
Correction TP de programmation no7
Cours de programmation modulaire

—Licence MI/IM/MNSI - Info 3—

Classes et Constructeurs
Dans cette séance de travaux pratiques, nous allons apprendre à contrôler la
construction d’un objet.

x Exercice 1. (Nombres entiers en précision arbitraire) Il existe plusieurs formats de sto-
ckage des entiers en C++, notamment int et long int (mais aussi short, unsigned short,
unsigned int et unsigned long int). Avec int, celui que nous avons le plus utilisé, on ne
peut écrire des nombres que jusqu’à 231 − 1 = 2147483647. Si l’on incrémente ce nombre, il
se produit un dépassement de capacité, le résultat est alors le nombre négatif −2147483648.
Vous pouvez le tester avec le code du fichier depcap.cpp fourni :

int n = 2147483647;
cout << n+1 << endl;

Ce comportement peut nous bloquer lors d’opérations avec de très grands nombres. Ce
problème peut être mitigé avec un long int, par exemple, qui a une taille en mémoire plus
grande qu’un int, mais les long int sont aussi limités à 263 − 1 = 9223372036854775807.

En C++, on utilise habituellement la bibliothèque GnuMultiPrecision pour ré-
soudre ce problème (voir https://gmplib.org/ et https://gmplib.org/manual/C_002b_
002b-Class-Interface pour les classes C++).

Dans cet exercice, nous allons écrire le code par nous mêmes en créant une classe pour
modéliser et stocker des nombres entiers naturels sans limitation de précision. On rappelle
que l’écriture 2375 en base dix signifie

2375 = 5 + 7× 10 + 3× 100 + 2× 1000 = 5× 100 + 7× 101 + 3× 102 + 2× 103 .

Le chiffre correspondant à la puissance i de 10 est appelé chiffre de poids i. Par exemple
dans 2375, le chiffre de poids 0 est 5 et celui de poids 2 est 3.

Le format de stockage va être le suivant :
— les chiffres du nombre sont stockés dans un vecteur de int nommé chiffres.
— le chiffre de poids i est stocké dans la case i du vecteur. Ainsi pour l’affichage du

nombre on commence par la fin du vecteur.
— Invariant : le chiffre de plus grand poids doit toujours être différent de zéro.

Ainsi, 456 est codé par le vecteur {6,5,4}, et 789065 est codé {5,6,0,9,8,7}.
Attention : une conséquence du choix précédent est que le nombre 0 est codé par

le vecteur vide et non par le vecteur {0}.
Pour cet exercice, vous modifierez le fichier entier.cpp.

1

https://gmplib.org/
https://gmplib.org/manual/C_002b_002b-Class-Interface
https://gmplib.org/manual/C_002b_002b-Class-Interface

1. Déclarez et définissez un constructeur à partir d’un vecteur d’entiers donné (pour la
classe Naturel fournie). Si l’une des entrées du vecteur ne contient pas un chiffre
valide (entre 0 et 9), on signalera une exception invalid_argument. Pour le moment,
on ne s’occupe pas des 0 qu’il pourrait y avoir à la fin du vecteur, ce sera le sujet de
la question suivante.

✁

13 // Le chiffre de poids i est en position i
14 // Le chiffre de poids le plus fort est différent de zéro
15 struct Naturel {
16 vector<int> chiffres;
17
18 // Constructeurs
19 //
20 Naturel(const vector<int>& ch);
21 Naturel() : chiffres{} {}; // Ajouté en question 4.
22 Naturel(int n); // Ajouté en question 8.
23 //
49 };
56 // Constructeur
57 Naturel::Naturel(const std::vector<int>& ch) : chiffres{ch} {
58 //
59 for (int i : chiffres) {
60 if (i < 0 or i > 9)
61 throw invalid_argument("Chiffre invalide " + to_string(i));
62 }
63 normalise(); // Ajouté à la fin de la question 2.
64 //
65 }

✁

2. Déclarez et définissez une méthode normalise qui supprime les 0 à la fin du vecteur
de chiffres du Naturel, de manière à respecter l’invariant. Attention ! Il ne faut sup-
primer que les 0 à la fin. On pourra utiliser la méthode pop_back des vecteurs. Par
exemple, 0420 s’écrira {0,2,4,0} et sera normalisé en {0,2,4}.

✁

69 void Naturel::normalise() {
70 while (chiffres.size() != 0 and chiffres.back() == 0) {
71 chiffres.pop_back();
72 }
73 }

✁

3. Appeler cette méthode à la fin du constructeur, pour que le Naturel construit soit
normalisé.

4. Complétez les tests fournis afin de tester soigneusement le constructeur, en vérifiant
bien tous les cas d’erreur et la suppression des 0.

2

✁

86 TEST_CASE("Constructeur") {
87 //
88 CHECK(Naturel{{3, 2, 1}}.chiffres == vector<int>{{3, 2, 1}});
89 CHECK(Naturel{{2, 2, 0, 0}}.chiffres == vector<int>{{2, 2}});
90 CHECK(Naturel{{0, 2, 2, 0, 0}}.chiffres == vector<int>{{0, 2, 2}});
91 CHECK(Naturel{{0, 0, 0}}.chiffres == vector<int>{});
92
93 CHECK_THROWS_AS((Naturel{{0, 12, 0}}), invalid_argument);
94 CHECK_THROWS_AS((Naturel{{0, -1, 2}}), invalid_argument);
95
96 CHECK(Naturel{0}.chiffres == vector<int>{});
97 CHECK(Naturel{123}.chiffres == vector<int>{{3, 2, 1}});
98 CHECK(Naturel{1230}.chiffres == vector<int>{{0, 3, 2, 1}});
99 //

100 }

✁

5. Écrire le constructeur par défaut qui construit le nombre 0.

6. Écrire une méthode nb_chiffres qui retourne le nombre de chiffres. Tester cette
méthode.

7. Écrire une méthode ieme_chiffre qui retourne le chiffre de poids i. Note : le chiffre
de poids 5 de 421 est 0. Tester cette méthode.

✁

28 int nb_chiffres() const { return chiffres.size(); }
29 int ieme_chiffre(int i) const {
30 if (i < nb_chiffres()) return chiffres[i]; else return 0;
31 }

104 TEST_CASE("Méthode nb_chiffres") {
105 //
106 CHECK(Naturel{{3, 2, 1}}.nb_chiffres() == 3);
107 CHECK(Naturel{{2, 2}}.nb_chiffres() == 2);
108 CHECK(Naturel{{0, 2, 2}}.nb_chiffres() == 3);
109 CHECK(Naturel{}.nb_chiffres() == 0);
110 //
111 }
112
113 TEST_CASE("Méthode ieme_chiffres") {
114 //
115 CHECK(Naturel{{3, 2, 1}}.ieme_chiffre(0) == 3);
116 CHECK(Naturel{{2, 2}}.ieme_chiffre(1) == 2);
117 CHECK(Naturel{{0, 2, 2}}.ieme_chiffre(2) == 2);
118 CHECK(Naturel{{0, 2, 2}}.ieme_chiffre(3) == 0);
119 CHECK(Naturel{}.ieme_chiffre(1) == 0);
120 //
121 }

✁

3

8. Surchargez l’opérateur << pour la classe Naturel.

✁

125 ostream& operator<<(ostream& out, const Naturel &n) {
126 //
127 if (n.chiffres.size() == 0) out << "0";
128 for (int i = n.chiffres.size() - 1; i >= 0; i--)
129 out << n.chiffres[i];
130 return out;
131 //
132 }

✁

9. Écrivez un constructeur qui prend un int habituel. Testez.

✁

77 Naturel::Naturel(int n) : chiffres{} {
78 while (n != 0) {
79 chiffres.push_back(n % 10);
80 n = n / 10;
81 }
82 }

✁
10. Surchargez les opérateurs == et != pour comparer deux entiers. Testez ces fonctions.

✁

179 //
180 bool Naturel::operator== (const Naturel& b) const {
181 return chiffres == b.chiffres;
182 }
183
184
185 bool Naturel::operator!= (const Naturel& b) const {
186 return not (*this == b);
187 }
188
189 TEST_CASE("operator ==") {
190 CHECK(N0 == N0);
191 CHECK(N1 == N1);
192 CHECK(N2 == N2);
193 CHECK(N1000 == N1000);
194 CHECK(a == a);
195 CHECK(b == b);
196 CHECK(N0 != N1);
197 CHECK_FALSE(N0 != N0);
198 CHECK_FALSE(N0 == N1000);
199 CHECK_FALSE(N2 == a);

4

200 CHECK_FALSE(a == b);
201 }
202 //

✁

� x Exercice 2. (Nombres entiers en précision arbitraire (suite))
Cet exercice est prévu pour ceux qui vont vite. S’il vous reste moins d’une heure,

passez à l’exercice suivant.

1. Surchargez les opérateurs <, >, <= et >= pour comparer deux Naturels. Vous pourrez
vous aider de fonctions annexes, compare pour comparer deux int (qui pourra vous
retourner différentes valeurs selon que vos deux arguments sont supérieurs l’un à
l’autre ou égaux), que vous pourrez surcharger pour comparer deux Naturels. Testez
ces fonctions.

✁

206
207 //
208 int compare_int(int a, int b) {
209 if (a == b) return 0;
210 if (a > b) return +1;
211 return -1;
212 }
213 int Naturel::compare(const Naturel& b) const {
214 int res = compare_int(chiffres.size(), b.chiffres.size());
215 if (res != 0) return res;
216 for (int i = chiffres.size() - 1; i >= 0; i--) {
217 res = compare_int(chiffres[i], b.chiffres[i]);
218 if (res != 0) return res;
219 }
220 return 0;
221 }
222
223
224 bool Naturel::operator < (const Naturel& b) const {
225 //
226 return compare(b) < 0;
227 //
228 }
229 bool Naturel::operator > (const Naturel& b) const {
230 //
231 return b < *this;
232 //
233 }
234
235 TEST_CASE("operator <"){
236 //
237 vector<Naturel> testsample = {N0, N1, N2, N1000 , a, b};
238 for (int i = 0; i < int(testsample.size()); i++)

5

239 for (int j = 0; j < int(testsample.size()); j++) {
240 CHECK((testsample[i] < testsample[j]) == (i < j));
241 CHECK((testsample[i] > testsample[j]) == (i > j));
242 }
243 //
244 }
245
246 bool Naturel::operator <= (const Naturel& b) const {
247 //
248 return compare(b) <= 0;
249 //
250 }
251 bool Naturel::operator >= (const Naturel& b) const {
252 //
253 return b <= *this;
254 //
255 }
256 TEST_CASE("operator <="){
257 //
258 vector<Naturel> testsample = {N0, N1, N2, N1000, a, b};
259 for (int i = 0; i < int(testsample.size()); i++)
260 for (int j = 0; j < int(testsample.size()); j++) {
261 CHECK((testsample[i] <= testsample[j]) == (i <= j));
262 CHECK((testsample[i] >= testsample[j]) == (i >= j));
263 }
264 }
265 //

✁

2. Surchargez l’opérateur +. Testez cette fonction.

✁

270 Naturel Naturel::operator+ (const Naturel &b) const {
271 //
272 if (chiffres.size() > b.chiffres.size()) {
273 return b + *this;
274 }
275 Naturel res{};
276 bool retenue = false;
277 int i = 0;
278 while (i < int(chiffres.size())) {
279 int ch = chiffres[i] + b.chiffres[i] + retenue;
280 retenue = (ch >= 10);
281 if (retenue) ch -= 10;
282 res.chiffres.push_back(ch);
283 i++;
284 }
285 while (i < int(b.chiffres.size())) {
286 int ch = b.chiffres[i] + retenue;
287 retenue = (ch >= 10);
288 if (retenue) ch -= 10;
289 res.chiffres.push_back(ch);

6

290 i++;
291 }
292 if (retenue)
293 res.chiffres.push_back(retenue);
294 return res;
295 //
296 }
297
298 TEST_CASE("operator +"){
299 //
300 vector<Naturel> testsample = {N0, N1, N2, N1000, a, b};
301 CHECK(N0 + N0 == N0);
302 for (Naturel n : testsample) {
303 CHECK(N0 + n == n);
304 CHECK(n + N0 == n);
305 }
306 for (Naturel n : testsample)
307 for (Naturel m : testsample)
308 CHECK(n + m == m + n);
309 for (Naturel n : testsample)
310 for (Naturel m : testsample)
311 for (Naturel p : testsample)
312 CHECK((n + m) + p == n + (m + p));
313 CHECK(a + b == Naturel{{0, 0, 6, 3, 0, 3, 1, 5}});
314 //
315 }

✁
3. Surchargez l’opérateur -=. Testez cette fonction.

✁
320 void Naturel::operator-=(const Naturel &b) {
321 if (chiffres.size() < b.chiffres.size())
322 throw runtime_error("Soustraction impossible");
323 bool retenue = false;
324 int i = 0;
325 while (i < int(b.chiffres.size())) {
326 chiffres[i] -= b.chiffres[i] + retenue;
327 retenue = (chiffres[i] < 0);
328 if (retenue) chiffres[i] += 10;
329 i++;
330 }
331 while (i < int(chiffres.size()) and retenue) {
332 chiffres[i] -= retenue;
333 retenue = (chiffres[i] < 0);
334 if (retenue) chiffres[i] += 10;
335 i++;
336 }
337 if (retenue)
338 throw runtime_error("Soustraction impossible");
339 normalise();
340 }

✁

7

4. Surchargez l’opérateur -. Testez cette fonction.

✁
344 Naturel Naturel::operator-(const Naturel& b) const {
345 Naturel res{*this};
346 res -= b;
347 return res;
348 }
349
350 TEST_CASE("operator -"){
351 vector<Naturel> testsample = {N0, N1, N2, N1000, a, b};
352 for (Naturel n : testsample) {
353 CHECK(n - N0 == n);
354 CHECK(n - n == N0);
355 }
356 for (int i = 0; i < int(testsample.size()); i++)
357 for (int j = 0; j < int(testsample.size()); j++) {
358 Naturel a = testsample[i];
359 Naturel b = testsample[j];
360 if (i < j) {
361 CHECK_THROWS_AS(a - b, runtime_error);
362 } else {
363 CHECK((a - b) + b == a);
364 }
365 }
366 }

✁

5. Pour vérifier "l’efficacité" de notre méthode, nous allons regarder quelle est la plus
grande valeur qu’un long int peut prendre en comparaison avec nos objets de la
classe Naturel. En effet, les long int ont une taille limitée en mémoire, et ne peuvent
pas avoir une valeur trop grande. Écrivez une boucle qui en commençant à 1, à
chaque étape, double le long int et le naturel et les affiche. Observez le résultat.

✁
373 int main(int argc, const char** argv) {
374 doctest::Context context(argc, argv);
375 int test_result = context.run();
376 if (context.shouldExit()) return test_result;
377 //
378 long int ni = 1;
379 Naturel n{{1}};
380 for (int i=1; i<100; i++) {
381 n = n + n;
382 ni = ni + ni;
383 cout << i << " : " << ni << " " << n << endl;
384 }
385 //
386 return 0;
387 }

✁

8

La bibliothèque GMP fonctionne selon le même principe, sauf que c’est un gros gas-
pillage de place mémoire et de temps que de calculer en base 10 en ne stockant qu’un seul
chiffre dans chaque case du vecteur. On pourrait faire mieux en stockant par exemples 3
chiffres, c’est à dire en calculant en base 1000. Pour optimiser au maximum, GMP calcule
en base 264.

x Exercice 3. (Les tours de Hanoi)
Le jeu des tours de Hanoi (voir https://fr.wikipedia.org/wiki/Tours_de_Hano%C3%

AF) est un puzzle de réflexion dans lequel on déplace des disques de diamètres différents
sur trois piquets (les tours). On a une tour de départ sur laquelle tous nos disques seront
installés dans l’ordre décroissant de bas en haut (les plus grands en bas les plus petits en
haut). On a une tour d’arrivée sur laquelle on veut reproduire la pyramide de disques de la
tour de départ.

Pour bouger les disques, il y a deux règles :
— On ne peut déplacer qu’un disque à la fois ;
— On ne peut placer un disque que sur un disque plus grand ou un emplacement vide.

Dans cet exercice, nous allons modéliser les tours de Hanoi, mais nous n’allons pas modé-
liser leur résolution.

Vous modifierez le fichier hanoi.cpp. On vous y a fourni une surcharge de l’opérateur <<
pour les tableaux et pour les vecteurs.

1. Écrivez une classe Hanoi. Elle aura pour attributs :
— le nombre de disques
— un vecteur de la position des disques (la case d’indice i contient l’indice du piquet

sur lequel se trouve le disque i) ; Par exemple {0,1,1,2} signifie que le disque
zéro est sur le piquet 0, les disques 1 et 2 sur le piquet 1 et le disque 3 sur le
piquet 2).

— un vecteur de la position "objectif" des disques (exemple : si on veut que les quatre
disques soient sur le piquet 1 : {1,1,1,1})

— le nombre de mouvements depuis le début.

✁

26 struct Hanoi {
27 int nb_disques, nb_mvmts;
28 //
29 vector<int> statut;
30 vector<int> objectif;
31 // constructeur
32 Hanoi(int nb_disques);
33 //
34
35 array<vector<int>, 3> piquets_statut() const;
36 //
37 /** reinitialiser le plateau **/
38 void reinitialise();
39 void bouge_disque(int deb, int fin);

9

https://fr.wikipedia.org/wiki/Tours_de_Hano%C3%AF
https://fr.wikipedia.org/wiki/Tours_de_Hano%C3%AF

40 bool gagne() const;
41 //
42 };

✁

2. Écrivez le constructeur de la classe Hanoi qui prend en paramètre le nombre de
disques avec la syntaxe Hanoi::Hanoi(int nb), et qui construit l’état initial du jeu.

✁
50 //
51 Hanoi::Hanoi(int nb) :
52 nb_disques{nb},
53 nb_mvmts{0},
54 statut(nb, 0),
55 objectif(nb, 1) {
56 }
57 //

✁

3. Écrivez une méthode reinitialise permettant de réinitialiser le "plateau" (un élé-
ment de la classe Hanoi).

✁
61 //
62 void Hanoi::reinitialise() {
63 nb_mvmts = 0;
64 statut = vector<int>(nb_disques, 0);
65 }
66 //

✁

4. Écrivez une méthode piquets_statut permettant d’obtenir le tableau de vecteurs
trié des disques sur chaque piquet (par exemple pour la situation : piquet 0 : 5
4 3, piquet 1 : 2, piquet 2 : 1 0, la méthode retournera le tableaux de vecteur
{{3,4,5},{2},{0,1}}).

✁
70 //
71 // get the statut of the disks on the peg
72 array<vector<int>, 3> Hanoi::piquets_statut() const {
73 //
74 array<vector<int>, 3> res;
75 for (int j = 0; j < nb_disques; j++) {
76 res[statut[j]].push_back(j);
77 }
78 return res;
79 //
80 }

10

✁

5. Écrivez une méthode void Hanoi::bouge_disque(int deb, int fin) pour bouger
un disque. Cette méthode prendra en paramètres le piquet de départ et le piquet
d’arrivée. Bien sûr, on signalera une exception si le mouvement n’est pas valide.

✁

110 //
111 void Hanoi::bouge_disque(int deb, int fin) {
112 //
113 if (deb < 0 or deb >= 3)
114 throw invalid_argument("Pas de piquet no " + to_string(deb));
115 if (fin < 0 or fin >= 3)
116 throw invalid_argument("Pas de piquet no " + to_string(fin));
117 array<vector<int>, 3> piquet_sorted = piquets_statut();
118 if (piquet_sorted[deb].size() == 0) {
119 throw invalid_argument("Pas de disque en position " + to_string(deb));
120 } else {
121 if (piquet_sorted[fin].size() != 0 and
122 piquet_sorted[fin][0] < piquet_sorted[deb][0]) {
123 throw invalid_argument("Mouvement interdit !");
124 } else {
125 nb_mvmts += 1;
126 statut.at(piquet_sorted[deb][0]) = fin;
127 }
128 }
129 }
130
131 TEST_CASE("move disk and reinitialiser") {
132 Hanoi a(5);
133 Hanoi b = a;
134 b.bouge_disque(0, 1);
135 array<vector<int>, 3> piquet_a = a.piquets_statut();
136 array<vector<int>, 3> piquet_b = b.piquets_statut();
137 array<vector<int>, 3> tab_a = {{{{0, 1, 2, 3, 4}}, {}, {}}};
138 array<vector<int>, 3> tab_b = {{{{1, 2, 3, 4}}, {{0}}, {}}};
139 CHECK(piquet_a != piquet_b);
140 CHECK(piquet_a == tab_a);
141 CHECK(piquet_b == tab_b);
142 b.reinitialise();
143 piquet_b = b.piquets_statut();
144 CHECK(piquet_a == piquet_b);
145 }
146 //

✁

6. Testez cette fonction ainsi que la fonction reinitialise.

7. Écrivez une méthode gagne permettant de savoir si l’état du plateau est l’état "objec-
tif", donc si on a bien gagné.

11

✁

151 //
152 // est ce que le statut est egal a l’objectif ?
153 bool gagne(Hanoi h) { return h.statut == h.objectif; }
154
155 TEST_CASE("gagne") {
156 Hanoi a(2);
157 Hanoi b = a;
158 b.bouge_disque(0, 2);
159 b.bouge_disque(0, 1);
160 b.bouge_disque(2, 1);
161 CHECK(gagne(a) == false);
162 CHECK(gagne(b) == true);
163 }
164 //

✁

8. Écrivez le programme principal avec une boucle qui affiche l’état du jeu et demande
à l’utilisateur deux entiers décrivant les piquets de début et fin du mouvement qu’il
souhaite effectuer.

✁

168 int main(int argc, const char **argv) {
169 doctest::Context context(argc, argv);
170 int test_result = context.run();
171 if (context.shouldExit()) return test_result;
172
173 //
174 // test d’affichage
175 int val;
176 cout << "Entrez un nombre de disques : ";
177 cin >> val;
178 Hanoi h(val);
179 int dep;
180 int fin;
181 while (gagne(h) == false) {
182 cout << h << endl;
183 cout << "Entrez les piquet de départ et d’arrivée : ";
184 cin >> dep >> fin;
185 try {
186 h.bouge_disque(dep, fin);
187 } catch (invalid_argument &e) {
188 cout << "Mouvement impossible : " << e.what() << endl;
189 }
190 }
191 cout << h << endl;
192 cout << "Gagné en " << h.nb_mvmts << " mouvements !" << endl;
193 //
194 return 0;
195 }

✁

12

9. Vous pouvez maintenant essayer de résoudre le casse-tête !

13

