
Correction TP de programmation no9
Cours de programmation modulaire

—Licence MI/IM/MNSI - Info 3—

Encapsulation et types abstraits
Dans cette séance de travaux pratiques, nous travaillons autour d’un type abstrait
Ensemble, défini par les méthodes ci-dessous :

Ensemble (); // Constructeur par défaut
Ensemble (vector<Objet> v); // Constructeur a partir d’un vecteur
bool ajoute(Objet o); // Ajoute un objet à un ensemble
bool retire(Objet o); // Retire un objet à un ensemble
Objet element() const; // Retourne un objet d’un ensemble
bool estVide() const; // Teste si l’ensemble est vide
bool contient(Objet o) const; // Teste si un objet est dans l’ensemble

On va travailler en deux temps :
— Dans un premier temps, on se place du point de vue des utilisateurs du type

et on va faire des calculs sur les ensembles ;
— Dans un deuxième temps, on implémentera le type Ensemble.

Le TP n’est pas à finir pour cette semaine : les exercices 2 à 5 seront repris
la semaine prochaine en TP. Par contre l’exercice 1 doit impérativement
être fini cettte semaine. Si vous ne l’avez pas fini en TP, il faudra le finir
à la maison avant la prochaine séance de TP.

Conventions de nommage

Quand on commence à écrire des programmes avec quelques dizaines de fonctions, pour
éviter d’avoir en permanence à se poser des questions comme « Quel est le nom de la fonction
qui ... » ou bien « Dans quel ordre dois-je passer les paramètres à la fonction ... », il est utile
de suivre quelques conventions. Toutes les entreprises de développement de logiciels, tous les
projets de logiciels sérieux fixent ainsi un certain nombre de règles concernant l’indentation
du code, le choix des noms des fonctions et l’ordre des paramètres.

Les choix faits dans la convention suivante sont pour la plupart arbitraires, ils sont là
seulement pour éviter des hésitations comme par exemple : dois-je écrire «EstVide» ou bien
«estVide» où encore « est_vide » ? Rien ne vous interdit de vous en écarter si elles ne vous
plaisent pas, mais ne pas suivre de conventions est un bon moyen de perdre bêtement du
temps. Conventions choisies dans ce cours :

• Les noms des types et classes commencent par une majuscule (par exemple Ensemble).
• On utilise la convention dite camelCase pour les noms de fonctions et de méthodes

(les mots accolés et commençant par une majuscule). Par exemple estVide.

Enfin, Il y a deux sortes de méthodes qui font des calculs :
1. soit on modifie l’objet ; dans ce cas le nom de la méthode sera un verbe conjugué

qui décrit l’action que l’on fait sur l’objet. Par exemple ajoute(x) ajoute x à l’objet.
2. soit on retourne un résultat ; dans ce cas le nom de la méthode sera un nom qui

décrit le résultat de l’action. Par exemple union(a, b) retourne l’union.

1

Les ensembles en mathématiques

Lors du cours nous avons vu le type Sac qui est aussi appelé «multi-ensemble», car un
élément peut apparaître plusieurs fois. Au contraire, dans un ensemble un élément ne peut
pas être dupliqué. Les mathématiciens utilisent les notions suivantes sur les ensembles :

— Création d’un ensemble en extension, à partir de la liste des éléments. L’ordre
n’importe pas et l’on supprime les doublons. Ainsi les trois ensembles suivants sont
tous égaux :

{1, 2, 4, 7} {2, 7, 1, 4} {4, 2, 7, 7, 1, 4}

mais ils sont différents de {1, 3, 2, 7, 4} et de {1, 3, 2, 7}.

— Appartenance à un ensemble. L’expression e ∈ E vaut vrai ou faux selon que e
apparaît dans E ou non.

2 ∈ {2, 7, 1, 4} est vrai 3 ∈ {2, 7, 1, 4} est faux

— Inclusion de deux ensembles. L’expression E ⊂ F vaut vrai si tous les éléments de
E apparaissent dans F .

{2, 4} ⊂ {2, 7, 1, 4} est vrai {2, 5} ⊂ {2, 7, 1, 4} est faux

— Union de deux ensembles : E ∪F . C’est l’ensemble des éléments qui sont soit dans
E soit dans F . Bien sûr un élément qui apparaît à la fois dans E et F n’apparaît
qu’une fois dans E ∪ F .

{1, 2, 4, 7} ∪ {2, 3, 4, 8} = {1, 2, 3, 4, 7, 8}

— Intersection de deux ensembles : E ∩ F . C’est l’ensemble des éléments qui sont à
la fois dans E et dans F .

{1, 2, 4, 7} ∩ {2, 3, 4, 8} = {2, 4}

2

Le type ensemble

Dans le premier exercice, on suppose déjà réalisé le type abstrait Ensemble. Une implanta-
tion est fournie dans deux fichiers Ensemble.hpp et Ensemble.cpp. Il n’est pas utile que vous
compreniez le contenu du fichier Ensemble.cpp qui utilise le type ensemble de la bibliothèque
standard du C++. En revanche, vous pouvez garder à portée de main le fichier Ensemble.hpp
qui décrit en détail l’interface.

Les éléments d’un Ensemble sont de type Objet supposé lui aussi défini par ailleurs. Par
exemple, le type Objet pourrait être le type int, ou une structure contenant deux entiers ou
tout autre type.

Nous utilisons une version du type abstrait Ensemble la plus simple possible et qui ne
possède que les constructeurs et les opérateurs suivants :

— Constructeur par défaut qui construit un ensemble vide.
— Constructeur à partir d’un vecteur (pour les tests).
— bool ajoute(Objet o) : l’objet o donné est ajouté à l’ensemble s’il n’y est pas, sinon

rien n’est changé.
— bool retire(Objet o) : l’objet o donné est retiré de l’ensemble s’il y est, sinon rien

n’est changé
— Objet element() const : renvoie un objet quelconque de l’ensemble si celui-ci n’est

pas vide ; comportement non spécifié si l’ensemble est vide.
Attention ! Il n’est pas précisé que la méthode element est déterministe. Il est possible
que si on l’appelle deux fois, elle donne un élément différent.

— bool estVide() const renvoie true si l’ensemble est l’ensemble vide, false sinon.
— bool contient(Objet o) const : renvoie true si l’objet o est dans l’ensemble, false

sinon.
À partir de ces 7 fonctions dites primitives, on souhaite programmer d’autres constructeurs

et d’autres fonctions plus élaborées, que l’on utilisera finalement pour vérifier une propriété
ensembliste.

Remarque 1 : le fait d’être obligé de passer par ces 7 primitives impose de programmer
dans un style qui n’est pas très efficace : par exemple pour calculer le cardinal d’un ensemble,
on doit retirer les éléments un par un de l’ensemble, en incrémentant simultanément un
compteur. De même, pour réaliser l’union ou l’intersection. Un vrai type abstrait sera en
général composé de plus de 7 primitives, pour améliorer les performances.

Remarque 2 : Nous proposons ce jeu restreint de primitives, pour que le TP soit court,
tout en illustrant comment l’utilisation d’un type abstrait permet la répartition des tâches :
en aval, une personne peut réaliser les 7 primitives en C++ par exemple, tandis qu’en amont,
une autre personne programmera ce TP. L’exploitation conjointe des deux parties réalisées est
ensuite immédiate puisque l’interface entre ces deux parties a été définie par l’explicitation
du type abstrait, i.e. les signatures des constructeurs et des opérateurs du type. Dans une
bibliothèque réaliste, les fonctions d’inclusion, d’égalité, d’union. . . ci-dessous seraient aussi
réalisées dans la classe.

3

x Exercice 1. (Utilisateur du type Ensemble)
Dans cet exercice, vous devez compléter le fichier Ensemble-main.cpp fourni. Vous ne devez
pas modifier les autres fichiers. Un Makefile vous est aussi fourni, il permet de compiler
Ensemble-main.cpp en tapant simplement la commande make dans le terminal.

1. Réaliser une fonction cardinal qui renvoie le cardinal (c’est-à-dire le nombre d’élé-
ments) d’un ensemble passé en paramètre. Pour ceci, on fera une boucle qui retire les
éléments un à un tant que l’ensemble n’est pas vide. Tester cette fonction. Pour les
tests uniquement on pourra considérer que les objets contenus dans les ensembles sont
des entiers.

✁

16 int cardinal(Ensemble e) {
17 //
18 int res = 0;
19 Objet el;
20 while (not e.estVide()) {
21 el = e.element();
22 e.retire(el);
23 res++;
24 }
25 return res;
26 //
27 }
30 TEST_CASE("cardinalité") {
31 CHECK(cardinal(Ensemble{}) == 0);
32 //
33 CHECK(cardinal(Ensemble{{1}}) == 1);
34 CHECK(cardinal(Ensemble{{1,2}}) == 2);
35 CHECK(cardinal(Ensemble{{1,2,3}}) == 3);
36 CHECK(cardinal(Ensemble{{1,2,2}}) == 2);
37 //
38 }

Ne pas oublier la double accolade lors de l’appel au constructeur à partir d’un vecteur (cf cours
sur les constructeurs).

✁

2. Surcharger l’opérateur d’affichage pour les ensembles (on suppose qu’il a déjà été sur-
chargé pour les objets). Tester cette fonction dans le main.

✁

162 ostream &operator<<(ostream &out, Ensemble e) {
163 //
164 out << ’{’ << ’ ’;
165 while (not e.estVide()){
166 Objet el;
167 el = e.element();
168 e.retire(el);
169 out << el << ’ ’;

4

170 }
171 out << ’}’ << endl;
172 return out;
173 //
174 }

✁

3. Réaliser la fonction inclus qui renvoie true si un premier ensemble d’objets donné est
inclus dans un deuxième ensemble d’objets donné, false sinon. Tester cette fonction.

✁

43 bool inclus(Ensemble e, Ensemble f) {
44 //
45 Objet el;
46 while (not e.estVide()) {
47 el = e.element();
48 if (not f.contient(el)){
49 return false;
50 }
51 e.retire(el);
52 }
53 return true;
54 //
55 }
58 TEST_CASE("Inclusion") {
59 CHECK(inclus(Ensemble{},Ensemble{}));
60 //
61 CHECK(inclus(Ensemble{{1}},Ensemble{{1}}));
62 CHECK(inclus(Ensemble{{1,2}},Ensemble{{1,2}}));
63
64 CHECK(inclus(Ensemble{},Ensemble{{1}}));
65 CHECK(inclus(Ensemble{},Ensemble{{1,2}}));
66 CHECK(inclus(Ensemble{{1}},Ensemble{{1,2}}));
67
68 CHECK_FALSE(inclus(Ensemble{{1}},Ensemble{}));
69 CHECK_FALSE(inclus(Ensemble{{1,2}},Ensemble{}));
70 CHECK_FALSE(inclus(Ensemble{{1,2}},Ensemble{{1}}));
71 //
72 }

✁

4. Surcharger l’opérateur d’égalité pour les ensembles. Tester cette fonction.

✁

76 bool operator==(Ensemble e, Ensemble f) {
77 //
78 return inclus(e, f) and inclus(f, e);
79 //

5

80 }
83 TEST_CASE("Egalité") {
84 CHECK(Ensemble{} == Ensemble{});
85 //
86 CHECK(Ensemble{{1}} == Ensemble{{1}});
87 CHECK(Ensemble{{1,2}} == Ensemble{{1,2}});
88
89 CHECK_FALSE(Ensemble{} == Ensemble{{1}});
90 CHECK_FALSE(Ensemble{} == Ensemble{{1,2}});
91 CHECK_FALSE(Ensemble{{1}} == Ensemble{{1,2}});
92
93 CHECK_FALSE(Ensemble{{1}} == Ensemble{});
94 CHECK_FALSE(Ensemble{{1,2}} == Ensemble{});
95 CHECK_FALSE(Ensemble{{1,2}} == Ensemble{{1}});
96 //
97 }

✁

5. Réaliser la fonction unionEns qui renvoie l’union de deux ensembles donnés. Tester
cette fonction.

✁
101 Ensemble unionEns(Ensemble e, Ensemble f) {
102 //
103 Ensemble res;
104 Objet el;
105 while (not e.estVide()) {
106 el = e.element();
107 e.retire(el);
108 res.ajoute(el);
109 }
110 while (not f.estVide()) {
111 el = f.element();
112 f.retire(el);
113 res.ajoute(el);
114 }
115 return res;
116 //
117 }
120 TEST_CASE("Union") {
121 //
122 CHECK(unionEns(Ensemble{},Ensemble{}) == Ensemble{});
123 CHECK(unionEns(Ensemble{{1}},Ensemble{}) == Ensemble{{1}});
124 CHECK(unionEns(Ensemble{{1}},Ensemble{{1}}) == Ensemble{{1}});
125 CHECK(unionEns(Ensemble{{1}},Ensemble{{2}}) == Ensemble{{1,2}});
126 CHECK(unionEns(Ensemble{{1}},Ensemble{{1,2}}) == Ensemble{{1,2}});
127 //
128 }

✁

6. Réaliser la fonction interEns qui renvoie l’intersection de deux ensembles donnés.
Tester cette fonction.

6

✁

133 Ensemble interEns(Ensemble e, Ensemble f) {
134 //
135 Ensemble res;
136 Objet el;
137 while (not e.estVide()) {
138 el = e.element();
139 e.retire(el);
140 if (f.contient(el)) {
141 res.ajoute(el);
142 }
143 }
144 return res;
145 //
146 }
149 TEST_CASE("Intersection") {
150 //
151 CHECK(interEns(Ensemble{},Ensemble{}) == Ensemble{});
152 CHECK(interEns(Ensemble{{1}},Ensemble{}) == Ensemble{});
153 CHECK(interEns(Ensemble{{1}},Ensemble{{1}}) == Ensemble{{1}});
154 CHECK(interEns(Ensemble{{1}},Ensemble{{2}}) == Ensemble{});
155 CHECK(interEns(Ensemble{{1}},Ensemble{{1,2}}) == Ensemble{{1}});
156 //
157 }

✁

7. En supposant qu’il existe une fonction Objet randomObj() qui renvoie un objet aléa-
toire, réaliser une fonction randomEns qui crée un ensemble de n éléments, où n est un
entier positif donné. Tester cette fonction dans le main.

✁

184 Ensemble randomEns (int n) {
185 //
186 Ensemble res;
187 Objet o;
188 int i = 0;
189 while (i <= n) {
190 o = randomObj();
191 if (res.contient(o) == false) {
192 res.ajoute(o);
193 i++;
194 }
195 }
196 return res;
197 //
198 }

✁

7

8. Principe d’inclusion-exclusion :
La propriété ensembliste suivante est appelée principe d’inclusion-exclusion : si A,B,C
sont des ensembles, alors

|A ∪B ∪ C| = |A|+ |B|+ |C|
−|A ∩B| − |A ∩ C| − |B ∩ C|
+|A ∩B ∩ C|

où |A| représente le cardinal (nombre d’éléments) de A. Utile par exemple en probabi-
lité, on peut la généraliser à un nombre quelconque d’ensembles.

Dans la fonction inclsExcls, on vérifiera expérimentalement cette propriété en la
testant sur des ensembles construits de façon aléatoire et dont le cardinal est lui-même
aléatoire (compris entre 8 et 12). Indication : on pourra utiliser la fonction rand() de
C++, qui ne prend pas de paramètre et renvoie un entier aléatoire (potentiellement très
grand). Pour ceci, il faut tirer au hasard un nombre entre 0 et 12− 8 = 4 inclus et lui
ajouter 8. Pour avoir un nombre entre 0 et 4 on peut prendre le reste de la division de
rand() par 5. Des détails sur le tirage aléatoire vous ont été donnés à la fin du TP2.

Le cas de test associé à cette fonction consiste à lancer plusieurs fois la fonction et
vérifier qu’elle donne bien toujours true.

✁

202 bool inclsExcls(){
203 //
204 Ensemble A, B, C;
205 int n1, n2;
206
207 n1 = (rand() % 5)+8;
208 A = randomEns(n1);
209 n1 = (rand() % 5)+8;
210 B = randomEns(n1);
211 n1 = (rand() % 5)+8;
212 C = randomEns(n1);
213
214 n1 = cardinal(unionEns(unionEns(A,B), C));
215 n2 = cardinal(A) + cardinal(B) + cardinal(C);
216 n2 = n2 - cardinal(interEns(A,B));
217 n2 = n2 - cardinal(interEns(A,C));
218 n2 = n2 - cardinal(interEns(B,C));
219 n2 = n2 + cardinal(interEns(interEns(A,B), C));
220 if (n1 == n2) {
221 return true;
222 } else {
223 return false;
224 }
225 //
226 //
227 }
230 TEST_CASE("Inclusion exclusion") {
231 // On lance 10 fois la fonction et on vérifie qu’elle renvoie toujours true

8

232 for (int i=0; i<10; i++){
233 CHECK(inclsExcls());
234 }
235 }

✁

9

x Exercice 2. (Mise en place pour l’implémentation du type Ensemble)
On s’intéresse maintenant à la réalisation de ce type abstrait. Plusieurs types concrets

peuvent être utilisés/choisis. On supposera que les objets sont des entiers entre 0 et une
constante MaxTaille.

Les fichiers Ensemble.hpp et Ensemble.cpp sont en fait des liens vers les fichiers
EnsembleProf.hpp et EnsembleProf.cpp qui contiennent l’implémentation de référence. Nous
allons remplacer ces derniers par les fichiers MonEnsemble.hpp et MonEnsemble.cpp que vous
devrez compléter dans la suite de ce TP afin d’obtenir votre propre implémentation du type
abstrait Ensemble.

Parfois on voudra que Ensemble.hpp corresponde à EnsembleProf.hpp et parfois on vou-
dra qu’il corresponde à MonEnsemble.hpp (cela vous permettra de comparer les résultats que
vous obtenez avec votre implémentation à ceux qu’on est censé obtenir). Pour indiquer à quel
fichier on veut que Ensemble.hpp corresponde, on utilise le lien suivant :

— Ensemble.hpp vers EnsembleProf.hpp
ce qui veux dire que si l’on essaye d’accéder au contenu du fichier Ensemble.hpp, on accédera
en fait au fichier EnsembleProf.hpp. De même pour les .cpp correspondants. Pour faire ces
liens, on a exécuté les commandes :

ln -s EnsembleProf.hpp Ensemble.hpp
ln -s EnsembleProf.cpp Ensemble.cpp

La commande «ln -s» agit comme une copie.

1. On va maintenant basculer sur votre implémentation à vous (MonEnsemble.hpp). Pour
cela, supprimer les anciens liens et en faire de nouveaux avec les commandes suivantes :

make clean
rm -f Ensemble.hpp Ensemble.cpp
ln -s MonEnsemble.hpp Ensemble.hpp
ln -s MonEnsemble.cpp Ensemble.cpp

2. Faire make puis exécuter. Vous devez constater que le résultat n’est plus celui attendu,
puisque vous n’avez pas encore écrit votre implémentation (il est même possible que
vous ayez besoin de taper Ctrl C pour pouvoir interrompre le programme et reprendre
la main sur le terminal). Le but de la suite du TP est de faire votre propre implémen-
tation dans les fichiers fournis MonEnsemble. On retrouvera alors le résultat attendu
en exécutant le programme.

Dans les exercices suivants, on demande de réaliser le type Ensemble avec un type concret
particulier.

Vous devez de plus bien tester à chaque fois toutes les fonctions écrites, en
complétant le fichier Ensemble-test.cpp fourni et en le compilant et exécutant à
l’aide du Makefile fourni.

10

x Exercice 3. (Implémentation par tableau de booléens)
Dans cette première implémentation, on ne stocke que des ensembles d’entiers qui sont

entre 0 et MaxTaille−1. On peut donc utiliser comme type concret un tableau T de booléens
où T [i] vaut true si l’entier i est dans l’ensemble et false sinon. Réalisez cette première
implémentation dans les fichiers MonEnsemble.hpp et MonEnsemble.cpp.

✁
Dans MonEnsemble.hpp, ajouter dans la structure :

44 private:
45
46 std::array<bool, MaxTaille> tab_;

Dans MonEnsemble.cpp

1 /* Implantation par tableau de booléens */
2
3 #include <cassert>
4 #include <vector>
5 #include <iostream>
6
7 using namespace std;
8
9 #include "EnsembleAbstr1.hpp"

10
11 // BEGIN: constructeurs
12 Ensemble::Ensemble() : tab_{} {
13 for (int i=0; i < MaxTaille; i++) {
14 tab_[i] = false;
15 }
16 }
17
18 Ensemble::Ensemble(vector<Objet> v): tab_{} {
19 for (int i : v) {
20 tab_[i] = true;
21 }
22 }
23 // END: constructeurs
24
25 // BEGIN: ajoute
26 bool Ensemble::ajoute(Objet o) {
27 if (tab_[o]) return false;
28 tab_[o] = true;
29 return true;
30 }
31 // END: ajoute
32
33 // BEGIN: retire
34 bool Ensemble::retire(Objet o) {
35 // Cherche l’objet dans l’ensemble
36 if (not tab_[o]) {
37 return false;
38 }
39 tab_[o] = false;

11

40 return true;
41 }
42 // END: retire
43
44 // BEGIN: element
45 Objet Ensemble::element() const {
46 for (int i=0; i < MaxTaille; i++)
47 if (tab_[i]) {
48 return i;
49 }
50 throw std::runtime_error("Objet sur ensemble vide");
51 }
52 // END: element
53
54 // BEGIN: estVide
55 bool Ensemble::estVide() const {
56 for (int i=0; i < MaxTaille; i++){
57 if (tab_[i]) {
58 return false;
59 }
60 }
61 return true;
62 }
63 // END: estVide
64
65 // BEGIN: contient
66 bool Ensemble::contient(Objet o) const {
67 return tab_[o];
68 }
69 // END: contient

✁

x Exercice 4. (Implémentation par vecteur d’objets)

1. Avant de passer à une nouvelle réalisation, il faut créer deux nouveaux fichiers :
MonEnsemble2.hpp et MonEnsemble2.cpp puis refaire les liens depuis Ensemble.hpp
et Ensemble.cpp comme précédement (4 commandes).

2. N’oubliez pas d’ajouter vos nouveaux fichiers avec git add.

3. Dans cette deuxième réalisation on utilise comme type concret une classe contenant
un vecteur d’objets. Implémentez-là.

✁
Dans MonEnsemble2.hpp, mettre dans la structure :

44 private:
45
46 std::vector<Objet> tab_;

Dans MonEnsemble2.cpp

12

1 /* Implantation par vecteur d objets */
2
3 #include <cassert>
4 #include <vector>
5 #include <iostream>
6
7 using namespace std;
8
9 #include "EnsembleAbstr2.hpp"

10
11 // BEGIN: constructeurs
12 Ensemble::Ensemble() : tab_{} {}
13
14 Ensemble::Ensemble(vector<Objet> v): tab_{} {
15 for (int i : v) {
16 if (not contient(i)){
17 tab_.push_back(i);
18 }
19 }
20 }
21 // END: constructeurs
22
23 // BEGIN: ajoute
24 bool Ensemble::ajoute(Objet o) {
25 if (not contient(o)){
26 tab_.push_back(o);
27 return true;
28 }
29 return false;
30 }
31 // END: ajoute
32
33 // BEGIN: retire
34 bool Ensemble::retire(Objet o) {
35 // Cherche l’objet dans l’ensemble
36 for (int i = 0; i < int(tab_.size()); i++)
37 if (tab_[i] == o) {
38 // Echange avec le dernier et supprime ce dernier
39 // (ou pourrait échanger à la main plutôt que d’utiliser swap)
40 std::swap(tab_[i], tab_.back());
41 tab_.pop_back();
42 return true;
43 }
44 return false;
45 }
46 // END: retire
47
48 // BEGIN: element
49 Objet Ensemble::element() const {
50 return tab_[0];
51 }
52 // END: element
53
54 // BEGIN: estVide
55 bool Ensemble::estVide() const {

13

56 return tab_.size() == 0;
57 }
58 // END: estVide
59
60 // BEGIN: contient
61 bool Ensemble::contient(Objet o) const {
62 for (int i = 0; i < int(tab_.size()); i++)
63 if (tab_[i] == o) {
64 return true;
65 }
66 return false;
67 }
68 // END: contient

✁

x Exercice 5. (Implémentation par vecteur d’objets trié)

1. Comme dans l’exercice précédent, créez de nouveaux fichiers, faites les liens et n’oubliez
pas git add.

2. On utilise comme type concret une structure contenant un vecteur d’entiers triés.
Par rapport au tableau non trié, le changement est que lorsqu’on cherche si un entier
appartient au tableau (ou qu’on veut l’y ajouter), dès que dans la boucle while l’élément
atteint est plus grand que o, on sait qu’il n’est pas dans le tableau (ou que c’est là qu’il
faut l’ajouter).

3. S’il vous reste du temps, vous pouvez optimiser les recherches grâce à la dichotomie.
Voir https://fr.wikipedia.org/wiki/Recherche_dichotomique.

x Exercice 6. (Bilan) Comparer les différentes implémentations. Quels sont les avantages
et inconvénients de chacune ?

14

https://fr.wikipedia.org/wiki/Recherche_dichotomique

