
1 de 27

Machine Checked
Proofs and Programs

in Algebraic Combinatorics

Florent Hivert

LISN / LMF / FRESCO project / Université Paris-saclay / CNRS / INRIA

CPP’25, Denver, January 2025

2 de 27

Algebraic Combinatorics

Going back and forth between
algebraic identities
algorithms and data-structure

Today:
a Coq/Rocq+Mathematical Components based
library about symmetric polynomials and
characters formulas for the symmetric groups.
flagship result: Littlewood-Richardson rule

2 de 27

Algebraic Combinatorics

Going back and forth between
algebraic identities
algorithms and data-structure

Today:
a Coq/Rocq+Mathematical Components based
library about symmetric polynomials and
characters formulas for the symmetric groups.
flagship result: Littlewood-Richardson rule

3 de 27

Algebraic Combinatorics

Going back and forth between
algebraic identities
algorithms and data-structure

The Littlewood-Richardson rule:
proving a product rule of symmetric polynomials
executing symbolically the Robinson-Schensted
algorithm
on the concatenation of two words

3 de 27

Algebraic Combinatorics

Going back and forth between
algebraic identities
algorithms and data-structure

The Littlewood-Richardson rule:
proving a product rule of symmetric polynomials
executing symbolically the Robinson-Schensted
algorithm
on the concatenation of two words

4 de 27

https://github.com/

math-comp/Coq-Combi

35kLoC, 56 files.

algebra
combinatorics
side results
support

CcpoMisc

Qmeasure

combclass

tools

congr

permuted

vectNK

ordtype

unitriginv

Dyckword

bintree

Yamanouchi

partition

lattice

composition

subseq

fibered_set

multinomialsorted

cycles

skewpart

skewtab

stdtab

std

permcomp

tableau

Erdos_Szekeres

Greene_inv

Frobenius_ident

hookSchensted

Greene

plactic ordcast

Yam_plact

stdplact

extract

implem

freeSchur

shuffle

Schur_mpoly

therule

Cauchy

homogsym

MurnaghanNakayama

Schur_altdef

antisym

presentSn

sympoly

permcent

Frobenius_char

reprSn

towerSn

cycletype

weak_order

https://github.com/math-comp/Coq-Combi
https://github.com/math-comp/Coq-Combi

Motivation: Symmetric Polynomials and applications 5 de 27

Symmetric Polynomials

n-variables : X := {x0, x1, . . . xn−1}.
polynomials in X : C[X] = C[x0, x1, . . . , xn−1]; ex: 3x3

0x2 + 5x1x
4
2 .

Definition (Symmetric polynomial)

A polynomial is symmetric if it is invariant under any permutation
of the variables: for all σ ∈ Sn,

P(x0, x1, . . . , xn−1) = P(xσ(0), xσ(1), . . . , xσ(n−1))

P(a, b, c) = a2b + a2c + b2c + ab2 + ac2 + bc2

Q(a, b, c) = 5abc + 3a2bc + 3ab2c + 3abc2

Motivation: Symmetric Polynomials and applications 6 de 27

Integer Partitions

different ways of decomposing an integer n ∈ N as a sum:

12 = 12 = 11 + 1 = 10 + 2 = 10 + 1 + 1 + 1 = · · · = 7 + 5
= 5 + 3 + 2 + 2 = 4 + 3 + 3 + 1 + 1 (77 partitions)

Partition λ := (λ0 ≥ λ1 ≥ · · · ≥ λl > 0)
|λ| := λ0 + λ1 + · · ·+ λl et ℓ(λ) := l

Ferrer’s diagram of a partitions : (5, 3, 2, 2)↔

Fixpoint is_part (sh : seq nat) := (* Boolean predicate *)
if sh is sh0 :: sh'
then (sh0 >= head 1 sh') && (is_part sh')
else true.

Lemma is_partP sh : reflect (* Boolean reflection lemma *)
(last 1 sh != 0 /\ forall i, (nth 0 sh i) >= (nth 0 sh i.+1))
(is_part sh).

Motivation: Symmetric Polynomials and applications 7 de 27

Schur symmetric polynomials (Cauchy-Jacobi definition)

Definition (Schur symmetric polynomial)

Partition λ := (λ0 ≥ λ1 ≥ · · · ≥ λl−1) with l ≤ n; set λi := 0 for i ≥ l .

sλ :=

∑
σ∈Sn

sign(σ)Xσ(λ+ρ)
n∏

0≤i<j<n

(xj − xi)
=

∣∣∣∣∣∣∣∣∣∣∣

x
λn−1+0
1 x

λn−1+0
2 ... x

λn−1+0
n

x
λn−2+1
1 x

λn−2+1
2 ... x

λn−2+1
n

...
...

. . .
...

x
λ1+n−2
1 x

λ1+n−2
2 ... xλ1+n−2

n

x
λ0+n−1
1 x

λ0+n−1
2 ... xλ0+n−1

n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 1 ... 1
x1 x2 ... xn
x2
1 x2

2 ... x2
n

...
...

. . .
...

xn−1
1 xn−1

2 ... xn−1
n

∣∣∣∣∣∣∣∣
s(2,1)(a, b, c) = a2b + ab2 + a2c + 2abc + b2c + ac2 + bc2

Motivation: Symmetric Polynomials and applications 8 de 27

Littlewood-Richardson coefficients

Proposition

The family (sλ(Xn))ℓ(λ)≤n is a (linear) basis of the ring of
symmetric polynomials on Xn.

Definition (Littlewood-Richardson coefficients)

Coefficients cνλ,µ of the expansion of the product:

sλsµ =
∑
ν

cνλ,µsν .

Fact: sλ(Xn−1, xn := 0) = sλ(Xn−1) if ℓ(λ) < n else 0.
Consequence: cνλ,µ are independant of the number of variables.

Motivation: Symmetric Polynomials and applications 9 de 27

The Littlewood-Richardson rule

Statement + 1st wrong proof: 1934, 1st correct proof: 1977

The Littlewood–Richardson rule is notorious for the number of
errors that appeared prior to its complete, published proof. Several
published attempts to prove it are incomplete, and it is particularly
difficult to avoid errors when doing hand calculations with it: even
the original example in D. E. Littlewood and A. R. Richardson
(1934) contains an error – Wikipedia

Unfortunately the Littlewood-Richardson rule is much harder to
prove than was at first suspected. I was once told that the
Littlewood-Richardson rule helped to get men on the moon but was
not proved until after they got there. The first part of this story
might be an exaggeration. – Gordon James

Motivation: Symmetric Polynomials and applications 10 de 27

Sample of applications

computing a LR coeff is #P-complete (counting version of
NP)
Mulmuley’s geometric complexity theory: attack P ̸= NP

multiplicity of induction or restriction of irreducible
representations of the symmetric groups
multiplicity of the tensor product of the irreducible
representations of linear groups
geometry: intersection numbers of grassmanian varieties, cup
product of the cohomology
Horn problem: eigenvalues of the sum of two hermitian matrix
extension of abelian groups (Hall algebra)
application in quantum physics and chemistry (spectrum rays
of the hydrogen atoms)

Combinatorial ingredients: partitions and tableaux 11 de 27

Combinatorial ingredients: Young Tableau

Definition

Filling of a partition shape
non decreasing along the rows
strictly increasing along the columns.

row reading = natural reading

d d e
b c c c d
a a a b b d e

= ddebcccdaaabbde
5
2 6 9
1 3 4 7 8

= 526913478

Combinatorial ingredients: partitions and tableaux 12 de 27

Young Tableau: formal definition

Variable (T : ordType) (Z : T). (* Type with a total order *)

Definition dominate (u v : list T) : bool :=
(size u <= size v) &&
(all (fun i => nth Z u i > nth Z v i) (iota 0 (size u))).

Lemma dominateP u v : (* Boolean reflexion lemma *)
reflect (size u <= size v /\

forall i, i < size u -> nth Z u i > nth Z v i)
(dominate u v).

Fixpoint is_tableau (t : list (list T)) : bool :=
if t is t0 :: t' then

[&& (t0 != [::]), sorted t0,
dominate (head [::] t') t0 & is_tableau t']

else true.

Definition to_word t := flatten (rev t). (* Row reading *)

Combinatorial ingredients: partitions and tableaux 13 de 27

Combinatorial definition of Schur functions

Definition

sλ(X) =
∑

T tableaux of shape λ

XT

where XT is the product of the elements of T .

s(2,1)(a, b, c) = a2b + ab2 + a2c + 2abc + b2c + ac2 + bc2

s(2,1)(a, b, c) =
b
a a + b

a b + c
a a + b

a c + c
a b + c

b b + c
a c + c

b c

Note: equivalence with Cauchy-Jacobi’s definitions as a
consequence of a particular case of the LR-rule (Piery rule), by
recursively unfolding determinants.

Combinatorial ingredients: partitions and tableaux 13 de 27

Combinatorial definition of Schur functions

Definition

sλ(X) =
∑

T tableaux of shape λ

XT

where XT is the product of the elements of T .

s(2,1)(a, b, c) = a2b + ab2 + a2c + 2abc + b2c + ac2 + bc2

s(2,1)(a, b, c) =
b
a a + b

a b + c
a a + b

a c + c
a b + c

b b + c
a c + c

b c

Note: equivalence with Cauchy-Jacobi’s definitions as a
consequence of a particular case of the LR-rule (Piery rule), by
recursively unfolding determinants.

Combinatorial ingredients: partitions and tableaux 14 de 27

Formal combinatorial definition of Schur functions

Variable n : nat.
Variable R : comRingType.

(* {mpoly R[n]} : the ring of polynomial over the commutative ring R *)
(* in n variables ('X_0, 'X_1 ...) *)

Definition is_tab_of_shape (sh : list (list 'I_n)) :=
[pred t | (is_tableau t) && (shape t == sh)].

(* Sigma type for tableaux of shape sh *)
Structure tabsh n (sh : 'P_d) :=

TabSh { tabshval; _ : is_tab_of_shape sh tabshval }.
[...]
Canonical tabsh_finType n sh := [...] (* finite type = enumeration *)

Definition Schur d (sh : 'P_d) : {mpoly R[n]} :=
\sum_(t : tabsh n sh) \prod_(i <- to_word t) 'X_i.

Combinatorial ingredients: partitions and tableaux 15 de 27

Yamanouchi Words

|w |x : number of occurrence of x in w .

Definition
Sequence w0, . . . ,wl−1 of integers such that for all k, i ,

|wi , . . . ,wl−1|k ≥|wi , . . . ,wl−1|k+1

Equivalently (|w |i)i≤max(w) is a partition and w1, . . . ,wl−1 is also
Yamanouchi.

(), 0, 00, 10, 000, 100, 010, 210,

0000, 1010, 1100, 0010, 0100, 1000, 0210, 2010, 2100, 3210

The rule 16 de 27

The LR Rule at last !

Theorem (Littlewood-Richardson rule)

cνλ,µ is the number of (skew) tableaux of shape the difference ν/λ,
whose row reading is a Yamanouchi word of evaluation µ (ie. that
is a permutations of 0µ01µ12µ2 . . .).

C 5432
331,421 = 3

1 2
0 0

1
0 0

0 2
0 1

1
0 0

0 1
0 2

1
0 0

C 7542
431,4321 = 4

2 3
1 1 2

0 1
0 0 0

2 3
0 1 2

1 1
0 0 0

1 3
0 2 2

1 1
0 0 0

0 3
1 2 2

1 1
0 0 0

C 7542
4321,431 = 4

2
1 1

0 1
0 0 0

1
1 2

0 1
0 0 0

1
0 2

1 1
0 0 0

0
1 2

1 1
0 0 0

The rule 17 de 27

The formal statement

Definition is_skew_reshape_tableau (P P1 : list nat) (w : list T) : bool :=
is_skew_tableau P1 (skew_reshape P1 P w).

Lemma is_skew_reshape_tableauP (P P1 : list nat) (w : list T) :
size w = sumn (P / P1) ->
reflect

(exists tab, [/\ is_skew_tableau P1 tab,
shape tab = P / P1 & to_word tab = w])

(is_skew_reshape_tableau P P1 w).

Definition LRyam_set P1 P2 P : {set : yameval P2} :=
[set y : yameval P2 | is_skew_reshape_tableau P P1 y].

Definition LRyam_coeff P1 P2 P := #|LRyam_set P1 P2 P|.

Then

Theorem LRyam_coeffP :
Schur P1 * Schur P2 =
\sum_(P : 'P_(d1 + d2) | included P1 P) LRyam_coeff P1 P2 P * Schur P.

The rule 18 de 27

Idea of the proof

the longest increasing subsequence problem
Robinson-Schensted (RS) bijection:

ababcabbad ←→
c
b b b
a a a a b d

,
8
2 5 6
0 1 3 4 7 9

reimplement RS using some local rewriting rules
realize that RS is actually computing a normal form in a
quotient of the free monoid
lift the LR rule at a non-commutative level
the proof is done by symbolically executing the RS algorithms
on the concatenation of two words.

The rule 19 de 27

Outline of a proof

Lascoux, Leclerc and Thibon The Plactic monoid, in M. Lothaire,
Algebraic combinatorics on words, Cambridge Univ. Press.

1 increasing subsequences and Schensted’s algorithms;
2 the Robinson-Schensted bijection;
3 Green’s invariants: computing the maximum sum of the length

of k disjoint non-decreassing subsequences;
4 Knuth relations, the plactic monoïd;
5 Green’s invariants are plactic invariants: Equivalence between

Robinson-Schensted and plactic;
6 standardization; symmetry of RS;
7 lifting to non commutative polynomials : Free quasi-symmetric

function and shuffle product;
8 non-commutative lifting the LR-rule : The free/tableau

LR-rule;
9 back to Yamanouchi words: a final bijection.

The longest increasing subsequence problem 20 de 27

The longest increasing subsequence problem

Some increasing subsequences:

ababcabbadbab
ababcabbadbab
ababcabbadbab

Problem (Schensted)

Given a finite sequence w , compute the maximum length of a
increasing subsequence.

The longest increasing subsequence problem 21 de 27

Schensted’s algorithm

Algorithm

Start with an empty row r , insert the letters l of the word one by
one from left to right by the following rule:

replace the first letter strictly larger that l by l ;
append l to r if there is no such letter.

Insertion of ababcabbadbab

∅ a−→ a
b−→ a b

a−→ a a
b−→ a a b

c−→ a a b c

a−→ a a a c
b−→ a a a b

b−→ a a a b b

a−→ a a a a b
d−→ a a a a b d

b−→ a a a a b b

a−→ a a a a a b
b−→ a a a a a b b

The longest increasing subsequence problem 22 de 27

Schensted’s specification

Warning: list index start from 0.

Theorem (Schensted 1961)

The i-th entry r [i + 1] of the row r is the smallest letter which ends
a increasing subsequence of length i .

Schensted(ababcabbadbab) = a a a a a b b

Theorem Sch_max_size w :
size (Sch w) = \max_(s : subseqs w | is_sorted s) size s.

The longest increasing subsequence problem 23 de 27

Robinson-Schensted’s bijection

Bumped (replaced) letters are insert it in a next row.
Remembering which cell was added allows to inverse to process.

∅, ∅ a−→ a , 0 b−→ a b , 0 1 a−→ b
a a , 2

0 1
b−→

b
a a b , 2

0 1 3
c−→ b

a a b c , 2
0 1 3 4

a−→ b b
a a a c , 2 5

0 1 3 4
b−→

b b c
a a a b , 2 5 6

0 1 3 4
b−→ b b c

a a a b b , 2 5 6
0 1 3 4 7

a−→

c
b b b
a a a a b

,
8
2 5 6
0 1 3 4 7

d−→
c
b b b
a a a a b d

,
8
2 5 6
0 1 3 4 7 9

The longest increasing subsequence problem 24 de 27

Idea of the proof: the non commutative lifting

Use RS to define a set of word

LQ := {w | RS(w)2 = Q}

whose commutative image is a Schur function:

Sshape(Q) =
∑
w∈LQ

comm(w)

Theorem (Noncommutative LR rule)

There exists an explicit set Ω(Q,R) such that

LQLR =
⋃

T∈Ω(Q,R)

LT .

Further developments and conclusion 25 de 27

Character theory of the symmetric groups

Frobenius characteristic: isometry from symmetric function to the
character ring of the symmetric groups.
We can translate the statements in a group theoretic language:

'SG_n : the symmetric groups on the set [0, .., n-1]
permCT mu : an element of the conjugacy class indexed by mu
'irrSG[la] : the irreducible character for ['SG_n] associated to the

partition [la] of n.

Theorem Fchar_isometry (f g : 'CF('SG_n)) : '[Fchar f | Fchar g] = '[f, g].

Theorem Murnaghan_NakayamaCT n (la mu : 'P_n) :
'irrSG[la] (permCT mu) = MN_coeff la mu.

Theorem LR_rule_irrSG c d (la : 'P_c) (mu : 'P_d) :
'Ind['SG_(c + d)] ('irrSG[la] \o^ 'irrSG[mu]) =
\sum_(nu : 'P_(c + d) | included la nu) LRyam_coeff la mu nu * 'irrSG[nu].

Further developments and conclusion 26 de 27

Conclusion for combinatorialists

It’s feasible !!!!

even by someone without any prior knowledge of type theory or
lambda calculus; first version of the proof 14kLoC, 6 month.

Schützenberger’s proof was correct !

A certified implementation (#P-complete)

Further developments and conclusion 27 de 27

Conclusion for formal proof community

boolean reflexion SSReflect/MathComp: very good at
automatically dealing with trivial cases: extremely
important for combinatorics
extending the algebraic hierarchy was very hard, hierarchy
builder is a game changer
formalizing algebra relatively easy with MathComp,
combinatorics harder, because very poorly reusable
I feel that Mathcomp is too much oriented toward finite
in many case, the definition which is given is not the one
which is used in papers
estimation: in 35kLoC of Coq/Rocq formalized 5% of what is
in Sagemath about these topics (50kLoC python/C, 2300
functions) where combinat = 500kLoC, 18000 functions

	Motivation: Symmetric Polynomials and applications
	Combinatorial ingredients: partitions and tableaux
	The rule
	The longest increasing subsequence problem
	Further developments and conclusion

