te Correction TP de programmation n°9
EAQII\S/-%XEII_ A% Cours de programmation modulaire
—Licence MI/IM/MNSI - Info 3—

Encapsulation et types abstraits

Dans cette séance de travaux pratiques, nous travaillons autour d’un type abstrait
Ensemble, défini par les méthodes ci-dessous :

Ensemble (); // Constructeur par défaut

Ensemble (vector<Objet> v); // Constructeur a partir d’un vecteur
bool ajoute(Objet o) ; // Ajoute un objet 4 un ensemble
bool retire(Objet o); // Retire un objet 4 un ensemble
Objet element() const; // Retourne un objet d’un ensemble
bool estVide() const; // Teste si l’ensemble est vide

bool contient(Objet o) const; // Teste si un objet est dans l’ensemble

On va travailler en deux temps :
— Dans un premier temps, on se place du point de vue des utilisateurs du type
et on va faire des calculs sur les ensembles ;
— Dans un deuxiéme temps, on implémentera le type Ensemble.

Le TP n’est pas a finir pour cette semaine : les exercices 2 4 5 seront repris
la semaine prochaine en TP. Par contre I’exercice 1 doit impérativement
étre fini cettte semaine. Si vous ne I’avez pas fini en TP, il faudra le finir
a la maison avant la prochaine séance de TP.

Conventions de nommage

Quand on commence a écrire des programmes avec quelques dizaines de fonctions, pour
éviter d’avoir en permanence & se poser des questions comme « Quel est le nom de la fonction
qui ... » ou bien « Dans quel ordre dois-je passer les paramétres a la fonction ... », il est utile
de suivre quelques conventions. Toutes les entreprises de développement de logiciels, tous les
projets de logiciels sérieux fixent ainsi un certain nombre de régles concernant l'indentation
du code, le choix des noms des fonctions et I'ordre des paramétres.

Les choix faits dans la convention suivante sont pour la plupart arbitraires, ils sont l&
seulement pour éviter des hésitations comme par exemple : dois-je écrire «EstVide» ou bien
«estVide» ou encore « est_vide » 7 Rien ne vous interdit de vous en écarter si elles ne vous
plaisent pas, mais ne pas suivre de conventions est un bon moyen de perdre bétement du
temps. Conventions choisies dans ce cours :

e Les noms des types et classes commencent par une majuscule (par exemple Ensemble).
e On utilise la convention dite camelCase pour les noms de fonctions et de méthodes
(les mots accolés et commengant par une majuscule). Par exemple estVide.

Enfin, Il y a deux sortes de méthodes qui font des calculs :
1. soit on modifie I'objet ; dans ce cas le nom de la méthode sera un verbe conjugué
qui décrit Paction que 'on fait sur 'objet. Par exemple ajoute (x) ajoute x a l’objet.

2. soit on retourne un résultat; dans ce cas le nom de la méthode sera un nom qui
décrit le résultat de ’action. Par exemple union(a, b) retourne 'union.

Les ensembles en mathématiques

Lors du cours nous avons vu le type Sac qui est aussi appelé «multi-ensemble», car un
élément peut apparaitre plusieurs fois. Au contraire, dans un ensemble un élément ne peut
pas étre dupliqué. Les mathématiciens utilisent les notions suivantes sur les ensembles :

Création d’un ensemble en extension, a partir de la liste des éléments. L’ordre
n’importe pas et ’on supprime les doublons. Ainsi les trois ensembles suivants sont

tous égaux :
{17274’ 7} {2777174} {4’2777 77174}

mais ils sont différents de {1,3,2,7,4} et de {1,3,2,7}.

Appartenance a un ensemble. L’expression e € F vaut vrai ou faux selon que e
apparait dans F ou non.

2€{2,7,1,4} est vrai 3€{2,7,1,4} est faux

Inclusion de deux ensembles. L’expression E C F' vaut vrai si tous les éléments de
FE apparaissent dans F'.

{2,4} € {2,7,1,4} est vrai {2,5} € {2,7,1,4} est faux

Union de deux ensembles : KU F'. C’est 'ensemble des éléments qui sont soit dans
FE soit dans F. Bien sir un élément qui apparait & la fois dans E et F n’apparait
qu’'une fois dans £ U F.

{1,2,4,7} U {2,3,4,8} = {1,2,3,4,7,8}

Intersection de deux ensembles : £ N F. C’est 'ensemble des éléments qui sont &
la fois dans E et dans F.

{]" 27 47 7} m {27 3? 47 8} = {2’ 4}

Le type ensemble

Dans le premier exercice, on suppose déja réalisé le type abstrait Ensemble. Une implanta-
tion est fournie dans deux fichiers Ensemble.hpp et Ensemble.cpp. Il n’est pas utile que vous
compreniez le contenu du fichier Ensemble. cpp qui utilise le type ensemble de la bibliothéque
standard du C++. En revanche, vous pouvez garder & portée de main le fichier Ensemble.hpp
qui décrit en détail 'interface.

Les éléments d’un Ensemble sont de type Objet supposé lui aussi défini par ailleurs. Par
exemple, le type Objet pourrait étre le type int, ou une structure contenant deux entiers ou
tout autre type.

Nous utilisons une version du type abstrait Ensemble la plus simple possible et qui ne
posséde que les constructeurs et les opérateurs suivants :
— Constructeur par défaut qui construit un ensemble vide.
— Constructeur a partir d'un vecteur (pour les tests).
— bool ajoute(Objet o) : l'objet o donné est ajouté a l’ensemble s’il n’y est pas, sinon
rien n’est changé.
— bool retire(Objet o) : I'objet 0o donné est retiré de ’ensemble s’il y est, sinon rien
n’est changé
— Objet element() const : renvoie un objet quelconque de l’ensemble si celui-ci n’est
pas vide ; comportement non spécifié si ’ensemble est vide.
Attention ! Il n’est pas précisé que la méthode element est déterministe. Il est possible
que si on I'appelle deux fois, elle donne un élément différent.
— bool estVide() const renvoie true si ’ensemble est I’ensemble vide, false sinon.
— bool contient(Objet o) const : renvoie true si I'objet o est dans I’ensemble, false
sinon.
A partir de ces 7 fonctions dites primitives, on souhaite programmer d’autres constructeurs
et d’autres fonctions plus élaborées, que I'on utilisera finalement pour vérifier une propriété
ensembliste.

Remarque 1 : le fait d’étre obligé de passer par ces 7 primitives impose de programmer
dans un style qui n’est pas trés efficace : par exemple pour calculer le cardinal d’un ensemble,
on doit retirer les éléments un par un de l’ensemble, en incrémentant simultanément un
compteur. De méme, pour réaliser I'union ou lintersection. Un vrai type abstrait sera en
général composé de plus de 7 primitives, pour améliorer les performances.

Remarque 2 : Nous proposons ce jeu restreint de primitives, pour que le TP soit court,
tout en illustrant comment 'utilisation d’un type abstrait permet la répartition des téches :
en aval, une personne peut réaliser les 7 primitives en C+-+ par exemple, tandis qu’en amont,
une autre personne programmera ce TP. L’exploitation conjointe des deux parties réalisées est
ensuite immédiate puisque l'interface entre ces deux parties a été définie par l'explicitation
du type abstrait, i.e. les signatures des constructeurs et des opérateurs du type. Dans une
bibliothéque réaliste, les fonctions d’inclusion, d’égalité, d’union. .. ci-dessous seraient aussi
réalisées dans la classe.

» Exercice 1. (Utilisateur du type Ensemble)

Dans cet exercice, vous devez compléter le fichier Ensemble-main. cpp fourni. Vous ne devez
pas modifier les autres fichiers. Un Makefile vous est aussi fourni, il permet de compiler
Ensemble-main.cpp en tapant simplement la commande make dans le terminal.

1.

16
17
18
19
20
21
22
23
24
25
26
27
30
31
32
33
34
35
36
37
38

162
163
164
165
166
167
168
169

Réaliser une fonction cardinal qui renvoie le cardinal (c’est-a-dire le nombre d’élé-
ments) d’un ensemble passé en paramétre. Pour ceci, on fera une boucle qui retire les
éléments un & un tant que I’ensemble n’est pas vide. Tester cette fonction. Pour les
tests uniquement on pourra considérer que les objets contenus dans les ensembles sont
des entiers.

int cardinal (Ensemble e) {
//
int res = 0;
Objet el;
while (not e.estVide()) {
el = e.element();
e.retire(el);
rest++;
}
return res;
//
}
TEST_CASE("cardinalité") {
CHECK (cardinal (Ensemble{}) == 0);
//
CHECK (cardinal (Ensemble{{1}}) == 1);
CHECK (cardinal (Ensemble{{1,2}}) == 2);
CHECK (cardinal (Ensemble{{1,2,3}}) == 3);
CHECK (cardinal (Ensemble{{1,2,2}}) == 2);
//
}

Ne pas oublier la double accolade lors de ’appel au constructeur a partir d’un vecteur (cf cours
sur les constructeurs).

. Surcharger 'opérateur d’affichage pour les ensembles (on suppose qu’il a déja été sur-

chargé pour les objets). Tester cette fonction dans le main.

ostream &operator<<(ostream &out, Ensemble e) {
//
out <<){) <L 0 7;
while (not e.estVide()){
Objet el;
el = e.element();
e.retire(el);
out << el << ? ?;

170 }

171 out << ’}’ << endl;
172 return out;

173 //

174 %}

3. Reéaliser la fonction inclus qui renvoie true si un premier ensemble d’objets donné est
inclus dans un deuxiéme ensemble d’objets donné, false sinon. Tester cette fonction.

43 bool inclus(Ensemble e, Ensemble f) {
44 //

45 Objet el;

46 while (not e.estVide()) {

47 el = e.element();

48 if (not f.contient(el)){
49 return false;

50 }

51 e.retire(el);

52 }

53 return true;

54 //

55 }

58 TEST_CASE("Inclusion") {

59 CHECK (inclus (Ensemble{},Ensemble{})) ;

60 //

61 CHECK (inclus (Ensemble{{1}},Ensemble{{1}}));

62 CHECK (inclus (Ensemble{{1,2}},Ensemble{{1,2}}));
63

64 CHECK (inclus (Ensemble{},Ensemble{{1}}));

65 CHECK (inclus (Ensemble{},Ensemble{{1,2}}));

66 CHECK (inclus (Ensemble{{1}},Ensemble{{1,2}}));

67

68 CHECK_FALSE(inclus (Ensemble{{1}},Ensemble{}));
69 CHECK_FALSE(inclus (Ensemble{{1,2}},Ensemble{}));
70 CHECK_FALSE(inclus(Ensemble{{1,2}},Ensemble{{1}}));
7/

72}

76 bool operator==(Ensemble e, Ensemble f) {
7 //
78 return inclus(e, f) and inclus(f, e);

79 /7

80
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
120
121
122
123
124
125
126
127
128

}

TEST_CASE("Egalité") {
CHECK (Ensemble{} == Ensemble{});

//
CHECK (Ensemble{{1}} == Ensemble{{1}});
CHECK (Ensemble{{1,2}} == Ensemble{{1,2}});

CHECK_FALSE(Ensemble{} == Ensemble{{1}});
CHECK_FALSE(Ensemble{} == Ensemble{{1,2}});
CHECK_FALSE(Ensemble{{1}} == Ensemble{{1,2}});

CHECK_FALSE(Ensemble{{1}} == Ensemble{});

CHECK_FALSE(Ensemble{{1,2}} == Ensemble{});
CHECK_FALSE(Ensemble{{1,2}} == Ensemble{{1}});

. Realiser la fonction unionEns qui renvoie I'union de deux ensembles donnés. Tester

cette fonction.

Ensemble unionEns(Ensemble e, Ensemble f) {
//
Ensemble res;
Objet el;
while (not e.estVide()) {
el = e.element();
e.retire(el);
res.ajoute(el) ;
}
while (not f.estVide()) {
el = f.element();
f.retire(el);
res.ajoute(el);
}
return res;
//
}
TEST_CASE("Union") {
//
CHECK (unionFns (Ensemble{},Ensemble{}) == Ensemble{});
CHECK (unionEns (Ensemble{{1}},Ensemble{}) == Ensemble{{1}});
CHECK (unionEns (Ensemble{{1}},Fnsemble{{1}}) == Ensemble{{1}});
CHECK (unionEns (Ensemble{{1}},Ensemble{{2}}) == Ensemble{{1,2}});
CHECK (unionEns (Ensemble{{1}},Ensemble{{1,2}}) == Ensemble{{1,2}});

. Reéaliser la fonction interEns qui renvoie l'intersection de deux ensembles donnés.

Tester cette fonction.

133
134
135
136
137
138
139
140
141
142
143
144
145
146
149
150
151
152
153
154
155
156
157

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

Ensemble interEns(Ensemble e, Ensemble f) {
//
Ensemble res;
Objet el;
while (not e.estVide()) {
el = e.element();
e.retire(el);
if (f.contient(el)) {
res.ajoute(el);
}
}
return res;
//
}
TEST_CASE("Intersection") {
//
CHECK (interEns (Ensemble{},Ensemble{}) == Ensemble{});
CHECK (interEns (Ensemble{{1}},Ensemble{}) == Ensemble{});
CHECK (interEns (Ensemble{{1}},Ensemble{{1}}) == Ensemble{{1}});
CHECK (interEns (Ensemble{{1}},Ensemble{{2}}) == Ensemble{});
CHECK (interEns (Ensemble{{1}},Ensemble{{1,2}}) == Ensemble{{1}});

En supposant qu’il existe une fonction Objet random0bj() qui renvoie un objet aléa-
toire, réaliser une fonction randomEns qui crée un ensemble de n éléments, ol n est un
entier positif donné. Tester cette fonction dans le main.

Ensemble randomEns (int n) {
//
Ensemble res;
Objet o;
int i = 0;
while (i <= n) {
o = randomObj() ;
if (res.contient(o) == false) {
res.ajoute(o) ;
i++;
}
}

return res;

8. Principe d’inclusion-exclusion :

202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
230
231

La propriété ensembliste suivante est appelée principe d’inclusion-exclusion : si A, B, C
sont des ensembles, alors

|JAUBUC|=|A|l+ |B|+|C|
—|AnB|-|ANC| - |BNC|
+ANnBNC|

ot |A| représente le cardinal (nombre d’éléments) de A. Utile par exemple en probabi-
lité, on peut la généraliser & un nombre quelconque d’ensembles.

Dans la fonction inclsExcls, on vérifiera expérimentalement cette propriété en la
testant sur des ensembles construits de fagon aléatoire et dont le cardinal est lui-méme
aléatoire (compris entre 8 et 12). Indication : on pourra utiliser la fonction rand() de
C++, qui ne prend pas de paramétre et renvoie un entier aléatoire (potentiellement trés
grand). Pour ceci, il faut tirer au hasard un nombre entre 0 et 12 — 8 = 4 inclus et lui
ajouter 8. Pour avoir un nombre entre 0 et 4 on peut prendre le reste de la division de
rand () par 5. Des détails sur le tirage aléatoire vous ont été donnés a la fin du TP2.

Le cas de test associé a cette fonction consiste & lancer plusieurs fois la fonction et
vérifier qu’elle donne bien toujours true.

bool inclsExcls(){
//
Ensemble A, B, C;
int n1, n2;

nl = (rand() % 5)+8;
A = randomEns(nl) ;
nl = (rand() % 5)+8;
B = randomEns(nl);
nl = (rand() % 5)+8;
C = randomEns(nl);

nl = cardinal(unionEns(unionEns(A,B), C));
n2 = cardinal(A) + cardinal(B) + cardinal(C);
n2 = n2 - cardinal(interEns(A,B));
n2 = n2 - cardinal(interEns(A,C));
n2 = n2 - cardinal (interEns(B,C));
n2 = n2 + cardinal (interEns(interEns(A,B), C));
if (n1 == n2) {
return true;
} else {
return false;
+
//
//
}
TEST_CASE("Inclusion exclusion") {
// On lance 10 fois la fonction et on vérifie qu’elle renvoie toujours true

232
233
234
235

for (int i=0; i<10; i++){
CHECK (inclsExcls());

» Exercice 2. (Mise en place pour 'implémentation du type Ensemble)

On s’intéresse maintenant a la réalisation de ce type abstrait. Plusieurs types concrets
peuvent étre utilisés/choisis. On supposera que les objets sont des entiers entre 0 et une
constante MaxTaille.

Les fichiers Ensemble.hpp et Ensemble.cpp sont en fait des liens vers les fichiers
EnsembleProf . hpp et EnsembleProf . cpp qui contiennent 'implémentation de référence. Nous
allons remplacer ces derniers par les fichiers MonEnsemble . hpp et MonEnsemble. cpp que vous
devrez compléter dans la suite de ce TP afin d’obtenir votre propre implémentation du type
abstrait Ensemble.

Parfois on voudra que Ensemble.hpp corresponde & EnsembleProf .hpp et parfois on vou-
dra qu’il corresponde a4 MonEnsemble.hpp (cela vous permettra de comparer les résultats que
vous obtenez avec votre implémentation a ceux qu’on est censé obtenir). Pour indiquer a quel
fichier on veut que Ensemble.hpp corresponde, on utilise le lien suivant :

— Ensemble.hpp vers EnsembleProf . hpp
ce qui veux dire que si I'on essaye d’accéder au contenu du fichier Ensemble.hpp, on accédera
en fait au fichier EnsembleProf .hpp. De méme pour les .cpp correspondants. Pour faire ces
liens, on a exécuté les commandes :

In -s EnsembleProf.hpp Ensemble.hpp
1n -s EnsembleProf.cpp Ensemble.cpp

La commande «1n -s» agit comme une copie.

1. On va maintenant basculer sur votre implémentation a vous (MonEnsemble.hpp). Pour
cela, supprimer les anciens liens et en faire de nouveaux avec les commandes suivantes :

make clean

rm -f Ensemble.hpp Ensemble.cpp
In -s MonEnsemble.hpp Ensemble.hpp
In -s MonEnsemble.cpp Ensemble.cpp

2. Faire make puis exécuter. Vous devez constater que le résultat n’est plus celui attendu,
puisque vous n’avez pas encore écrit votre implémentation (il est méme possible que
vous ayez besoin de taper Ctrl C pour pouvoir interrompre le programme et reprendre
la main sur le terminal). Le but de la suite du TP est de faire votre propre implémen-
tation dans les fichiers fournis MonEnsemble. On retrouvera alors le résultat attendu
en exécutant le programme.

Dans les exercices suivants, on demande de réaliser le type Ensemble avec un type concret
particulier.

Vous devez de plus bien tester a chaque fois toutes les fonctions écrites, en

complétant le fichier Ensemble-test.cpp fourni et en le compilant et exécutant a
Paide du Makefile fourni.

10

44
45
46

O© 00O Ul W+

» Exercice 3. (Implémentation par tableau de booléens)

Dans cette premiére implémentation, on ne stocke que des ensembles d’entiers qui sont
entre 0 et MaxTaille — 1. On peut donc utiliser comme type concret un tableau T' de booléens
ou Ti] vaut true si l'entier ¢ est dans l'ensemble et false sinon. Réalisez cette premiére
implémentation dans les fichiers MonEnsemble.hpp et MonEnsemble. cpp.

Dans MonEnsemble.hpp, ajouter dans la structure :

private:
std: :array<bool, MaxTaille> tab_;

Dans MonEnsemble. cpp
/* Implantation par tableau de booléens */

#include <cassert>
#include <vector>
#include <iostream>

using namespace std;
#include "EnsembleAbstrl.hpp"

// BEGIN: constructeurs
Ensemble: :Ensemble() : tab_{} {
for (int i=0; i < MaxTaille; i++) {
tab_[i] = false;
}
}

Ensemble: :Ensemble (vector<Objet> v): tab_{} {
for (int i : v) {
tab_[i] = true;
}
}
// END: constructeurs

// BEGIN: ajoute

bool Ensemble::ajoute(Objet o) {
if (tab_[o]) return false;
tab_[o] = true;
return true;

}

// END: ajoute

// BEGIN: retire
bool Ensemble::retire(Objet o) {
// Cherche 1’objet dans l’ensemble
if (not tab_[o]) {
return false;
}
tab_[o] = false;

11

40
41
42
43
44
45
46
47
48
49
50
51
52
93
o4
95
o6
o7
58
59
60
61
62
63
64
65
66
67
68
69

44
45
46

return true;

}
// END: retire

// BEGIN: element
Objet Ensemble::element() const {
for (int i=0; i < MaxTaille; i++)
if (tab_[i]) {
return i;

X
throw std::runtime_error("Objet sur ensemble vide");

}
// END: element

// BEGIN: estVide
bool Ensemble::estVide() const {
for (int i=0; i < MaxTaille; i++){
if (tab_[i]) {
return false;
}
}
return true;

}
// END: estlVide

// BEGIN: contient
bool Ensemble::contient(Objet o) const {
return tab_[o];

}
// END: contient

» Exercice 4. (Implémentation par vecteur d’objets)

1. Avant de passer a une nouvelle réalisation, il faut créer deux nouveaux fichiers :
MonEnsemble2.hpp et MonEnsemble2.cpp puis refaire les liens depuis Ensemble.hpp
et Ensemble.cpp comme précédement (4 commandes).

2. N’oubliez pas d’ajouter vos nouveaux fichiers avec git add.

3. Dans cette deuxiéme réalisation on utilise comme type concret une classe contenant
un vecteur d’objets. Implémentez-la.

Dans MonEnsemble2.hpp, mettre dans la structure :

private:
std: :vector<Objet> tab_;

Dans MonEnsemble2. cpp

12

© 00 JO Ul Wi+

/* Implantation par vecteur d objets */

#include <cassert>
#include <vector>
#include <iostream>

using namespace std;
#include "EnsembleAbstr2.hpp"

// BEGIN: constructeurs
Ensemble: :Ensemble() : tab_{} {}

Ensemble: :Ensemble(vector<Objet> v): tab_{} {
for (int i : v) {
if (not contient(i)){
tab_.push_back(i);
}
}
}

// END: constructeurs

// BEGIN: ajoute
bool Ensemble::ajoute(Objet o) {
if (not contient(o)){
tab_.push_back(o) ;
return true;
}
return false;
}
// END: ajoute

// BEGIN: retire
bool Ensemble: :retire(Objet o) {
// Cherche 1’objet dans 1l’ensemble
for (int i = 0; i < int(tab_.size()); i++)
if (tab_[i] == o) {
// Echange avec le dernier et supprime ce dernier
// (ou pourrait échanger a la main plutdt que d’utiliser swap)
std: :swap(tab_[i], tab_.back());
tab_.pop_back() ;
return true;
}
return false;
}
// END: retire

// BEGIN: element

Objet Ensemble::element() const {
return tab_[0];

}

// END: element

// BEGIN: estVide
bool Ensemble::estVide() const {

13

56
o7
58
59
60
61
62
63
64
65
66
67
68

return tab_.size() == 0;

}
// END: estVide

// BEGIN: contient
bool Ensemble::contient(Objet o) const {
for (int i = 0; i < int(tab_.size()); i++)
if (tab_[i] == o) {
return true;

3

return false;

}
// END: contient

» Exercice 5. (Implémentation par vecteur d’objets trié)

1. Comme dans ’exercice précédent, créez de nouveaux fichiers, faites les liens et n’oubliez
pas git add.

2. On utilise comme type concret une structure contenant un vecteur d’entiers triés.
Par rapport au tableau non trié, le changement est que lorsqu’on cherche si un entier
appartient au tableau (ou qu’on veut I’y ajouter), dés que dans la boucle while I’élément
atteint est plus grand que o, on sait qu’il n’est pas dans le tableau (ou que c’est 1a qu'il
faut ajouter).

3. S’il vous reste du temps, vous pouvez optimiser les recherches grace a la dichotomie.
Voir https://fr.wikipedia.org/wiki/Recherche_dichotomiquel

» Exercice 6. (Bilan) Comparer les différentes implémentations. Quels sont les avantages
et inconvénients de chacune ?

14

https://fr.wikipedia.org/wiki/Recherche_dichotomique

