
Correction TP de programmation no5
Cours de programmation modulaire

�Licence MI/IM/MNSI - Info 3�

Révisions

Cette séance de travaux pratiques permet d'approfondir les notions de structs,

énumerations, et la surcharge d'opérateurs.

xExercice 1. (État civil)

Le but de l'application est d'enregistrer des informations d'état civil sur des personnes. Une per-
sonne est décrite par :

� son nom
� son genre (masculin ou féminin)
� son conjoint éventuel (pas forcément d'un genre di�érent)
� ses enfants, s'il en a
� ses parents, si on connaît cette information.

L'information n'est pas toujours complète : on peut ne pas connaître l'un ou l'autre (ou les deux)
parents d'une personne. Le statut marital des personnes peut aussi évoluer dans le temps, de même
que le nombre d'enfants.

On utilise pour cela les types ci-dessous : un � état civil � contient des informations sur les
personnes dans un vecteur. Pour désigner une personne enregistrée dans le système, on peut utiliser
l'indice de l'élément du vecteur qui contient les informations sur la personne. De plus, pour représenter
une personne (ou une information) inconnue, on utilisera la valeur -1 (qui ne peut pas être un indice).
Par exemple si Jean est enregistré à l'indice 3 et Marie est enregistré à l'indice 5, pour indiquer que
Jean est marié à Marie, on mettra 5 comme valeur du champ indConjoint pour Jean et 3 comme
valeur du même champ pour Marie. Si Jean n'est pas marié, son champ indConjoint contient -1.

12 enum class Genre { Masc, Fem };
13
14 struct Personne {
15 string nom;
16 Genre genre;
17 // indices dans le champ table de l'état civil de son conjoint et de
18 // ses parents ou -1 si l'information est inconnue
19 int indConjoint, indParent1, indParent2;
20 vector<int> enfants; // indices des enfants (vecteur eventuellement vide)
21 };
22
23 struct EtatCivil {
24 string titre; // Titre de l'état civil. Exemple: "Ville de Paris"
25 vector<Personne> table; // description des personnes de cet état civil
26 };

Les questions sont à traiter dans le �chier EtatCivil.cpp fourni.

1. Surcharger l'opérateur d'a�chage pour pouvoir a�cher une variable de type Genre.

✁

1



50 // Surcharge de l'operator << pour enum Genre
51 std::ostream &operator<<(std::ostream &out, Genre g) {
52 //
53 if (g == Genre::Masc)
54 out << "Genre masculin";
55 else
56 out << "Genre feminin";
57 return out;
58 //
59 }

✁

2. Dans le main, déclarez une variable de type Genre, donnez-lui une valeur de votre choix, et
a�chez-là (pour véri�er votre surcharge de l'opérateur d'a�chage).

✁

457 Genre g;
458 g = Genre::Masc;
459 cout << g << endl;

✁

3. Écrire une procédure qui initialise un état civil : on l'intitule du titre passé en argument et on
lui associe un tableau vide. Voici l'en-tête :

void initialise(EtatCivil &a, string titre)

✁

110 void initialise(EtatCivil &a, string titre) {
111 //
112 a.titre = titre;
113 a.table.clear();
114 //autre possibilité: a.table = vector<Personne>(0);
115 //
116 }

✁

4. Tester la fonction d'initialisation. Pour ceci, tester que le titre a bien été enregistré et que la
table des personnes est de taille 0.

✁

463 EtatCivil e;
464 initialise(e,"Annuaire");
465 cout << e.titre << endl;
466 cout << e.table.size() << endl;

✁

5. Surcharger la fonction d'a�chage pour une personne. On devra a�cher son nom, son genre, son
statut (célibataire ou marié), l'indice du conjoint, pour chaque parent on indiquera son indice
s'il est enregistré ou �inconnu� sinon et le nombre des enfants.

2



✁

63 // Surcharge de l'operator << pour struct personne
64 std::ostream &operator<<(std::ostream &out, Personne P) {
65 //
66 out << "Nom " << P.nom << endl << P.genre << endl << "Statut : ";
67 if (P.indConjoint == -1) {
68 out << "Celibat.";
69 } else {
70 out << "Mariée" << endl;
71 out << "Indice conjoint : " << P.indConjoint;
72 }
73 out << endl << "Indices parents : (";
74 if (P.indParent1 != -1) {
75 out << P.indParent1 << ", ";
76 } else {
77 out << "inconnu, ";
78 }
79 if (P.indParent2 != -1) {
80 out << P.indParent2;
81 } else {
82 out << "inconnu";
83 }
84 out << ")\n";
85 if (P.enfants.size() > 0) {
86 out << "Nb d'enfants : " << P.enfants.size() << endl;
87 }
88 return out;
89 //
90 }

✁

6. Écrire une fonction

int cherche(const EtatCivil &a, string nom);

qui recherche le nom d'une personne dans le système et renvoie son indice si elle le trouve, ou
-1 si la personne est inconnue.

✁

138 int cherche(const EtatCivil &a, string nom) {
139 //
140 for (size_t i = 0; i < a.table.size(); i++) {
141 if (nom == a.table[i].nom)
142 return i;
143 }
144 return -1;
145 //
146 }

✁

7. Écrire des tests pour cette fonction cherche. Pour ceci on pourra utiliser la fonc-
tion creeEtatCivildeTest fournie qui initialise un état civil de tests. Ne pas oublier de faire
des tests positifs où l'on trouve bien la personne, mais aussi des tests négatifs où la personne
n'existe pas.

3



✁

150 TEST_CASE("cherche une personne") {
151 EtatCivil a;
152 a = creeEtatCivildeTest();
153 CHECK(cherche(a, "Noemie") == 2);
154 // Ajouter d'autre exemples ici
155 //
156 CHECK(cherche(a, "Armand") == 6);
157 CHECK(cherche(a, "Antoine") == -1);
158 //
159 }

✁

8. Écrire une fonction qui a�che les informations pour une personne dont on fournit le nom.

void imprimePersonne(const EtatCivil &a, string nom);

✁

164 void imprimePersonne(const EtatCivil &a, string nom) {
165 //
166 int ind = cherche(a, nom);
167 if (ind < 0) {
168 throw invalid_argument("Nom incorrect dans imprimePersonne: ");
169 } else {
170 cout << a.table[ind];
171 }
172 //
173 }

✁

9. Surcharger l'opérateur d'a�chage pour un état civil. On devra a�cher son titre et les personnes
présente dans la table de l'état civil.

✁

94 // Surcharge de l'operateur << pour struct état civil
95 std::ostream &operator<<(std::ostream &out, EtatCivil a) {
96 //
97 if (a.table.size() == 0) {
98 out << "L'état civil est vide" << endl;
99 } else {

100 for (size_t i = 0; i < a.table.size(); i += 1) {
101 imprimePersonne(a, a.table[i].nom);
102 }
103 }
104 return out;
105 //
106 }

✁

4



10. Écrire une fonction qui enregistre dans le système une nouvelle personne. Les parents sont
inconnus, il n'a pas de conjoint et pas d'enfants.

int personne(EtatCivil &a, string nom, Genre s);

On interdit toute homonymie dans le système (on ne doit pas avoir deux personnes de même
nom) et une personne ne doit pas avoir un nom vide. La valeur de retour est l'indice de la
nouvelle personne ou une valeur négative si la personne n'a pas pu être enregistrée.

✁

178
179 /* enregistre une personne (si possible) et renvoie son indice dans le tableau.
180 * Renvoie un nombre negatif en cas d'erreur. Dans la suite" du code on
181 * utilise les 3 valeurs suivantes pour les erreurs
182 * -1 : pas de personne du nom indique lors d'une recherche
183 * -2 : tentative d'ajout d'un homonyme
184 * -3 : nom de personne vide
185 * Si on n'est pas interesse par le detail d'une erreur, une valeur negative
186 * renvoyee a la place d'un indice indique unn cas d'erreur.
187 */
188 int personne(EtatCivil &a, string sonNom, Genre s) {
189 //
190 if (sonNom.size() == 0) {
191 return -3;
192 }; /* pas de nom vide */
193 if (cherche(a, sonNom) != -1) {
194 return -2;
195 }
196 vector<int> enfants; // vector vide.
197 Personne p = {sonNom, s, -1, -1, -1, enfants};
198 a.table.push_back(p);
199 return a.table.size() - 1;
200 //
201 }

✁

11. Tester cette fonction avec des tests positifs et négatifs.

✁

207 TEST_CASE("Ajout d'une personne") {
208 //
209 EtatCivil a;
210 a = creeEtatCivildeTest();
211 CHECK(personne(a, "Lamia", Genre::Fem) == 8);
212 CHECK(personne(a, "Lamia", Genre::Fem) == -2);
213 CHECK(personne(a, "Antoine", Genre::Masc) == 9);
214 CHECK(personne(a, "Antoine", Genre::Masc) == -2);
215 CHECK(personne(a, "Noemie", Genre::Masc) == -2);
216 CHECK(personne(a, "", Genre::Masc) == -3);
217 //
218 }

✁

5



12. Écrire une fonction qui enregistre le mariage de deux personnes dont on passe les noms en
paramètre. La fonction renvoie true si le mariage est possible et false sinon. On impose que
les deux personnes soient enregistrées et ne soient pas déjà mariées :

bool mariage(EtatCivil &a, string lun, string lautre);

✁

223 bool mariage(EtatCivil &a, string lun, string lautre) {
224 //
225 int ilun = cherche(a, lun), ilautre = cherche(a, lautre);
226 if (ilun < 0 or ilautre < 0 or ilun == ilautre) {
227 return false;
228 }
229 if (a.table[ilun].indConjoint != -1 or a.table[ilautre].indConjoint != -1) {
230 return false;
231 }
232 a.table[ilun].indConjoint = ilautre;
233 a.table[ilautre].indConjoint = ilun;
234 return true;
235 //
236 }

✁

13. Tester cette fonction avec des tests positifs et négatifs.

✁

240 TEST_CASE("Mariage de deux personnes") {
241 //
242 EtatCivil a;
243 a = creeEtatCivildeTest();
244 personne(a, "Lamia", Genre::Fem);
245 CHECK(mariage(a, "Lamia", "Yuri"));
246 CHECK_FALSE(mariage(a, "Guillaume", "Yuri"));
247 //
248 }

✁

14. Écrire une fonction qui enregistre la naissance d'une personne. Son en-tête est :

bool naissance(EtatCivil &a, string qui, Genre s, string p1, string p2);

Les paramètres sont le nom de l'enfant, son genre, les noms des parents ; les parents doivent être
enregistrés et être conjoints. Si les conditions ne sont pas remplies l'enfant n'est pas enregistré.
La fonction renvoie true ou false selon que la �liation a pu être enregistrée ou non.

✁

257 bool naissance(EtatCivil &a, string qui, Genre s, string p1, string p2) {
258 //
259 int iqui, ip1, ip2;
260
261 ip1 = cherche(a, p1);
262 ip2 = cherche(a, p2);

6



263 // ATTENTION: ici ne pas utiliser la fonction mariage de la question
264 // precedente car celle-ci ne teste pas si deux personnes sont mariees
265 // mais elle les marient s'ils etaient celibataires ! On doit donc
266 // refaire les tests, mais ici plus simples.
267 if (ip1 == -1 or ip2 == -1 or
268 a.table[ip1].indConjoint != ip2
269 // ce dernier test est inutile si la fonction mariage est correcte:
270 // si l'un est conjoint de l'autre, la reciproque doit etre vraie aussi
271 // !
272 or a.table[ip2].indConjoint != ip1) {
273 return false;
274 }
275
276 // essayer d'ajouter le nouveau-ne
277 iqui = personne(a, qui, s);
278 if (iqui < 0) {
279 return false;
280 }
281
282 // enregistrer la filiation dans les deux sens: de l'enfant vers les
283 // parents et l'inverse.
284 a.table[iqui].indParent1 = ip1;
285 a.table[ip1].enfants.push_back(iqui);
286
287 a.table[iqui].indParent2 = ip2;
288 a.table[ip2].enfants.push_back(iqui);
289
290 return true;
291 //
292 }

✁

15. Tester cette fonction.

✁

296 TEST_CASE("Naissance d'un bébé") {
297 //
298 EtatCivil a;
299 a = creeEtatCivildeTest();
300 personne(a, "Lamia", Genre::Fem);
301 mariage(a, "Lamia", "Yuri");
302 CHECK(naissance(a, "Christophe", Genre::Masc, "Lamia", "Yuri"));
303 CHECK_FALSE(naissance(a, "Dina", Genre::Masc, "Noemie", "Yuri"));
304 //
305 }

✁

� xExercice 2. (Généalogie)

Cet exercice est la suite de l'exercice précédent. On travaillera dans le même �chier.

16. Écrire une version qui retourne si une personne est un ancêtre au sens large d'une personne.
On pourra se servir d'un vecteur auxiliaire (géré en pile) dans lequel on stockera les indices des
personnes dont on doit véri�er si elles sont ou non des ancêtres de la personne concernée, en

7



commençant par ses parents. On rappelle que la méthode pop_back() permet de supprimer le
dernier élément d'un vecteur. En-tête :

bool ascendant(EtatCivil &a, string qui, string ancetre);

Tester cette fonction.

✁

316 bool ascendantI(const EtatCivil &a, string qui, string ancetre) {
317 //
318 vector<int> pile;
319 int iqui = cherche(a, qui), iancetre = cherche(a, ancetre);
320 if (iqui < 0 or iancetre < 0) {
321 return false;
322 }
323 pile.push_back(iqui); // On empile l'indice de depart
324 // pile des indices des personnes a tester: on remonte dans l'arbre
325 // genealogique.
326 while (pile.size() > 0) {
327 int courant = pile[pile.size() - 1];
328 pile.pop_back();
329 if (courant == iancetre) {
330 return true;
331 } else {
332 // ajouter ses parents, si connus, dans la pile des personnes a
333 // tester
334 int i1 = a.table[courant].indParent1;
335 int i2 = a.table[courant].indParent2;
336 if (i1 != -1) {
337 pile.push_back(i1);
338 }
339 if (i2 != -1) {
340 pile.push_back(i2);
341 }
342 }
343 }
344 /* fin de la boucle: on a visite tous les ancetres sans trouver indParent */
345 return false;
346 //
347 }
348
349 TEST_CASE("ascendent itiratif") {
350 //
351 EtatCivil a;
352 a = creeEtatCivildeTest();
353 personne(a, "Lamia", Genre::Fem);
354 mariage(a, "Lamia", "Yuri");
355 naissance(a, "Christophe", Genre::Masc, "Lamia", "Yuri");
356 CHECK(ascendantI(a, "Christophe", "Remy"));
357 CHECK_FALSE(ascendantI(a, "Christophe", "Noemie"));
358 //
359 }

✁

17. Écrire une fonction récursive de la fonction précédente.

8



✁

364
365 /* version recursive de la recherche d'ascendant. On utilise une fonction
366 * auxiliaire pour ne pas faire plusieurs fois les tests de validite des indices
367 */
368 bool ascendantAux(const EtatCivil &a, int iqui, int iancetre) {
369 //
370 int i1, i2;
371 if (iqui == iancetre) {
372 return true;
373 }
374 // on remonte dans l'arbre a la recherche de l'ancetre. Plus efficace
375 // que de descendre de l'ancetre vers les enfants qui explorerait aussi
376 // les cousins (eloignes)
377 i1 = a.table[iqui].indParent1;
378 i2 = a.table[iqui].indParent2;
379 return (i1 != -1 and ascendantAux(a, i1, iancetre)) or
380 (i2 != -1 and ascendantAux(a, i2, iancetre));
381 //
382 }
383
384 bool ascendantR(const EtatCivil &a, string qui, string ancetre) {
385 //
386 int iqui = cherche(a, qui), iancetre = cherche(a, ancetre);
387
388 if (iqui < 0 or iancetre < 0) {
389 return false;
390 }
391 // ca trivial qu'on regle tout de suite.
392 if (iqui == iancetre) {
393 return true;
394 }
395 return ascendantAux(a, iqui, iancetre);
396 //
397 }
398
399 TEST_CASE("ascendent recursif") {
400 //
401 EtatCivil a;
402 a = creeEtatCivildeTest();
403 personne(a, "Lamia", Genre::Fem);
404 mariage(a, "Lamia", "Yuri");
405 naissance(a, "Christophe", Genre::Masc, "Lamia", "Yuri");
406
407 CHECK(ascendantR(a, "Christophe", "Remy"));
408 CHECK_FALSE(ascendantR(a, "Christophe", "Noemie"));
409 //
410 }

✁

Tester cette fonction.

18. Coder une procédure permettant d'a�cher, pour un individu donné, son arbre généalogique
sous la forme :

Individu

Mère

Grand-mère maternelle

9



...

Grand-père maternel

...

Père

Grand-mère paternelle

...

Grand-père paternel

...

Voici par exemple l'a�chage de l'arbre généalogique de l'individu 9 :
Individu 9

Individu 5

Individu inconnu

Individu 1

Individu inconnu

Individu inconnu

Individu 10

Individu 12

Individu inconnu

Individu inconnu

Individu 11

Individu inconnu

Individu inconnu

Indication : faire fonction récursive contenant 2 appels récursifs. Démarrer l'écriture de la
fonction récursive en pensant au cas d'arrêt puis ensuite ré�échissez à l'appel récursif.

✁
417 //
418 /* On utilise une fonction auxiliaire pour indiquer la génération et pour
419 * ne pas faire plusieurs fois les tests de validite des indices
420 */
421 void AfficheArbreGenePersonneAux(int ind, EtatCivil EC, int generation) {
422 int i = 0;
423 cout << "Individu ";
424 if (ind == -1) {
425 cout << "inconnu" << endl;
426 } else {
427 cout << ind << endl;
428 for (i=0; i < generation; i++)
429 cout << " ";
430 AfficheArbreGenePersonneAux(EC.table[ind].indParent1, EC, generation+1);
431 for (i=0; i < generation; i++)
432 cout << " ";
433 AfficheArbreGenePersonneAux(EC.table[ind].indParent2, EC, generation+1);
434 }
435 }
436
437 void AfficheArbreGenePersonne(int ind, EtatCivil EC) {
438 int generation = 1;
439 if (ind >= (int)EC.table.size())
440 cout << "La personne d'indice " << ind << " n'existe pas." << endl;
441 else
442 AfficheArbreGenePersonneAux(ind, EC, generation);

10



443 }
444 //

✁

11


