31);
119 CHECK(nbJourMois(2, 1900) == 28);
120 CHECK_THROWS_AS(nbJourMois(-4, 1900), range_error);
121 CHECK_THROWS_AS(nbJourMois(0, 1900), range_error);
122 CHECK_THROWS_AS(nbJourMois(13, 1900), range_error);
123 //
124 }

✁

8. Coder la surcharge de l’opérateur de lecture >> pour lire une Date (jj mm aaaa). Il
faut bien évidemment vérifier que la date lue est correcte en utilisant la fonction fournie
bool estCorrecteDate(d) qui vérifie si la date d est correcte. Si ce n’est pas le cas, on lèvera
une exception.

✁

138
139 /** Surcharge de >> pour lire une Date
140 **/
141 std::istream& operator>> (std::istream &in, Date &d) {
142 //
143 in >> d.jour >> d.mois >> d.annee;
144 if (not estCorrecteDate(d)) {
145 throw runtime_error("Date incorrecte !");
146 }
147 return in;
148 //
149 }

✁

9. Dé-commenter dans le main les lignes qui font la saisie de la date aujourdhui et vérifier que
tout marche bien.

10. Coder la surcharge de l’opérateur < qui dit si la date d1 est avant la date d2. On demande de
n’utiliser ni boucle ni la fonction lendemain.

✁

170
171 /** Surcharge de < pour verifier si une date d1 est avant une date d2
172 * @param[in] d1 : Date
173 * @param[in] d2 : Date
174 * @return le booléen correspondant au test
175 **/
176 bool operator<(Date d1, Date d2) {
177 //
178 if (d1.annee < d2.annee) return true;
179 if (d1.annee == d2.annee) {
180 if (d1.mois < d2.mois) return true;
181 if (d1.mois == d2.mois) {

7

182 if (d1.jour < d2.jour) return true;
183 }
184 }
185 return false;
186 //
187 }

✁

11. Proposer des tests pertinents pour la fonction de surcharge précedente <.

✁

191 TEST_CASE("surcharge <") {
192 CHECK_FALSE(Date{1, 1, 2000} < Date{1, 1, 1999});
193 //
194 CHECK(Date{14, 7, 2021} < Date{15, 7, 2021});
195 CHECK_FALSE(Date{14, 2, 1994} < Date{14, 1, 1994});
196 CHECK(Date{1, 1, 2000} < Date{10, 2, 2000});
197 //
198 }

✁

12. Coder la surcharge de l’opérateur + qui ajoute un nombre de jours n à une date d. On supposera
que n est positif et lèvera une exception si ce n’est pas le cas. On pourrait faire une version
simple en utilisant la fonction lendemain, mais elle ne serait pas très efficace. Il est mieux de
faire une version sans appel à lendemain (et sans passer par tous les jours de d à d+n).

✁

203 Date operator+(Date d, int n){
204 //
205 if (n < 0) throw range_error("ajout d’un nombre négatif à une date");
206 d.jour = d.jour + n;
207 while (d.jour > nbJourMois(d.mois, d.annee)) {
208 d.jour = d.jour - nbJourMois(d.mois, d.annee);
209 d.mois++;
210 if (d.mois == 13) {
211 d.mois = 1;
212 d.annee++;
213 }
214 }
215 return d;
216 //
217 }

✁

13. Proposer des tests pertinents pour l’opérateur +.

✁

8

221 TEST_CASE("Operateur + ") {
222 CHECK((Date{1, 1, 2000} + 8) == Date{9, 1, 2000});
223 //
224 CHECK((Date{31, 12, 1999} + 5) == Date{5, 1, 2000});
225 CHECK((Date{28, 2, 2020} + 2) == Date{1, 3, 2020});
226 CHECK((Date{28, 2, 2020} + 0) == Date{28, 2, 2020});
227 CHECK_THROWS_AS((Date{1, 1, 2000} + (-1)), range_error);
228 //
229 }

✁

14. Coder la surcharge de l’opérateur - qui calcule le nombre de jours écoulés entre les dates d2 et
d1. On supposera que d1 est après d2 et levera une exception si ce n’est pas le cas.

✁
233 int operator-(Date d1, Date d2){
234 //
235 if (d1 < d2) throw range_error("difference de date invalide");
236 int nbDeJourDeDifference = 0;
237 while (d2 < d1) {
238 d2 = lendemain(d2);
239 nbDeJourDeDifference++;
240 }
241 return nbDeJourDeDifference;
242 //
243 }

✁

15. Proposer des tests pertinents pour l’opérateur -.

✁
247 TEST_CASE("Operateur - ") {
248 CHECK((Date{1, 1, 2001} - Date{1, 1, 2000}) == 366);
249 //
250 CHECK((Date{5, 1, 2000} - Date{1, 1, 2000}) == 4);
251 CHECK((Date{19, 9, 2013} - Date{19, 9, 2013}) == 0);
252 CHECK_THROWS_AS((Date{1, 1, 2000} - Date{5, 1, 2000}), range_error);
253 //
254 }

✁

16. Proposer des tests pertinents pour la fonction int jourDate(Date d) qui retourne le jour de
la semaine d’une date (renvoie 0 pour lundi, 1 pour mardi, . . .).

✁
273 TEST_CASE("fonction jourDate") {
274 CHECK(jourDate({1, 1, 2000}) == 5);
275 //
276 CHECK(jourDate(Date{8, 1, 2000}) == 5);
277 CHECK(jourDate(Date{24, 1, 2000}) == 0);
278 CHECK(jourDate(Date{17, 2, 2021}) == 2); //jour de TD le mercredi
279 CHECK(jourDate(Date{18, 2, 2021}) == 3); //jour de TD le jeudi
280 //
281 }

✁

9

� x Exercice 3. S’il vous reste du temps, reprendre le jeu d’échec du TD 3, le compléter et
ajouter des tests avec doctest (voir exercices 2 et 5 du TD3, à compléter aussi selon vos

propres idées).
Pour installer doctest dans le répertoire du TD 3 il suffit de copier le fichier doctest.h et de

l’ajouter au fichiers pris en compte par Git et les scripts Travo avec

git add doctest.h

De même, vous pouvez reprendre la calcul de racine carrée du TD 3, le compléter et ajouter des
tests avec doctest (voir exercices 3 et 4 du TD3).

10

