e Correction TP de programmation n°6

universite Cours de programmation modulaire
PARIS-SACLAY —Licence MI/IM/MNSI - Info 3—

Les classes

Dans cette séance de travaux pratiques, nous allons apprendre & structurer un code en
utilisant les classes

» Exercice 1. (Etat civil)

Dans cet exercice nous allons reprendre le code de 'exercice de ’état civil de la semaine 5 et le re-
structurer en utilisant une classe EtatCivil. Le fichier & compléter est le fichier ClasseEtatCivil.cpp
fourni. Pour gagner du temps et vous concentrer sur les notions de classes et méthodes, vous pouvez
consulter votre fichier de la semaine derniére ou le fichier EtatCivil_correction.cpp fourni (ne pas
modifier ce fichier). Nous gardons la structure Personne et ’énumeration Genre comme la semaine
derniére et nous allons modifier uniquement la structure EtatCivil.

1. Déclarer dans la classe EtatCivil la méthode void initialise(string titreEtatCivil);

119
120
121
122
123
124

155
156
157
158
159
160
161
162
163

qui initialise un état civil, puis la définir hors de la classe en utilisant la syntaxe

void EtatCivil::initialise(string titreEtatCivil) {
code de la fonctionm....

void EtatCivil::initialise(string titreEtatCivil) {
//
titre = titreEtatCivil;
table.clear(); // autre possibilité: table = vector<Personne>(0);
//

. Consulter le main, mettre en commentaire les 3 appels a des méthodes non encore écrites (il

faudra penser a les décommenter plus tard), exécuter et vérifier que laffichage obtenu est bien
le bon.

Déclarer dans la classe EtatCivil la méthode int cherche(string nom) qui recherche le nom
d’une personne et retourne I'indice de la personne dans I’état civil si elle la trouve ou -1 sinon.
Puis définir cette méthode. N’oubliez pas d’ajouter le mot clé const aprés la liste des paramétres
pour indiquer que la méthode ne modifie pas I'objet.

int EtatCivil::cherche(string nom) const {
//
for (size_t i = 0; i < table.size(); i++) {
if (nom == table[i] .nom)
return i;
}
return -1;
//
}

167
168
169
170
171
172
173
174
175
176

180
181
182
183
184
185
186
187
188
189
193
194
195
196
197
198
199

. Tester le bon fonctionnement de la méthode cherche. Utiliser la fonction

creeEtatCivildeTest pour génerer un exemple d’un état civil pour les tests.

TEST_CASE("cherche une personne") {
EtatCivil a;
a = creeEtatCivildeTest();
CHECK (a.cherche("Noemie") == 2);
// Ajouter d’autre ezemples ici
//
CHECK (a.cherche("Armand") == 6);
CHECK (a.cherche("Antoine") == -1);
//

. Déclarer et définir les méthodes imprimePersonne et imprimeEtatCivil. La méthode

imprimePersonne affiche dans le terminal une personne dont le nom est passé en parameétre. La
méthode imprimeEtatCivil affiche dans le terminal un état civil (son nom et sa table). Notez
que les deux fonctions membres auront le mot clé const dans leurs déclarations puisqu’elles ne
modifient pas I'objet EtatCivil.

void imprimePersonne(string nom) const;
void imprimeEtatCivil() const;

Facultatif : Si c’est plus simple pour vous, on pourra utiliser une fonction auxilliaire
imprimeIndPersonne qui prend l'indice d’une personne dans 1’état civil et affiche les infor-
mations de cette personne.

void imprimeIndPersonne(int ind) const;

Sinon, commenter ’appel de imprimeIndPersonne dans le main.

void EtatCivil::imprimePersonne(string nom) const {
//
int ind = cherche(nom);
if (ind < 0) {
throw invalid_argument("Nom incorrect dans imprimePersonne: ");
} else {
imprimeIndPersonne(ind) ;
}
//
}
void EtatCivil::imprimeEtatCivil() const {
//
if (table.size() == 0) {
cout << "L’état civil est vide" << endl;
} else {
for (size_t i = 0; i < table.size(); i += 1) {
imprimeIndPersonne(i) ;

200 }

201 }
202 //
203 %

6. Déclarer, définir et tester la méthode int personne(string sonNom, Genre s) qui ajoute
une nouvelle personne & I’état civil. Cette méthode modifie ’objet EtatCivil donc elle ne prend
pas la mention const. La méthode léve une exception au cas ou le nom serait vide et ou la
personne existe déja dans I’état civil. Sinon, elle renvoie 'indice de la personne dans 1’état civil.
Pour tester la méthode, on pourra utiliser la fonction de doctest

CHECK_THROWS_WITH_AS(codeATester, "message de 1l’exception", type_exception);

Cette fonction vérifie a la fois que 'exception levé dans le méthode est la méme que celle indiqué
a la place de exception mais également le message de ’exception.

T
207 int EtatCivil::personne(string sonNom, Genre s) {
208 /7
209 if (sonNom.size() == 0) {
210 throw invalid_argument("Le nom de la persomne est vide !");

211 }; /* pas de nom vide */

212 if (cherche(sonNom) != -1) {

213 throw invalid_argument("La personne existe déja dams 1’etat civil !");
214 }

215 vector<int> enfants; // vector vide.

216 Personne p = {sonNom, s, -1, -1, -1, enfants};

217 table.push_back(p) ;

218 return table.size() - 1;

219 //

220 ¥

221

222 TEST_CASE("Ajout d’une personne") {
223 //

224 EtatCivil a;

225 a = creeEtatCivildeTest();

226 CHECK(a.personne("Lamia", Genre::Fem) == 8);

227 CHECK_THROWS_WITH_AS(a.personne("Lamia", Genre::Fem), "La personne existe déja dans 1’etat civil !", invalid_argumen
228 CHECK (a.personne("Antoine", Genre::Masc) == 9);

229 CHECK_THROWS_WITH(a.personne("Antoine", Genre::Masc), "La personne existe déja dans 1l’etat civil !");

230 CI-IE‘.CK_'I'I-IRDWS_WITI-I_AS(a.personne("Noemie”, Genre: :Masc), "La personne existe déja dans 1’etat civil !", invalid_argum
231 CHECK_THROWS_WITH(a.personne("", Genre::Masc), "Le nom de la personne est vide !");

232 CHECK_THROWS_WITH_AS(a.personne("", Genre::Fem), "Le nom de la personne est vide !", invalid_argument);

233 //

234 }

@ » Exercice 2. (Autres méthodes) Cet exercice est a faire dans le méme fichier que le
précédent. Il n’est pas indispensable, donc si vous étes plutdt lents, passez directement a
Pexercice suivant (qui lui est indispensable et devra étre terminé d’ici le prochain TP).

Rédiger la déclaration et la définition des méthodes mariage, naissance, ascendantI et
ascendantR vues dans le TP de la semaine derniére et faire les modifications nécessaires pour les
tests.

239
240
241
242
243
244
245
246
247
248
249
250
251
252
256
257
258
259
260
261
262
263
264
268
269
270
271
272
273
274
275
276
277
278

mariage : méthode qui enregistre le mariage de deux personnes dont on passe les noms en
paramétre. La fonction renvoie true si le mariage est possible et false sinon. On impose que
les deux personnes soient enregistrées et ne soient pas déja mariées.

bool EtatCivil::mariage(string lun, string lautre);

naissance : méthode qui enregistre la naissance d’une personne. Son en-téte est :

bool EtatCivil::naissance(string qui, Genre s, string pl, string p2);

Les paramétres sont le nom de I’enfant, son genre, les noms des parents ; les parents doivent étre
enregistrés et étre conjoints. Si les conditions ne sont pas remplies 'enfant n’est pas enregistré.
La fonction renvoie true ou false selon que la filiation a pu étre enregistrée ou non.

ascendantl : méthode (version itérative) qui retourne si une personne est un ancétre au sens
large d’une personne. On pourra se servir d’un vecteur auxiliaire (géré en pile) dans lequel on
stockera les indices des personnes dont on doit vérifier si elles sont ou non des ancétres de la
personne concernée, en commengcant par ses parents. On rappelle que la méthode pop_back()
permet de supprimer le dernier élément d’un vecteur. En-téte :

bool EtatCivil::ascendantI(string qui, string ancetre);

. ascendantR : version récursive de ascendantl

bool EtatCivil::mariage(string lun, string lautre) {

/7

int ilun = cherche(lun), ilautre = cherche(lautre);
if (ilun < O or ilautre < O or ilun == ilautre) {
return false;

}

if (table[ilun].indConjoint !'= -1 or table[ilautre] .indConjoint != -1) {
return false;

¥
table
table

[ilun] .indConjoint = ilautre;
[ilautre] .indConjoint = ilun;

return true;

//

}
TEST_CA
//

EtatC

SE("Mariage de deux personnes") {

ivil a;

a = creeEtatCivildeTest();

a.per
CHECK
CHECK
//

}

sonne("Lamia", Genre::Fem);
(a.mariage("Lamia", "Yuri"));
_FALSE(a.mariage("Guillaume", "Yuri"));

bool EtatCivil::naissance(string qui, Genre s, string pl, string p2) {

/7

int iqui, ipl, ip2;

ipl =
ip2 =

cherche(pl) ;
cherche(p2) ;

// ATTENTION: icti ne pas utiliser la fonction mariage de la question
// precedente car celle-ci ne teste pas st deux persomnes sont mariées
// mais elle les marient s’ils étaient célibataires ! On doit donc

// refaire les tests, mais ici plus simples.

if (ip1l == -1 or ip2 == -1 or

279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
307
308
309
310
311
312
313
314
315
316
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344

table[ip1] .indConjoint != ip2
// ce dernier test est inutile st la fonction mariage est correcte:
// st l’un est conjoint de l’autre, la reciproque doit etre vraie ausst
/7!
or table[ip2] .indConjoint != ipl) {
return false;

}

// essayer d’ajouter le nouveau-né
iqui = persomne(qui, s);
if (iqui < 0) {

return false;

}

// Enregistrer la filiation dans les deux sens: de l’enfant vers les
// parents et l’inverse.

table[iqui] .indParentl = ipi;

table[ipl] .enfants.push_back(iqui);

table[iqui] .indParent2 = ip2;
table[ip2] .enfants.push_back(iqui) ;

return true;
7/
}
TEST_CASE("Naissance d’un bébé") {
7/
EtatCivil a;
a = creeEtatCivildeTest();
a.personne("Lamia", Genre::Fem);
a.mariage("Lamia", "Yuri");
CHECK (a.naissance("Christophe", Genre::Masc, "Lamia", "Yuri"));
CHECK_FALSE(a.naissance("Dina", Genre::Masc, "Noemie", "Yuri"));
7/
}
bool EtatCivil::ascendantI(string qui, string ancetre) const {
//
vector<int> pile;
int iqui = cherche(qui), iancetre = cherche(ancetre);
if (iqui < O or iancetre < 0) {
return false;
}
pile.push_back(iqui); // On empile l’indice de départ
// pile des indices des personnes 4 tester: on remonte dans l’arbre
// génealogique.
while (pile.size() > 0) {
int courant = pile[pile.size() - 1];
pile.pop_back();

if (courant == iancetre) {
return true;

} else {
// ajouter ses parents, si connus, dans la pile des personnes a
// tester

int il = table[courant] .indParenti;

int i2 = table[courant] .indParent2;

if (i1 !'=-1) {
pile.push_back(il);

}

if (i2 1= -1) {
pile.push_back(i2);

345 }

346 }

347 }

348 /* fin de la boucle: on a visite tous les ancetres sans trouver indParent */
349 return false;

350 //

351

352

353 TEST_CASE("ascendant itératif") {

354 //

355 EtatCivil a;
356 a = creeEtatCivildeTest();

357 a.personne("Lamia", Genre::Fem);
358 a.mariage("Lamia", "Yuri");
359 a.naissance("Christophe", Genre::Masc, "Lamia", "Yuri");

360 CHECK (a.ascendantI("Christophe", "Remy"));

361 CHECK_FALSE(a.ascendantI("Christophe", "Noemie"));

362 //

363 }

367 bool EtatCivil::ascendantAux(int iqui, int iancetre) const {
368 //

369 int i1, 1i2;

370 if (iqui == iancetre) {

371 return true;

372 }

373 // On remonte dans l’arbre a la recherche de l’ancétre. Plus efficace
374 // que de descendre de l’ancétre vers les enfants qui exzplorerait aussi

375 // les cousins (éloignés)
376 il = table[iqui] .indParent1i;
377 i2 = table[iqui] .indParent2;

378 return (il '= -1 and ascendantAux(il, iancetre)) or
379 (i2 '= -1 and ascendantAux(i2, iancetre));
380 //

381 }

382

383 bool EtatCivil::ascendantR(string qui, string ancetre) const {
384 //

385 int iqui = cherche(qui), iancetre = cherche(ancetre);
386

387 if (iqui < O or iancetre < 0) {

388 return false;

389 }

390 // cas trivial qu’on regle tout de suite.
391 if (iqui == iancetre) {

392 return true;

393 }

394 return ascendantAux(iqui, iancetre);

395 //

396 }

397

398 TEST_CASE("ascendant recursif") {

399 //

400 EtatCivil a;
401 a = creeEtatCivildeTest();

402 a.personne("Lamia", Genre::Fem);

403 a.mariage("Lamia", "Yuri");

404 a.naissance("Christophe", Genre::Masc, "Lamia", "Yuri");
405

406 CHECK (a.ascendantR("Christophe", "Remy"));
407 CHECK_FALSE(a.ascendantR("Christophe", "Noemie"));

408 //
409 ¥

» Exercice 3. (Gestion du stock d’une Pharmacie)

Un pharmacien souhaite informatiser le traitement des prescriptions de ses clients. Un médicament
est représenté par son nom, le nombre de comprimés par boite, le prix de la boite et le nombre de
boites en stock. I.’ensemble des médicaments existants est stocké dans le tableau table de la classe
Stock. Chaque prescription est composée d’'un nom de médicament, d’'un nombre de comprimés a
prendre par jour (au plus 6 comprimés par jour), pendant un certain nombre de jours (au plus 31
jours). Les structures de données choisies sont donc les suivantes :

struct Medicament { struct Stock { struct Prescription {
string nom; vector<Medicament> table; string med;
int nbBoites; }; int nbCparJour;
int nbParBoite; int nbJours;
float prixBoite; };
s

On testera toutes les fonctions aprés les avoir écrites, et on créera un TEST CASE a
chaque fois que c’est possible.

1. Dans le fichier Pharmacie.cpp fourni, écrire et tester la méthode float prixComprime() de

102
103
104
105
106

la classe Medicament qui renvoie le prix d’un seul comprimé du médicament.

float Medicament: :prixComprime() const {
//
return prixBoite / nbParBoite;
//

}

TEST_CASE("test prix comprime") {
Stock s = creeUnStockdeTest();
CHECK(s.table[0] .prixComprime() == 0.875f);
CHECK (s .table[1] .prixComprime() == 0.5f);
CHECK(s.table[2] .prixComprime() == 1.25f);

. Ecrire la méthode void changePrix(float nouvPrix) de la classe Medicament qui prend en

paramétre le nouveau prix par boite d’'un médicament et qui modifie son prix par boite.

P
void Medicament: :changePrix(float nouvPrix) {

//

prixBoite = nouvPrix;

//

Réaliser la méthode int indiceMedicament (string nomMedicament) de la classe Stock qui
permet de chercher un médicament avec son nom dans la base de données du stock et renvoie
son indice dans le tableau ou -1 si elle ne le trouve pas. Tester la fonction.

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

129
130
131
132
133
134
135
136
137
138
139
140
141
142

int Stock: :indiceMedicament (string nomMedicament) const {
//
int nbMeds = table.size();
for (int i = 0; i < nbMeds; i++) {
if (nomMedicament == table[i] .nom)
return i;
}
return -1;
//
}

TEST_CASE("trouver un medicament dans le stock par son nom") {
Stock s = creeUnStockdeTest();
CHECK (s .indiceMedicament ("panadol") == 0);
CHECK (s .indiceMedicament ("xanax") == -1);

. Ecrire la méthode void ajouteMedicament() de la classe Stock qui permet d’ajouter un

nouveau médicament & la base de données du stock, & partir de données entrées au clavier par
l'utilisateur. Vérifier que le médicament n’existe pas déja.

P
void Stock::ajouteMedicament() {

7/

Medicament med;

do {

cout << "entrez le nom du medicament" << endl;
cin >> med.nom;
} while (indiceMedicament(med.nom) >= 0);
med.nbBoites = lireValeurBornee("entrez nombre de boites ", 0, 100);
med.nbParBoite = lireValeurBornee("entrez nombre de comprimés par boite ", 0, 100);
cout << "entrez le prix " << endl;
cin >> med.prixBoite;
table.push_back(med) ;
//

Vous pouvez utiliser la fonction

int lireValeurBornee(string texteAEcrire, int min, int max);

fournie pour vous vous assurez que le nombre de comprimés & prendre par jour ne dépasse pas
6 comprimés et la durée du traitement ne dépasse pas un mois.

. Ecrire la méthode void lirePrescription(Stock s) de la classe Prescription qui permet

de saisir au clavier les informations relatives & une prescription (nom du médicament, nombre
de comprimés par jour et durée du traitement). Sachant que le pharmacien n’accepte pas des
préscriptions des médicaments qu’il n’a pas dans sa base de données, il faut donc chercher le
nom du médicament dans le stock.

175 void Prescription: :lirePrescription(const Stock &s) {

176 //

177 int indiceMed = 0;

178 do {

179 cout << "entrez le nom du medicament" << endl;

180 cin >> nomMed;

181 indiceMed = s.indiceMedicament (nomMed) ;

182 } while (nomMed == "" or indiceMed == -1);

183 nbCparJour = lireValeurBornee("Nbre de comprimes par jour ", 1, 6);
184 nbJours = lireValeurBornee("Duree du traitement ", 1, 31);
185 //

186 %}

6. Ecrire et tester la méthode int nbBoites de la classe Prescription qui renvoie le nombre de
boites nécessaires pour couvrir la prescription. Par exemple, si le médicament est vendu par
boite de 20 comprimés, il ne faut qu'une boite pour couvrir une prescription de 6 comprimés
par jour pendant 3 jours, mais il faut 2 boites si le traitement dure 4 jours.

P
191 int Prescription::nbBoites(const Stock &s) const{
192 //
193 Medicament med = s.table[s.indiceMedicament (nomMed)];
194 int nbC = nbCparJour * nbJours;// nb de comprimes necessaires

195 if (med.nbParBoite >= nbC) return 1;
196 int res = nbC / med.nbParBoite;
197 if (nbC % med.nbParBoite != 0) res++;

198 return res;
199 //

200 }

201

202 TEST_CASE("la quantité de boites nécessaires pour un médicament") {
203 Stock s = creeUnStockdeTest();

204 Prescription p = {"panadol", 3, 7};

205 CHECK (p.nbBoites(s) == 6);

206 CHECK (Prescription {"panadol", 2, 7}.nbBoites(s) == 4);

207 }

7. Ecrire et tester la méthode float coutTotal de la classe Prescription qui renvoie le prix total
des boites nécessaires pour couvrir la prescription et met a jour la quantité du médicament dans
le stock. Si la quantité dans le stock ne couvre pas le nombre des boites necessaires, on donne
quand méme au patient le nombre de boites présentes en affichant un message d’avertissement.

P
211 float Prescription::coutTotal(Stock &s){
212 //

213 int nbB = nbBoites(s);

214 int indiceMed = s.indiceMedicament (nomMed) ;
215 int nbStock = s.table[indiceMed] .nbBoites;
216

10

217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233

if (mbStock >= nbB) {
s.table[indiceMed] .nbBoites = nbStock - nbB;
return nbB*s.table[indiceMed] .prixBoite;

} else {
cout << "stock insuffisant, il manque " << nbB - nbStock << " boites";
s.table[indiceMed] .nbBoites = 0;
return nbStock*s.table[indiceMed] .prixBoite;

}

//

}

TEST_CASE("le cout total d’une prescription") {
Stock s = creeUnStockdeTest();
Prescription p = {"panadol", 2, 5};
CHECK(p.coutTotal(s) == 10.5f);
CHECK (Prescription {"panadol", 3, 20}.coutTotal(s) == 52.5f);

11

