Machine Checked Proofs and Programs in Algebraic Combinatorics

Florent Hivert

LISN / LMF / FRESCO project / Université Paris-saclay / CNRS / INRIA

CPP'25, Denver, January 2025

Going back and forth between

- algebraic identities
- algorithms and data-structure

Today:

- a Coq/Rocq+Mathematical Components based library about symmetric polynomials and characters formulas for the symmetric groups.
- flagship result: Littlewood-Richardson rule

Going back and forth between

- algebraic identities
- algorithms and data-structure

Today:

- a Coq/Rocq+Mathematical Components based library about symmetric polynomials and characters formulas for the symmetric groups.
- flagship result: Littlewood-Richardson rule

Going back and forth between

- algebraic identities
- algorithms and data-structure

The Littlewood-Richardson rule:

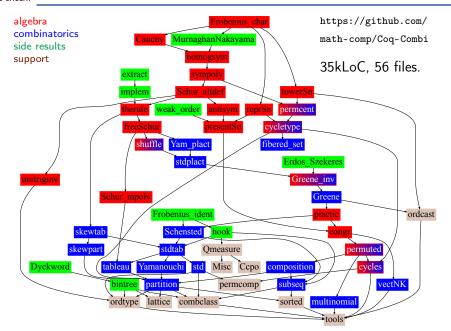
- proving a product rule of symmetric polynomials
- executing symbolically the Robinson-Schensted algorithm
- on the concatenation of two words

Going back and forth between

- algebraic identities
- algorithms and data-structure

The Littlewood-Richardson rule:

- proving a product rule of symmetric polynomials
- executing symbolically the Robinson-Schensted algorithm
- on the concatenation of two words



Symmetric Polynomials

n-variables : $\mathbb{X} := \{x_0, x_1, \dots x_{n-1}\}.$ polynomials in $\mathbb{X} : \mathbb{C}[\mathbb{X}] = \mathbb{C}[x_0, x_1, \dots, x_{n-1}]$; ex: $3x_0^3x_2 + 5x_1x_2^4$.

Definition (Symmetric polynomial)

A polynomial is symmetric if it is invariant under any permutation of the variables: for all $\sigma \in \mathfrak{S}_n$,

$$P(x_0, x_1, \ldots, x_{n-1}) = P(x_{\sigma(0)}, x_{\sigma(1)}, \ldots, x_{\sigma(n-1)})$$

$$P(a, b, c) = a^{2}b + a^{2}c + b^{2}c + ab^{2} + ac^{2} + bc^{2}$$
$$Q(a, b, c) = 5abc + 3a^{2}bc + 3ab^{2}c + 3abc^{2}$$

Integer Partitions

different ways of decomposing an integer $n \in \mathbb{N}$ as a sum:

$$12 = 12 = 11 + 1 = 10 + 2 = 10 + 1 + 1 + 1 = \dots = 7 + 5$$

= $5 + 3 + 2 + 2 = 4 + 3 + 3 + 1 + 1$ (77 partitions)

Partition
$$\lambda := (\lambda_0 \ge \lambda_1 \ge \cdots \ge \lambda_l > 0)$$

 $|\lambda| := \lambda_0 + \lambda_1 + \cdots + \lambda_l$ et $\ell(\lambda) := l$

Ferrer's diagram of a partitions : $(5,3,2,2) \leftrightarrow$

```
Fixpoint is_part (sh : seq nat) := (* Boolean predicate *)
if sh is sh0 :: sh'
then (sh0 >= head 1 sh') && (is_part sh')
else true.

Lemma is_partP sh : reflect (* Boolean reflection lemma *)
(last 1 sh != 0 /\ forall i, (nth 0 sh i) >= (nth 0 sh i.+1))
(is_part sh).
```

Schur symmetric polynomials (Cauchy-Jacobi definition)

Definition (Schur symmetric polynomial)

Partition
$$\lambda := (\lambda_0 \ge \lambda_1 \ge \cdots \ge \lambda_{l-1})$$
 with $l \le n$; set $\lambda_i := 0$ for $i \ge l$.

$$s_{\lambda} := \frac{\sum_{\sigma \in \mathfrak{S}_{n}} \operatorname{sign}(\sigma) \mathbb{X}_{n}^{\sigma(\lambda+\rho)}}{\prod_{0 \leq i < j < n} (x_{j} - x_{i})} = \frac{\begin{vmatrix} x_{1}^{\lambda_{n-1}+0} & x_{2}^{\lambda_{n-1}+0} & \dots & x_{n}^{\lambda_{n-1}+0} \\ x_{1}^{\lambda_{n-2}+1} & x_{2}^{\lambda_{n-2}+1} & \dots & x_{n}^{\lambda_{n-2}+1} \\ \vdots & \vdots & \ddots & \vdots \\ x_{1}^{\lambda_{1}+n-2} & x_{2}^{\lambda_{1}+n-2} & \dots & x_{n}^{\lambda_{1}+n-2} \\ x_{1}^{\lambda_{0}+n-1} & x_{2}^{\lambda_{0}+n-1} & \dots & x_{n}^{\lambda_{0}+n-1} \end{vmatrix}}{\begin{vmatrix} x_{1} & 1 & \dots & 1 \\ x_{1}^{\lambda_{1}} & x_{2} & \dots & x_{n} \\ x_{1}^{\lambda_{1}} & x_{2}^{\lambda_{2}} & \dots & x_{n}^{\lambda_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ x_{1}^{n-1} & x_{2}^{n-1} & \dots & x_{n}^{\lambda_{n}-1} \end{vmatrix}}$$

$$s_{(2,1)}(a,b,c) = a^2b + ab^2 + a^2c + 2abc + b^2c + ac^2 + bc^2$$

Littlewood-Richardson coefficients

Proposition

The family $(s_{\lambda}(\mathbb{X}_n))_{\ell(\lambda) \leq n}$ is a (linear) basis of the ring of symmetric polynomials on \mathbb{X}_n .

Definition (Littlewood-Richardson coefficients)

Coefficients $c_{\lambda,\mu}^{\nu}$ of the expansion of the product:

$$extit{s}_{\lambda} extit{s}_{\mu} = \sum_{
u} c_{\lambda,\mu}^{
u} extit{s}_{
u}\,.$$

Fact: $s_{\lambda}(\mathbb{X}_{n-1}, x_n := 0) = s_{\lambda}(\mathbb{X}_{n-1})$ if $\ell(\lambda) < n$ else 0.

Consequence: $c_{\lambda,\mu}^{\nu}$ are independant of the number of variables.

The Littlewood-Richardson rule

Statement + 1st wrong proof: 1934, 1st correct proof: 1977

The Littlewood–Richardson rule is **notorious for the number of errors** that appeared prior to its complete, published proof. Several published attempts to prove it are incomplete, and it is particularly difficult to avoid errors when doing hand calculations with it: **even the original example** in D. E. Littlewood and A. R. Richardson (1934) **contains an error** – Wikipedia

Unfortunately the Littlewood-Richardson rule is **much harder to prove than was at first suspected**. I was once told that the Littlewood-Richardson rule helped to get men on the moon but was not proved until after they got there. The first part of this story might be an exaggeration. — Gordon James

Sample of applications

- computing a LR coeff is #P-complete (counting version of NP)
- Mulmuley's geometric complexity theory: attack $P \neq NP$
- multiplicity of induction or restriction of irreducible representations of the symmetric groups
- multiplicity of the tensor product of the irreducible representations of linear groups
- geometry: intersection numbers of grassmanian varieties, cup product of the cohomology
- Horn problem: eigenvalues of the sum of two hermitian matrix
- extension of abelian groups (Hall algebra)
- application in quantum physics and chemistry (spectrum rays of the hydrogen atoms)

Combinatorial ingredients: Young Tableau

Definition

- Filling of a partition shape
- non decreasing along the rows
- strictly increasing along the columns.
- row reading = natural reading

5					
2	6	9			= 526913478
1	3	4	7	8	

Young Tableau: formal definition

```
Variable (T : ordType) (Z : T). (* Type with a total order *)
Definition dominate (u v : list T) : bool :=
  (size u <= size v) &&
   (all (fun i => nth Z u i > nth Z v i) (iota 0 (size u))).
Lemma dominateP u v : (* Boolean reflexion lemma *)
  reflect (size u <= size v /\
           forall i, i < size u -> nth Z u i > nth Z v i)
           (dominate u v).
Fixpoint is_tableau (t : list (list T)) : bool :=
  if t is t0 :: t' then
    \lceil \&\& \text{ (t0 != } \lceil :: \rceil), \text{ sorted t0.}
      dominate (head [::] t') t0 & is tableau t']
  else true.
Definition to_word t := flatten (rev t). (* Row reading *)
```

Combinatorial definition of Schur functions

Definition

$$s_{\lambda}(\mathbb{X}) = \sum_{T \text{ tableaux of shape } \lambda} \mathbb{X}^{T}$$

where X^T is the product of the elements of T.

$$\begin{array}{l} s_{(2,1)}(a,b,c) = a^2b + ab^2 + a^2c + 2abc + b^2c + ac^2 + bc^2 \\ s_{(2,1)}(a,b,c) = \frac{b}{a|a|} + \frac{b}{a|b|} + \frac{c}{a|a|} + \frac{b}{a|c|} + \frac{c}{a|b|} + \frac{c}{b|b|} + \frac{c}{a|c|} + \frac{c}{b|c|} \end{array}$$

Note: equivalence with Cauchy-Jacobi's definitions as a consequence of a particular case of the LR-rule (Piery rule), by recursively unfolding determinants.

Combinatorial definition of Schur functions

Definition

$$s_{\lambda}(\mathbb{X}) = \sum_{T \text{ tableaux of shape } \lambda} \mathbb{X}^{T}$$

where X^T is the product of the elements of T.

$$\begin{array}{l} s_{(2,1)}(a,b,c) = a^2b + ab^2 + a^2c + 2abc + b^2c + ac^2 + bc^2 \\ s_{(2,1)}(a,b,c) = \frac{b}{a|a|} + \frac{b}{a|b|} + \frac{c}{a|a|} + \frac{b}{a|c|} + \frac{c}{a|b|} + \frac{c}{b|b|} + \frac{c}{a|c|} + \frac{c}{b|c|} \end{array}$$

Note: equivalence with Cauchy-Jacobi's definitions as a consequence of a particular case of the LR-rule (Piery rule), by recursively unfolding determinants.

Formal combinatorial definition of Schur functions

```
Variable n : nat.
Variable R : comRingType.
(* \{mpoly \ R[n]\}: the ring of polynomial over the commutative ring R
                 in n variables ('X_0, 'X_1...)
(*
                                                                      *)
Definition is_tab_of_shape (sh : list (list 'I_n)) :=
  [ pred t | (is_tableau t) && (shape t == sh) ].
(* Sigma type for tableaux of shape sh *)
Structure tabsh n (sh : 'P_d) :=
   TabSh { tabshval; _ : is_tab_of_shape sh tabshval }.
[...]
Canonical tabsh_finType n sh := [...] (* finite type = enumeration *)
Definition Schur d (sh : 'P_d) : {mpoly R[n]} :=
 \sum_(t : tabsh n sh) \prod_(i <- to_word t) 'X_i.
```

Yamanouchi Words

 $|w|_{\downarrow}$: number of occurrence of x in w.

Definition

Sequence w_0, \ldots, w_{l-1} of integers such that for all k, i,

$$|w_i, \ldots, w_{l-1}|_k \ge |w_i, \ldots, w_{l-1}|_{k+1}$$

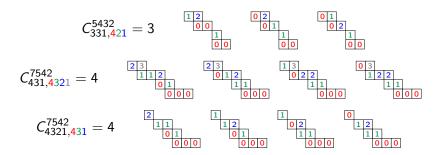
Equivalently $(|w|_i)_{i \leq \max(w)}$ is a partition and w_1, \ldots, w_{l-1} is also Yamanouchi.

0000, 1010, 1100, 0010, 0100, 1000, 0210, 2010, 2100, 3210

The LR Rule at last!

Theorem (Littlewood-Richardson rule)

 $c_{\lambda,\mu}^{\nu}$ is the number of (skew) tableaux of shape the difference ν/λ , whose row reading is a Yamanouchi word of evaluation μ (ie. that is a permutations of $0^{\mu_0}1^{\mu_1}2^{\mu_2}\dots$).



The rule 17 de 27

The formal statement

Then

```
Theorem LRyam_coeffP :
   Schur P1 * Schur P2 =
   \sum_(P : 'P_(d1 + d2) | included P1 P) LRyam_coeff P1 P2 P * Schur P.
```


Idea of the proof

- the longest increasing subsequence problem
- Robinson-Schensted (RS) bijection:

$$ababcabbad \longleftrightarrow \begin{array}{c} \hline c \\ \hline b \ b \ b \\ \hline a \ a \ a \ a \ b \ b \ d \\ \hline \end{array}, \begin{array}{c} \hline 8 \\ \hline 2 \ 5 \ 6 \\ \hline 0 \ 1 \ 3 \ 4 \ 7 \ 9 \\ \hline \end{array}$$

- reimplement RS using some local rewriting rules
- realize that RS is actually computing a normal form in a quotient of the free monoid
- lift the LR rule at a non-commutative level
- the proof is done by symbolically executing the RS algorithms on the concatenation of two words.

SITE The rule 19 de 27

Outline of a proof

Lascoux, Leclerc and Thibon *The Plactic monoid, in M.* Lothaire, Algebraic combinatorics on words, Cambridge Univ. Press.

- 1 increasing subsequences and Schensted's algorithms;
- 2 the Robinson-Schensted bijection;
- 3 Green's invariants: computing the maximum sum of the length of *k* disjoint non-decreassing subsequences;
- 4 Knuth relations, the plactic monoïd;
- Green's invariants are plactic invariants: Equivalence between Robinson-Schensted and plactic;
- 6 standardization; symmetry of RS;
- lifting to non commutative polynomials: Free quasi-symmetric function and shuffle product;
- non-commutative lifting the LR-rule: The free/tableau LR-rule:
- 9 back to Yamanouchi words: a final bijection.

The longest increasing subsequence problem

Some increasing subsequences:

ababcabbadbab ababcabbadbab ababcabbadbab

Problem (Schensted)

Given a finite sequence w, compute the maximum length of a increasing subsequence.

Schensted's algorithm

Algorithm

Start with an empty row r, insert the letters I of the word one by one from left to right by the following rule:

- replace the first letter strictly larger that I by I;
- append I to r if there is no such letter.

Insertion of ababcabbadbab

Schensted's specification

Warning: list index start from 0.

Theorem (Schensted 1961)

The i-th entry r[i+1] of the row r is the smallest letter which ends a increasing subsequence of length i.

Schensted(
$$ababcabbadbab$$
) = $\boxed{a | a | a | a | b | b}$

```
Theorem Sch_max_size w :
    size (Sch w) = \max_(s : subseqs w | is_sorted s) size s.
```

Robinson-Schensted's bijection

Bumped (replaced) letters are insert it in a next row.

Remembering which cell was added allows to inverse to process.

$$\emptyset, \emptyset \xrightarrow{a} a, 0 \xrightarrow{b} ab, 01 \xrightarrow{a} \xrightarrow{b} a, 01 \xrightarrow{b} a$$

$$b \xrightarrow{a} ab, 013 \xrightarrow{c} b \xrightarrow{a} abc, 0134 \xrightarrow{a} bb \xrightarrow{b} aac, 0134 \xrightarrow{b}$$

$$b \xrightarrow{b} c \xrightarrow{a} ab, 0134 \xrightarrow{b} bb \xrightarrow{b} c \xrightarrow{a} abb, 01347 \xrightarrow{a}$$

$$c \xrightarrow{b} bb \xrightarrow{b} aaab, 01347 \xrightarrow{d} bb \xrightarrow{b} bb \xrightarrow{d} 01347$$

Idea of the proof: the non commutative lifting

Use RS to define a set of word

$$L_Q := \{ w \mid RS(w)_2 = Q \}$$

whose commutative image is a Schur function:

$$S_{\mathsf{shape}(Q)} = \sum_{w \in L_Q} \mathsf{comm}(w)$$

Theorem (Noncommutative LR rule)

There exists an explicit set $\Omega(Q,R)$ such that

$$L_{Q}L_{R}=\bigcup_{T\in\Omega(Q,R)}L_{T}.$$

Character theory of the symmetric groups

Frobenius characteristic: **isometry** from symmetric function to the character ring of the symmetric groups.

We can translate the statements in a group theoretic language:

```
'SG_n : the symmetric groups on the set [0, ..., n-1]

permCT mu : an element of the conjugacy class indexed by mu
'irrSG[la] : the irreducible character for ['SG_n] associated to the partition [la] of n.

Theorem Fchar_isometry (f g : 'CF('SG_n)) : '[Fchar f | Fchar g] = '[f, g].

Theorem Murnaghan_NakayamaCT n (la mu : 'P_n) :
    'irrSG[la] (permCT mu) = MN_coeff la mu.

Theorem LR_rule_irrSG c d (la : 'P_c) (mu : 'P_d) :
    'Ind['SG_(c + d)] ('irrSG[la] \o^ 'irrSG[mu]) =
    \sum_(nu : 'P_(c + d) | included la nu) LRyam_coeff la mu nu * 'irrSG[nu].
```

Conclusion for combinatorialists

It's feasible !!!!

even by someone without any prior knowledge of type theory or lambda calculus; first version of the proof 14kLoC, 6 month.

Schützenberger's proof was correct!

A certified implementation (#P-complete)

Conclusion for formal proof community

- boolean reflexion SSReflect/MathComp: very good at automatically dealing with trivial cases: extremely important for combinatorics
- extending the algebraic hierarchy was very hard, hierarchy builder is a game changer
- formalizing algebra relatively easy with MathComp, combinatorics harder, because very poorly reusable
- I feel that Mathcomp is too much **oriented toward finite**
- in many case, the definition which is given is not the one which is used in papers
- estimation: in 35kLoC of Coq/Rocq formalized 5% of what is in Sagemath about these topics (50kLoC python/C, 2300 functions) where combinat = 500kLoC, 18000 functions