
Correction TP de programmation no6
Cours de programmation modulaire

—Licence MI/IM/MNSI - Info 3—

Les classes
Dans cette séance de travaux pratiques, nous allons apprendre à structurer un code en
utilisant les classes.

x Exercice 1. (État civil)
Dans cet exercice nous allons reprendre le code de l’exercice de l’état civil de la semaine 5 et le re-

structurer en utilisant une classe EtatCivil. Le fichier à compléter est le fichier ClasseEtatCivil.cpp
fourni. Pour gagner du temps et vous concentrer sur les notions de classes et méthodes, vous pouvez
consulter votre fichier de la semaine dernière ou le fichier EtatCivil_correction.cpp fourni (ne pas
modifier ce fichier). Nous gardons la structure Personne et l’énumeration Genre comme la semaine
dernière et nous allons modifier uniquement la structure EtatCivil.

1. Déclarer dans la classe EtatCivil la méthode void initialise(string titreEtatCivil);
qui initialise un état civil, puis la définir hors de la classe en utilisant la syntaxe
void EtatCivil::initialise(string titreEtatCivil) {
code de la fonction....

}

✁
119 void EtatCivil::initialise(string titreEtatCivil) {
120 //
121 titre = titreEtatCivil;
122 table.clear(); // autre possibilité: table = vector<Personne>(0);
123 //
124 }

✁

2. Consulter le main, mettre en commentaire les 3 appels à des méthodes non encore écrites (il
faudra penser à les décommenter plus tard), exécuter et vérifier que l’affichage obtenu est bien
le bon.

3. Déclarer dans la classe EtatCivil la méthode int cherche(string nom) qui recherche le nom
d’une personne et retourne l’indice de la personne dans l’état civil si elle la trouve ou -1 sinon.
Puis définir cette méthode. N’oubliez pas d’ajouter le mot clé const après la liste des paramètres
pour indiquer que la méthode ne modifie pas l’objet.

✁
155 int EtatCivil::cherche(string nom) const {
156 //
157 for (size_t i = 0; i < table.size(); i++) {
158 if (nom == table[i].nom)
159 return i;
160 }
161 return -1;
162 //
163 }

1

✁

4. Tester le bon fonctionnement de la méthode cherche. Utiliser la fonction
creeEtatCivildeTest pour génerer un exemple d’un état civil pour les tests.

✁

167 TEST_CASE("cherche une personne") {
168 EtatCivil a;
169 a = creeEtatCivildeTest();
170 CHECK(a.cherche("Noemie") == 2);
171 // Ajouter d’autre exemples ici
172 //
173 CHECK(a.cherche("Armand") == 6);
174 CHECK(a.cherche("Antoine") == -1);
175 //
176 }

✁

5. Déclarer et définir les méthodes imprimePersonne et imprimeEtatCivil. La méthode
imprimePersonne affiche dans le terminal une personne dont le nom est passé en paramètre. La
méthode imprimeEtatCivil affiche dans le terminal un état civil (son nom et sa table). Notez
que les deux fonctions membres auront le mot clé const dans leurs déclarations puisqu’elles ne
modifient pas l’objet EtatCivil.

void imprimePersonne(string nom) const;
void imprimeEtatCivil() const;

Facultatif : Si c’est plus simple pour vous, on pourra utiliser une fonction auxilliaire
imprimeIndPersonne qui prend l’indice d’une personne dans l’état civil et affiche les infor-
mations de cette personne.

void imprimeIndPersonne(int ind) const;

Sinon, commenter l’appel de imprimeIndPersonne dans le main.

✁

180 void EtatCivil::imprimePersonne(string nom) const {
181 //
182 int ind = cherche(nom);
183 if (ind < 0) {
184 throw invalid_argument("Nom incorrect dans imprimePersonne: ");
185 } else {
186 imprimeIndPersonne(ind);
187 }
188 //
189 }
193 void EtatCivil::imprimeEtatCivil() const {
194 //
195 if (table.size() == 0) {
196 cout << "L’état civil est vide" << endl;
197 } else {
198 for (size_t i = 0; i < table.size(); i += 1) {
199 imprimeIndPersonne(i);

2

200 }
201 }
202 //
203 }

✁

6. Déclarer, définir et tester la méthode int personne(string sonNom, Genre s) qui ajoute
une nouvelle personne à l’état civil. Cette méthode modifie l’objet EtatCivil donc elle ne prend
pas la mention const. La méthode lève une exception au cas où le nom serait vide et où la
personne existe déjà dans l’état civil. Sinon, elle renvoie l’indice de la personne dans l’état civil.
Pour tester la méthode, on pourra utiliser la fonction de doctest

CHECK_THROWS_WITH_AS(codeATester, "message de l’exception", type_exception);

Cette fonction vérifie à la fois que l’exception levé dans le méthode est la même que celle indiqué
à la place de exception mais également le message de l’exception.

✁
207 int EtatCivil::personne(string sonNom, Genre s) {
208 //
209 if (sonNom.size() == 0) {
210 throw invalid_argument("Le nom de la personne est vide !");
211 }; /* pas de nom vide */
212 if (cherche(sonNom) != -1) {
213 throw invalid_argument("La personne existe déjà dans l’etat civil !");
214 }
215 vector<int> enfants; // vector vide.
216 Personne p = {sonNom, s, -1, -1, -1, enfants};
217 table.push_back(p);
218 return table.size() - 1;
219 //
220 }
221
222 TEST_CASE("Ajout d’une personne") {
223 //
224 EtatCivil a;
225 a = creeEtatCivildeTest();
226 CHECK(a.personne("Lamia", Genre::Fem) == 8);
227 CHECK_THROWS_WITH_AS(a.personne("Lamia", Genre::Fem), "La personne existe déjà dans l’etat civil !", invalid_argument);
228 CHECK(a.personne("Antoine", Genre::Masc) == 9);
229 CHECK_THROWS_WITH(a.personne("Antoine", Genre::Masc), "La personne existe déjà dans l’etat civil !");
230 CHECK_THROWS_WITH_AS(a.personne("Noemie", Genre::Masc), "La personne existe déjà dans l’etat civil !", invalid_argument);
231 CHECK_THROWS_WITH(a.personne("", Genre::Masc), "Le nom de la personne est vide !");
232 CHECK_THROWS_WITH_AS(a.personne("", Genre::Fem), "Le nom de la personne est vide !", invalid_argument);
233 //
234 }

✁

� x Exercice 2. (Autres méthodes) Cet exercice est à faire dans le même fichier que le
précédent. Il n’est pas indispensable, donc si vous êtes plutôt lents, passez directement à

l’exercice suivant (qui lui est indispensable et devra être terminé d’ici le prochain TP).
Rédiger la déclaration et la définition des méthodes mariage, naissance, ascendantI et

ascendantR vues dans le TP de la semaine dernière et faire les modifications nécessaires pour les
tests.

3

7. mariage : méthode qui enregistre le mariage de deux personnes dont on passe les noms en
paramètre. La fonction renvoie true si le mariage est possible et false sinon. On impose que
les deux personnes soient enregistrées et ne soient pas déjà mariées.

bool EtatCivil::mariage(string lun, string lautre);

8. naissance : méthode qui enregistre la naissance d’une personne. Son en-tête est :

bool EtatCivil::naissance(string qui, Genre s, string p1, string p2);

Les paramètres sont le nom de l’enfant, son genre, les noms des parents ; les parents doivent être
enregistrés et être conjoints. Si les conditions ne sont pas remplies l’enfant n’est pas enregistré.
La fonction renvoie true ou false selon que la filiation a pu être enregistrée ou non.

9. ascendantI : méthode (version itérative) qui retourne si une personne est un ancêtre au sens
large d’une personne. On pourra se servir d’un vecteur auxiliaire (géré en pile) dans lequel on
stockera les indices des personnes dont on doit vérifier si elles sont ou non des ancêtres de la
personne concernée, en commençant par ses parents. On rappelle que la méthode pop_back()
permet de supprimer le dernier élément d’un vecteur. En-tête :

bool EtatCivil::ascendantI(string qui, string ancetre);

10. ascendantR : version récursive de ascendantI

✁

239 bool EtatCivil::mariage(string lun, string lautre) {
240 //
241 int ilun = cherche(lun), ilautre = cherche(lautre);
242 if (ilun < 0 or ilautre < 0 or ilun == ilautre) {
243 return false;
244 }
245 if (table[ilun].indConjoint != -1 or table[ilautre].indConjoint != -1) {
246 return false;
247 }
248 table[ilun].indConjoint = ilautre;
249 table[ilautre].indConjoint = ilun;
250 return true;
251 //
252 }
256 TEST_CASE("Mariage de deux personnes") {
257 //
258 EtatCivil a;
259 a = creeEtatCivildeTest();
260 a.personne("Lamia", Genre::Fem);
261 CHECK(a.mariage("Lamia", "Yuri"));
262 CHECK_FALSE(a.mariage("Guillaume", "Yuri"));
263 //
264 }
268 bool EtatCivil::naissance(string qui, Genre s, string p1, string p2) {
269 //
270 int iqui, ip1, ip2;
271
272 ip1 = cherche(p1);
273 ip2 = cherche(p2);
274 // ATTENTION: ici ne pas utiliser la fonction mariage de la question
275 // precedente car celle-ci ne teste pas si deux personnes sont mariées
276 // mais elle les marient s’ils étaient célibataires ! On doit donc
277 // refaire les tests, mais ici plus simples.
278 if (ip1 == -1 or ip2 == -1 or

4

279 table[ip1].indConjoint != ip2
280 // ce dernier test est inutile si la fonction mariage est correcte:
281 // si l’un est conjoint de l’autre, la reciproque doit etre vraie aussi
282 // !
283 or table[ip2].indConjoint != ip1) {
284 return false;
285 }
286
287 // essayer d’ajouter le nouveau-né
288 iqui = personne(qui, s);
289 if (iqui < 0) {
290 return false;
291 }
292
293 // Enregistrer la filiation dans les deux sens: de l’enfant vers les
294 // parents et l’inverse.
295 table[iqui].indParent1 = ip1;
296 table[ip1].enfants.push_back(iqui);
297
298 table[iqui].indParent2 = ip2;
299 table[ip2].enfants.push_back(iqui);
300
301 return true;
302 //
303 }
307 TEST_CASE("Naissance d’un bébé") {
308 //
309 EtatCivil a;
310 a = creeEtatCivildeTest();
311 a.personne("Lamia", Genre::Fem);
312 a.mariage("Lamia", "Yuri");
313 CHECK(a.naissance("Christophe", Genre::Masc, "Lamia", "Yuri"));
314 CHECK_FALSE(a.naissance("Dina", Genre::Masc, "Noemie", "Yuri"));
315 //
316 }
320 bool EtatCivil::ascendantI(string qui, string ancetre) const {
321 //
322 vector<int> pile;
323 int iqui = cherche(qui), iancetre = cherche(ancetre);
324 if (iqui < 0 or iancetre < 0) {
325 return false;
326 }
327 pile.push_back(iqui); // On empile l’indice de départ
328 // pile des indices des personnes à tester: on remonte dans l’arbre
329 // génealogique.
330 while (pile.size() > 0) {
331 int courant = pile[pile.size() - 1];
332 pile.pop_back();
333 if (courant == iancetre) {
334 return true;
335 } else {
336 // ajouter ses parents, si connus, dans la pile des personnes a
337 // tester
338 int i1 = table[courant].indParent1;
339 int i2 = table[courant].indParent2;
340 if (i1 != -1) {
341 pile.push_back(i1);
342 }
343 if (i2 != -1) {
344 pile.push_back(i2);

5

345 }
346 }
347 }
348 /* fin de la boucle: on a visite tous les ancetres sans trouver indParent */
349 return false;
350 //
351 }
352
353 TEST_CASE("ascendant itératif") {
354 //
355 EtatCivil a;
356 a = creeEtatCivildeTest();
357 a.personne("Lamia", Genre::Fem);
358 a.mariage("Lamia", "Yuri");
359 a.naissance("Christophe", Genre::Masc, "Lamia", "Yuri");
360 CHECK(a.ascendantI("Christophe", "Remy"));
361 CHECK_FALSE(a.ascendantI("Christophe", "Noemie"));
362 //
363 }
367 bool EtatCivil::ascendantAux(int iqui, int iancetre) const {
368 //
369 int i1, i2;
370 if (iqui == iancetre) {
371 return true;
372 }
373 // On remonte dans l’arbre à la recherche de l’ancêtre. Plus efficace
374 // que de descendre de l’ancêtre vers les enfants qui explorerait aussi
375 // les cousins (éloignés)
376 i1 = table[iqui].indParent1;
377 i2 = table[iqui].indParent2;
378 return (i1 != -1 and ascendantAux(i1, iancetre)) or
379 (i2 != -1 and ascendantAux(i2, iancetre));
380 //
381 }
382
383 bool EtatCivil::ascendantR(string qui, string ancetre) const {
384 //
385 int iqui = cherche(qui), iancetre = cherche(ancetre);
386
387 if (iqui < 0 or iancetre < 0) {
388 return false;
389 }
390 // cas trivial qu’on regle tout de suite.
391 if (iqui == iancetre) {
392 return true;
393 }
394 return ascendantAux(iqui, iancetre);
395 //
396 }
397
398 TEST_CASE("ascendant recursif") {
399 //
400 EtatCivil a;
401 a = creeEtatCivildeTest();
402 a.personne("Lamia", Genre::Fem);
403 a.mariage("Lamia", "Yuri");
404 a.naissance("Christophe", Genre::Masc, "Lamia", "Yuri");
405
406 CHECK(a.ascendantR("Christophe", "Remy"));
407 CHECK_FALSE(a.ascendantR("Christophe", "Noemie"));

6

408 //
409 }

✁

7

x Exercice 3. (Gestion du stock d’une Pharmacie)
Un pharmacien souhaite informatiser le traitement des prescriptions de ses clients. Un médicament

est représenté par son nom, le nombre de comprimés par boîte, le prix de la boîte et le nombre de
boîtes en stock. L’ensemble des médicaments existants est stocké dans le tableau table de la classe
Stock. Chaque prescription est composée d’un nom de médicament, d’un nombre de comprimés à
prendre par jour (au plus 6 comprimés par jour), pendant un certain nombre de jours (au plus 31
jours). Les structures de données choisies sont donc les suivantes :

struct Medicament {
string nom;
int nbBoites;
int nbParBoite;
float prixBoite;

};

struct Stock {
vector<Medicament> table;

};

struct Prescription {
string med;
int nbCparJour;
int nbJours;

};

On testera toutes les fonctions après les avoir écrites, et on créera un TEST CASE à
chaque fois que c’est possible.

1. Dans le fichier Pharmacie.cpp fourni, écrire et tester la méthode float prixComprime() de
la classe Medicament qui renvoie le prix d’un seul comprimé du médicament.

✁

87 float Medicament::prixComprime() const {
88 //
89 return prixBoite / nbParBoite;
90 //
91 }
92
93 TEST_CASE("test prix comprime") {
94 Stock s = creeUnStockdeTest();
95 CHECK(s.table[0].prixComprime() == 0.875f);
96 CHECK(s.table[1].prixComprime() == 0.5f);
97 CHECK(s.table[2].prixComprime() == 1.25f);
98 }

✁

2. Écrire la méthode void changePrix(float nouvPrix) de la classe Medicament qui prend en
paramètre le nouveau prix par boîte d’un médicament et qui modifie son prix par boîte.

✁

102 void Medicament::changePrix(float nouvPrix) {
103 //
104 prixBoite = nouvPrix;
105 //
106 }

✁

3. Réaliser la méthode int indiceMedicament(string nomMedicament) de la classe Stock qui
permet de chercher un médicament avec son nom dans la base de données du stock et renvoie
son indice dans le tableau ou -1 si elle ne le trouve pas. Tester la fonction.

8

✁

110 int Stock::indiceMedicament(string nomMedicament) const {
111 //
112 int nbMeds = table.size();
113 for (int i = 0; i < nbMeds; i++) {
114 if (nomMedicament == table[i].nom)
115 return i;
116 }
117 return -1;
118 //
119 }
120
121 TEST_CASE("trouver un medicament dans le stock par son nom") {
122 Stock s = creeUnStockdeTest();
123 CHECK(s.indiceMedicament("panadol") == 0);
124 CHECK(s.indiceMedicament("xanax") == -1);
125 }

✁

4. Ecrire la méthode void ajouteMedicament() de la classe Stock qui permet d’ajouter un
nouveau médicament à la base de données du stock, à partir de données entrées au clavier par
l’utilisateur. Vérifier que le médicament n’existe pas déja.

✁

129 void Stock::ajouteMedicament() {
130 //
131 Medicament med;
132 do {
133 cout << "entrez le nom du medicament" << endl;
134 cin >> med.nom;
135 } while (indiceMedicament(med.nom) >= 0);
136 med.nbBoites = lireValeurBornee("entrez nombre de boites ", 0, 100);
137 med.nbParBoite = lireValeurBornee("entrez nombre de comprimés par boite ", 0, 100);
138 cout << "entrez le prix " << endl;
139 cin >> med.prixBoite;
140 table.push_back(med);
141 //
142 }

✁

Vous pouvez utiliser la fonction

int lireValeurBornee(string texteAEcrire, int min, int max);

fournie pour vous vous assurez que le nombre de comprimés à prendre par jour ne dépasse pas
6 comprimés et la durée du traitement ne dépasse pas un mois.

5. Ecrire la méthode void lirePrescription(Stock s) de la classe Prescription qui permet
de saisir au clavier les informations relatives à une prescription (nom du médicament, nombre
de comprimés par jour et durée du traitement). Sachant que le pharmacien n’accepte pas des
préscriptions des médicaments qu’il n’a pas dans sa base de données, il faut donc chercher le
nom du médicament dans le stock.

9

✁

175 void Prescription::lirePrescription(const Stock &s) {
176 //
177 int indiceMed = 0;
178 do {
179 cout << "entrez le nom du medicament" << endl;
180 cin >> nomMed;
181 indiceMed = s.indiceMedicament(nomMed);
182 } while (nomMed == "" or indiceMed == -1);
183 nbCparJour = lireValeurBornee("Nbre de comprimes par jour ", 1, 6);
184 nbJours = lireValeurBornee("Duree du traitement ", 1, 31);
185 //
186 }

✁

6. Écrire et tester la méthode int nbBoites de la classe Prescription qui renvoie le nombre de
boîtes nécessaires pour couvrir la prescription. Par exemple, si le médicament est vendu par
boîte de 20 comprimés, il ne faut qu’une boîte pour couvrir une prescription de 6 comprimés
par jour pendant 3 jours, mais il faut 2 boîtes si le traitement dure 4 jours.

✁

191 int Prescription::nbBoites(const Stock &s) const{
192 //
193 Medicament med = s.table[s.indiceMedicament(nomMed)];
194 int nbC = nbCparJour * nbJours;// nb de comprimes necessaires
195 if (med.nbParBoite >= nbC) return 1;
196 int res = nbC / med.nbParBoite;
197 if (nbC % med.nbParBoite != 0) res++;
198 return res;
199 //
200 }
201
202 TEST_CASE("la quantité de boites nécessaires pour un médicament") {
203 Stock s = creeUnStockdeTest();
204 Prescription p = {"panadol", 3, 7};
205 CHECK(p.nbBoites(s) == 6);
206 CHECK(Prescription {"panadol", 2, 7}.nbBoites(s) == 4);
207 }

✁

7. Écrire et tester la méthode float coutTotal de la classe Prescription qui renvoie le prix total
des boîtes nécessaires pour couvrir la prescription et met à jour la quantité du médicament dans
le stock. Si la quantité dans le stock ne couvre pas le nombre des boîtes necessaires, on donne
quand même au patient le nombre de boîtes présentes en affichant un message d’avertissement.

✁

211 float Prescription::coutTotal(Stock &s){
212 //
213 int nbB = nbBoites(s);
214 int indiceMed = s.indiceMedicament(nomMed);
215 int nbStock = s.table[indiceMed].nbBoites;
216

10

217 if (nbStock >= nbB) {
218 s.table[indiceMed].nbBoites = nbStock - nbB;
219 return nbB*s.table[indiceMed].prixBoite;
220 } else {
221 cout << "stock insuffisant, il manque " << nbB - nbStock << " boites";
222 s.table[indiceMed].nbBoites = 0;
223 return nbStock*s.table[indiceMed].prixBoite;
224 }
225 //
226 }
227
228 TEST_CASE("le cout total d’une prescription") {
229 Stock s = creeUnStockdeTest();
230 Prescription p = {"panadol", 2, 5};
231 CHECK(p.coutTotal(s) == 10.5f);
232 CHECK(Prescription {"panadol", 3, 20}.coutTotal(s) == 52.5f);
233 }

✁

11

