12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

* Correction TP de programmation n°5

universite Cours de i i
programmation modulaire
PARIS-SACLAY —Licence MI/IM/MNSI - Info 53—
Révisions

Cette séance de travaux pratiques permet d’approfondir les notions de structs,
énumerations, et la surcharge d’opérateurs.

» Exercice 1. (Etat civil)

Le but de ’application est d’enregistrer des informations d’état civil sur des personnes. Une per-
sonne est, décrite par :

— son nom

— son genre (masculin ou féminin)

— son conjoint éventuel (pas forcément d’un genre différent)

— ses enfants, s’il en a

— ses parents, si on connait cette information.
L’information n’est pas toujours compléte : on peut ne pas connaitre l'un ou lautre (ou les deux)
parents d’une personne. Le statut marital des personnes peut aussi évoluer dans le temps, de méme
que le nombre d’enfants.

On utilise pour cela les types ci-dessous : un « état civil » contient des informations sur les
personnes dans un vecteur. Pour désigner une personne enregistrée dans le systéme, on peut utiliser
I'indice de I’élément du vecteur qui contient les informations sur la personne. De plus, pour représenter
une personne (ou une information) inconnue, on utilisera la valeur -1 (qui ne peut pas étre un indice).
Par exemple si Jean est enregistré a l'indice 3 et Marie est enregistré a l'indice 5, pour indiquer que
Jean est marié 4 Marie, on mettra 5 comme valeur du champ indConjoint pour Jean et 3 comme
valeur du méme champ pour Marie. Si Jean n’est pas marié, son champ indConjoint contient -1.

enum class Genre { Masc, Fem };

struct Personne {
string nom;
Genre genre;
// indices dans le champ table de l’état civil de son conjoint et de
// ses parents ou -1 st L’information est inconnue
int indConjoint, indParentl, indParent2;
vector<int> enfants; // indices des enfants (vecteur eventuellement vide)

}s

struct EtatCivil {
string titre; // Titre de 1’état civil. Exemple: "Ville de Paris"
vector<Personne> table; // description des personnes de cet état civil
hs
Les questions sont & traiter dans le fichier EtatCivil.cpp fourni.

1. Surcharger 'opérateur d’affichage pour pouvoir afficher une variable de type Genre.

50
51
52
53

55
56
57
58
59

457
458
459

110
111
112
113
114
115
116

463
464
465
466

// Surcharge de l’operator << pour enum Genre
std: :ostream &operator<<(std::ostream &out, Genre g) {
//
if (g == Genre: :Masc)
out << "Genre masculin";
else
out << "Genre feminin";
return out;

/7

. Dans le main, déclarez une variable de type Genre, donnez-lui une valeur de votre choix, et

affichez-1a (pour vérifier votre surcharge de l'opérateur d’affichage).

Genre g;

g = Genre: :Masc;
cout << g << endl;

Ecrire une procédure qui initialise un état civil : on l’intitule du titre passé en argument et on
lui associe un tableau vide. Voici ’en-téte :

void initialise(EtatCivil &a, string titre)

void initialise(EtatCivil &a, string titre) {
7/
a.titre = titre;
a.table.clear();
//autre possibilité: a.table = vector<Personne>(0);

/7

Tester la fonction d’initialisation. Pour ceci, tester que le titre a bien été enregistré et que la
table des personnes est de taille 0.

EtatCivil e;
initialise(e,"Annuaire");

cout << e.titre << endl;

cout << e.table.size() << endl;

5. Surcharger la fonction d’affichage pour une personne. On devra afficher son nom, son genre, son

statut (célibataire ou marié), l'indice du conjoint, pour chaque parent on indiquera son indice
s’il est enregistré ou «inconnuy sinon et le nombre des enfants.

138
139
140
141
142
143
144
145
146

// Surcharge de l’operator << pour struct personmne
std: :ostream &operator<<(std::ostream &out, Personne P) {
//
out << "Nom " << P.nom << endl << P.genre << endl << "Statut : ";
if (P.indConjoint == -1) {
out << "Celibat.";
} else {
out << "Mariée" << endl;
out << "Indice conjoint : " << P.indConjoint;
}
out << endl << "Indices parents : (GH
if (P.indParentl != -1) {
out << P.indParentl << ", ";
} else {
out << "inconnu, ";
}
if (P.indParent2 != -1) {
out << P.indParent2;
} else {
out << "inconnu';
}
out << u)\nu;
if (P.enfants.size() > 0) {

out << "Nb d’enfants : " << P.enfants.size() << endl;
}
return out;
//

Ecrire une fonction

int cherche(const EtatCivil &a, string nom);

qui recherche le nom d’une personne dans le systéme et renvoie son indice si elle le trouve, ou
-1 si la personne est inconnue.

int cherche(const EtatCivil &a, string nom) {
//
for (size_t i = 0; i < a.table.size(); i++) {
if (nom == a.table[i] .nom)
return i;

}
return -1;

/7

Ecrire des tests pour cette fonction cherche. Pour ceci on pourra utiliser la fonc-
tion creeEtatCivildeTest fournie qui initialise un état civil de tests. Ne pas oublier de faire
des tests positifs ott I’on trouve bien la personne, mais aussi des tests négatifs ot la personne
n’existe pas.

150
151
152
153
154
155
156
157
158
159

164
165
166
167
168
169
170
171
172
173

TEST_CASE("cherche une persomne") {
EtatCivil a;
a = creeEtatCivildeTest();
CHECK (cherche(a, "Noemie") == 2);
// Ajouter d’autre ezemples ici

//

CHECK (cherche(a, "Armand") == 6);

CHECK (cherche(a, "Antoine") == -1);

//
}
''' =
Ecrire une fonction qui affiche les informations pour une personne dont on fournit le nom.

void imprimePersonne(const EtatCivil &a, string nom);

e
void imprimePersonne(const EtatCivil &a, string nom) {

//

int ind = cherche(a, nom);

if (ind < 0) {

throw invalid_argument("Nom incorrect dans imprimePersomne: ");
} else {
cout << a.table[ind];

}

//
}
''' =2

Surcharger 'opérateur d’affichage pour un état civil. On devra afficher son titre et les personnes
présente dans la table de I’état civil.

// Surcharge de l’operateur << pour struct état civil
std: :ostream &operator<<(std::ostream &out, EtatCivil a) {
7/
if (a.table.size() == 0) {
out << "L’état civil est vide" << endl;
} else {
for (size_t i = 0; i < a.table.size(); i += 1) {
imprimePersonne(a, a.table[i].nom);
}
}
return out;

/7

10.

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

207
208
209
210
211
212
213
214
215
216
217
218

Ecrire une fonction qui enregistre dans le systéme une nouvelle personne. Les parents sont
inconnus, il n’a pas de conjoint et pas d’enfants.

int personne(EtatCivil &a, string nom, Genre s);

On interdit toute homonymie dans le systéme (on ne doit pas avoir deux personnes de méme
nom) et une personne ne doit pas avoir un nom vide. La valeur de retour est l'indice de la
nouvelle personne ou une valeur négative si la personne n’a pas pu étre enregistrée.

/* enregistre une personne (si possible) et renvoie son indice dans le tableau.
* Renvoie un nombre negatif en cas d’erreur. Dans la suite"” du code on
* utilise les 3 valeurs suivantes pour les erreurs
* -1 : pas de personne du nom indique lors d’une recherche
* -2 : tentative d’ajout d’un homonyme
* -3 : nom de personne vide
* 51 on n’est pas interesse par le detail d’une erreur, une valeur negative
* renvoyee a la place d’un indice indique unn cas d’erreur.

*/
int personne(EtatCivil &a, string sonNom, Genre s) {
//
if (sonNom.size() == 0) {
return -3;
}; /* pas de nom vide */
if (cherche(a, sonNom) != -1) {
return -2;
}

vector<int> enfants; // vector wide.
Personne p = {sonlNom, s, -1, -1, -1, enfants};
a.table.push_back(p) ;

return a.table.size() - 1;

//
}
"" a<§
Tester cette fonction avec des tests positifs et négatifs
O
TEST_CASE("Ajout d’une personne") {
//
EtatCivil a;
a = creeEtatCivildeTest();
CHECK (personne (a, "Lamia", Genre::Fem) == 8);
CHECK (personne (a, "Lamia", Genre::Fem) == -2);
CHECK (personne(a, "Antoine", Genre::Masc) == 9);
CHECK (personne(a, "Antoine", Genre::Masc) == -2);
CHECK (personne (a, "Noemie", Genre::Masc) == -2);
CHECK (personne(a, "", Genre::Masc) == -3);
//
}
''' a<§

12.

223
224
225
226
227
228
229
230
231
232
233
234
235
236

13.

240
241
242
243
244
245
246
247
248

257
258
259
260
261
262

Ecrire une fonction qui enregistre le mariage de deux personnes dont on passe les noms en
paramétre. La fonction renvoie true si le mariage est possible et false sinon. On impose que
les deux personnes soient enregistrées et ne soient pas déja mariées :

bool mariage(EtatCivil &a, string lun, string lautre);

O
bool mariage(EtatCivil &a, string lun, string lautre) {
//
int ilun = cherche(a, lun), ilautre = cherche(a, lautre);
if (ilun < O or ilautre < 0 or ilun == ilautre) {
return false;
}
if (a.table[ilun].indConjoint != -1 or a.table[ilautre].indConjoint != -1) {
return false;
}

a.table[ilun] .indConjoint = ilautre;
a.table[ilautre] .indConjoint = ilun;
return true;

//
}
''' _a<§
Tester cette fonction avec des tests positifs et négatifs
T
TEST_CASE("Mariage de deux persomnes") {
//
EtatCivil a;
a = creeEtatCivildeTest();
persomne(a, "Lamia", Genre::Fem);
CHECK (mariage(a, "Lamia", "Yuri"));
CHECK_FALSE(mariage(a, "Guillaume", "Yuri"));
//
}
''' _\<:

. Ecrire une fonction qui enregistre la naissance d’une personne. Son en-téte est :

bool naissance(EtatCivil &a, string qui, Genre s, string pl, string p2);

Les paramétres sont le nom de ’enfant, son genre, les noms des parents ; les parents doivent étre
enregistrés et étre conjoints. Si les conditions ne sont pas remplies 'enfant n’est pas enregistré.
La fonction renvoie true ou false selon que la filiation a pu étre enregistrée ou non.

bool naissance(EtatCivil &a, string qui, Genre s, string pl, string p2) {

/7
int iqui, ipl, ip2;

cherche(a, pl);
cherche(a, p2);

ipl
ip2

263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292

296
297
298
299
300
301
302
303
304
305

// ATTENTION: ici ne pas utiliser la fonction mariage de la question
// precedente car celle-ci ne teste pas si deuzr personnes sont mariees
// mais elle les marient s’ils etaient celibataires ! On doit donc
// refaire les tests, mais ict plus simples.
if (ip1 == -1 or ip2 == -1 or
a.table[ip1] .indConjoint != ip2
// ce dernier test est inutile si la fonction mariage est correcte:
// st l’un est conjoint de l’autre, la reciproque doit etre vraie ausst
/7!
or a.table[ip2].indConjoint != ip1) {
return false;

}

// essayer d’ajouter le nmouveau-ne
iqui = persomne(a, qui, s);
if (iqui < 0) {

return false;

}

// enregistrer la filiation dans les deuz sens: de l’enfant vers les
// parents et l’inverse.

a.table[iqui] .indParentl = ipl;

a.table[ip1l] .enfants.push_back(iqui) ;

a.table[iquil .indParent2 = ip2;
a.table[ip2] .enfants.push_back(iqui) ;

return true;

//

''' .a<§
15. Tester cette fonction.

S
TEST_CASE("Naissance d’un bébé") {

//

EtatCivil a;

a = creeEtatCivildeTest();

persomne(a, "Lamia", Genre::Fem);

mariage(a, "Lamia", "Yuri");

CHECK (naissance(a, "Christophe", Genre::Masc, "Lamia", "Yuri"));

CHECK_FALSE(naissance(a, "Dina", Genre::Masc, "Noemie", "Yuri"));

//
''' .a<§

4

» Exercice 2. (Généalogie)

Cet exercice est la suite de I'exercice précédent. On travaillera dans le méme fichier.

16. Ecrire une version qui retourne si une personne est un ancétre au sens large d’une personne.

On pourra se servir d’un vecteur auxiliaire (géré en pile) dans lequel on stockera les indices des
personnes dont on doit vérifier si elles sont ou non des ancétres de la personne concernée, en

316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359

commencant par ses parents. On rappelle que la méthode pop_back() permet de supprimer le
dernier élément d’un vecteur. En-téte :

bool ascendant(EtatCivil &a, string qui, string ancetre);

Tester cette fonction.

bool ascendantI(const EtatCivil &a, string qui, string ancetre) {
7/
vector<int> pile;
int iqui = cherche(a, qui), iancetre = cherche(a, ancetre);
if (iqui < O or iancetre < 0) {
return false;
}
pile.push_back(iqui); // On empile l’indice de depart
// pile des indices des personnes a tester: on remonte dans l’arbre
// genealogique.
while (pile.size() > 0) {
int courant = pile[pile.size() - 1];
pile.pop_back();
if (courant == iancetre) {
return true;
} else {
// ajouter ses parents, si connus, dans la pile des personnes a
// tester
int i1 = a.table[courant].indParenti;
int i2 = a.table[courant] .indParent2;
if (i1 '= -1 {
pile.push_back(il);
}
if (12 '= -1 {
pile.push_back(i2);
}
}
}
/* fin de la boucle: on a visite tous les ancetres sans trouver indParent */
return false;
//
}

TEST_CASE("ascendent itiratif") {
//
EtatCivil a;
a = creeEtatCivildeTest();
personne(a, "Lamia", Genre::Fem);
mariage(a, "Lamia", "Yuri");
naissance(a, "Christophe", Genre::Masc, "Lamia", "Yuri");
CHECK (ascendantI(a, "Christophe", "Remy"));
CHECK_FALSE(ascendantI(a, "Christophe", "Noemie"));
//

17. Ecrire une fonction récursive de la fonction précédente.

364

365 /# version recursive de la recherche d’ascendant. On utilise une fonction

366 * quziliaire pour me pas faire plusieurs fois les tests de wvalidite des indices
367 #/

368 bool ascendantAux(const EtatCivil &a, int iqui, int iancetre) {

369 //

370 int i1, i2;

371 if (iqui == iancetre) {

372 return true;

373 }

374 // on remonte dans l’arbre a la recherche de l’ancetre. Plus efficace
375 // que de descendre de l’ancetre vers les enfants qui ezplorerait aussi

376 // les cousins (eloignes)
377 il = a.table[iqui].indParentl;
378 i2 = a.table[iquil.indParent2;

379 return (il != -1 and ascendantAux(a, il, iancetre)) or

380 (i2 !'= -1 and ascendantAux(a, i2, iancetre));

381 //

382 }

383

384 bool ascendantR(const EtatCivil &a, string qui, string ancetre) {
385 //

386 int iqui = cherche(a, qui), iancetre = cherche(a, ancetre);
387

388 if (iqui < O or iancetre < 0) {

389 return false;

390 }

391 // ca trivial qu’on regle tout de suite.
392 if (iqui == iancetre) {

393 return true;

394 }

395 return ascendantAux(a, iqui, iancetre);
396 //

397 }

398

399 TEST_CASE("ascendent recursif") {

400 //

401 EtatCivil a;
402 a = creeEtatCivildeTest();

403 personne(a, "Lamia", Genre::Fem);

404 mariage(a, "Lamia", "Yuri");

405 naissance(a, "Christophe", Genre::Masc, "Lamia", "Yuri");
406

407 CHECK (ascendantR(a, "Christophe", "Remy"));

408 CHECK_FALSE(ascendantR(a, "Christophe", "Noemie"));
409 //

410 }

Tester cette fonction.
18. Coder une procédure permettant d’afficher, pour un individu donné, son arbre généalogique
sous la forme :
Individu
Mére
Grand-mére maternelle

Grand-pére maternel

Pére
Grand-mére paternelle

Grand-pére paternel

Voici par exemple Paffichage de Parbre généalogique de 'individu 9 :

Individu 9
Individu 5
Individu inconnu
Individu 1
Individu inconnu
Individu inconnu
Individu 10
Individu 12
Individu inconnu
Individu inconnu
Individu 11
Individu inconnu
Individu inconnu

Indication : faire fonction récursive contenant 2 appels récursifs. Démarrer I'écriture de la
fonction récursive en pensant au cas d’arrét puis ensuite réfléchissez a ’appel récursif.

417 /7

418 /* On utilise une fonction auziliaire pour indiquer la génération et pour
419 * ne pas faire plusieurs fois les tests de validite des indices

420 x/

421 void AfficheArbreGenePersonneAux(int ind, EtatCivil EC, int generation) {
422 int i = 0;

423 cout << "Individu ";

424 if (ind == -1) {

425 cout << "inconnu" << endl;

426 } else {

427 cout << ind << endl;

428 for (i=0; i < generation; i++)

429 cout << " ",

430 AfficheArbreGenePersonneAux(EC.table[ind] .indParentl, EC, generationtl);
431 for (i=0; i < generation; i++)

432 cout << " ",

433 AfficheArbreGenePersonneAux(EC.table[ind] .indParent2, EC, generationtl);
434 }

435 }

436

437 void AfficheArbreGenePersonne(int ind, EtatCivil EC) {
438 int generation = 1;
439 if (ind >= (int)EC.table.size())

440 cout << "La persomne d’indice " << ind << " n’existe pas." << endl;
441 else
442 AfficheArbreGenePersonneAux(ind, EC, generation);

10

11

