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PERMUTATION STATISTICS RELATED TO A CLASS

OF NONCOMMUTATIVE SYMMETRIC FUNCTIONS

AND GENERALIZATIONS OF THE GENOCCHI NUMBERS

FLORENT HIVERT, JEAN-CHRISTOPHE NOVELLI,
LENNY TEVLIN, AND JEAN-YVES THIBON

Abstract. We prove conjectures of the third author [L. Tevlin, Proc. FPSAC’07,
Tianjin] on two new bases of noncommutative symmetric functions: the transition
matrices from the ribbon basis have nonnegative integral coefficients. This is done
by means of two composition-valued statistics on permutations and packed words,
which generalize the combinatorics of Genocchi numbers.

1. Introduction

In the theory of noncommutative symmetric functions [4], the self dual commuta-
tive Hopf algebra Sym of ordinary symmetric functions is replaced by a pair of mutu-
ally dual Hopf algebras (Sym, QSym), respectively called Noncommutative Symmet-
ric Functions, and Quasi-symmetric functions. The usual bases of Sym are usually
lifted only on one side (with the notable exception of Schur functions, which admit
natural analogs on both sides). In particular, monomial symmetric functions mµ

split into the quasi-monomial functions MI on the quasi-symmetric side, and their
dual basis hµ is lifted on the noncommutative side, in the form of the homogeneous
products SI .

In [14], the third author has proposed a construction of noncommutative monomial
and forgotten symmetric functions, and conjectured positivity properties of certain
transition matrices involving the new bases. The purpose of the present article is to
prove these conjectures, by providing combinatorial interpretations.

These interpretations rely on new permutations statistics, which generalize the
combinatorics related to the Genocchi numbers.

Notations. We shall depart from the notation of [14] and write ΨI instead of M I , and LI instead

of LI . Other notations are as in [4]. See [3] for background on quasideterminants.
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2. Background

2.1. Noncommutative symmetric functions. Recall that the algebra Sym of
noncommutative symmetric functions is a graded free associative algebra over a se-
quence Sn of indeterminates, with deg Sn = n. Among other sequences of generators,
the noncommutative power sums of the first kind Ψn are defined by an oriented analog
of Newton’s recursion, which may be solved in terms of quasideterminants [4, 3]. The
following definition [14] refines formulas (39) and (40) of [4], and defines an analog
of the monomial basis which extends the Ψn.

Definition 2.1. The noncommutative monomial symmetric function corre-

sponding to a composition I = (i1, . . . , ir) is defined as a quasideterminant of an r by

r matrix:

(1) rΨI ≡ rΨ(i1,...,ir) = (−1)r−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Ψir 1 0 . . . 0 0
Ψin−1+ir Ψin−1 2 . . . 0 0

...
...

...
...

...
...

Ψi2+...+ir . . . . . . . . . Ψi2 n − 1

Ψi1+...+ir . . . . . . . . . Ψi1+i2 Ψi1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

where r is the length of I. In particular,

(2) Ψ(n) = Ψn, and Ψ1r = Λr

where Λr is an elementary symmetric function.
The quasideterminants may be recursively evaluated by means of the following

generalized Newton relations:

rΨi1,...,ir = Ψi1Ψi2,...,ir − Ψi1+i2Ψi3,...,ir + . . .

+ (−1)s−1Ψi1+···+isΨis+1,...,ir + · · · + (−1)rΨi1+···+ir .
(3)

From a noncommutative analog of the quasi-monomial basis MI , one can define
an analog of Gessel’s fundamental basis FI by

(4) LI =
∑

J�I

ΨJ .

Define the coefficients GIJ by the expansion

(5) RI =
∑

J

GIJLJ .

It has been conjectured in [14] that these numbers are nonnegative integers. Our aim
is to prove this fact by means of a combinatorial interpretation.

2.2. Free quasi-symmetric functions. Let us fix an infinite ordered alphabet
A = {a1 < · · · < an < . . . }. The standardized word Std(w) of a word w ∈ A∗

is the permutation obtained by iteratively scanning w from left to right, and la-
belling 1, 2, . . . the occurrences of its smallest letter, then numbering the occurrences
of the next one, and so on.
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With a permutation σ, we associate the polynomial

(6) Fσ :=
∑

Std(w)=σ−1

w .

These polynomials span a subalgebra of K〈A〉, called FQSym for Free Quasi-Sym-
metric functions [2]. Note that the field K is assumed to be of characteristic zero.
Their product rule is given by

(7) Fσ′Fσ′′ =
∑

σ∈σ′⋒σ′′

Fσ ,

where the shifted shuffle σ′
⋒ σ′′ of two packed words is defined as

(8) σ′
⋒ σ′′ = σ′ σ′′[|σ|],

the k-shift w[k] of a word w being obtained by replacing each letter wi by wi + k,
and is the usual shuffle product on words defined recursively by

(9) (au) (bv) = a · (u (bv)) + b · ((au) v),

with u ǫ = ǫ u = u if ǫ is the empty word.
We shall make use of the basis Gσ of FQSym, dual to Fσ, defined by Gσ := Fσ−1 .

2.3. Word quasi-symmetric functions. The packed word u = pack(w) associated
with a word w ∈ A∗ is obtained by the following process. If b1 < b2 < . . . < br are
the letters occuring in w, u is the image of w by the homomorphism bi 7→ ai. A word
u is said to be packed if pack(u) = u. We denote by PW the set of packed words.
With such a word, we associate the polynomial

(10) Mu :=
∑

pack(w)=u

w .

These polynomials span a subalgebra of K〈A〉, called WQSym for Word Quasi-
Symmetric functions [5, 11] (and called NCQSym in [1]), the invariants of the non-
commutative quasi-symmetrizing action. Their product rule is given by

(11) Mu′Mu′′ =
∑

u∈u′∗W u′′

Mu ,

where the convolution u′∗W u′′ of two packed words is defined as

(12) u′∗Wu′′ =
∑

v,w;u=v·w ∈PW
pack(v)=u′,pack(w)=u′′

u .

3. A statistic on permutations generalizing Genocchi numbers

Genocchi numbers (sequence A001469 of [13]) are known to count a large variety
of combinatorial objects, among which numerous sets of permutations. Our statistic
derives directly from the most classical of those sets: it is the number of permutations
of S2n such that each even integer is followed by a smaller integer and each odd integer
is either followed by a greater one, or at the last position of the permutation.
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Let us define the Genocchi descent set (G-descent set for short) of a permutation
σ ∈ Sn as

(13) GDes(σ) := {i ∈ [2, n]|σj = i =⇒ σj+1 < σj}.

In other words, GDes(σ) is the set of values of the descents of σ, different from the
usual set Des(σ) which records the positions of the descents of σ. Astonishingly
enough, this G-statistic behaves very differently from the classical descent statis-
tic. From the G-descent set, we define the Genocchi composition of descents (or
G-composition, for short) GC(σ) of a permutation, as the integer composition I of n
whose descent set is {d − 1|d ∈ GDes(σ)}.

The following tables represent the G-composition of all permutations of S2, S3,
and S4.

(14)
2 11

12 21

3 21 12 111

123 132 213 321
231
312

(15)

4 31 22 211 13 121 112 1111

1234 1243 1324 1432 2134 2143 3214 4321
1342 2314 2431 3421
1423 3124 3142 4213
2341 3241
2413 4132
3412 4231
4123 4312

More combinatorial properties of these numbers, including a hook-length formula will
be given in [12].

4. A Sym quotient of FQSym

Let ∼ be the equivalence relation defined by σ ∼ τ iff GC(σ) = GC(τ). Let J be
the subspace of FQSym spanned by the differences

(16) {Fσ − Fτ |σ ∼ τ}.

Theorem 4.1. J is a two-sided ideal of FQSym, and the quotient T = FQSym/J
is isomorphic to Sym as an algebra.

Moreover, let TI be the image in T of the Fσ such that GC(σ) = I. Then

(17) TITJ =
∑

K

CK
I,JTK ,

where CK
I,J is computed as follows. Let K ′ and K ′′ be the compositions such that

|K ′| = |I| and either K = K ′ · K ′′, or K = K ′ ⊲ K ′′. If K ′ is not coarser than I or
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if K ′′ is not finer than J , then CK
I,J is 0. Otherwise,

(18) CK
I,J =

(

|I| + l(J) − l(I)

l(K) − l(I)

)

Proof – We have to prove that the set (with multiplicities) of G-compositions of
the shifted shuffle of two permutations depends only on the G-compositions of the
permutations.

Let σ ∈ Sm and τ ∈ Sn and let I and J be their respective G-compositions.
Let K = (k1, . . . , kr) be a composition of m + n and let us compute the number of
permutations µ in σ⋒τ such that GC(µ) = K. We shall need the unique compositions
K ′ and K ′′ such that K = K ′ · K ′′ or K = K ′ ⊲ K ′′, with |K ′| = |I|.

Let us now consider which letters can follow the letters x from 1 to m in µ. We
have four cases:

(1a) x is a G-descent of µ and is not a G-descent of σ,
(2a) x is a G-descent of µ and is a G-descent of σ,
(3a) x is not a G-descent of µ and is not a G-descent of σ,
(4a) x is not a G-descent of µ and is a G-descent of σ.

The first case implies that K cannot be the G-composition of a word in the shifted
shuffle of σ and µ. Let us now restrict to compositions K such that K ′ is coarser
than I. The second case implies that x has to be followed in µ by a letter coming
from σ. The third one implies nothing about x. The fourth one implies that x has
to be followed in µ by a letter coming from τ .

Let f(σ) be the number of occurrences of the fourth case. Let g(σ) be the number
of occurrences of the third and fourth cases, plus one.

Let us now consider which letters can follow the letters x from m + 1 to m + n in
µ. We have again four cases:

(1b) x is a G-descent of µ and is not a G-descent of τ [m],
(2b) x is a G-descent of µ and is a G-descent of τ [m],
(3b) x is not a G-descent of µ and is not a G-descent of τ [m],
(4b) x is not a G-descent of µ and is a G-descent of τ [m].

The first case implies that x has to be followed in µ by a letter coming from σ.
The second case implies nothing about x. The third one implies that x has to be
followed in µ by a letter coming from τ . The fourth one implies that K cannot be
the G-composition of a word in the shifted shuffle of σ and µ. We now restrict to
compositions K such that K ′′ is finer than J .

This preliminary analysis proves that the number of permutations µ with G-
composition K is equal to the number of ways of separating the letters of τ in any
number of blocks with given necessary separations (case 1b) and necessary non-
separations (case 3b) and put those blocks in the middle of blocks of letters of σ,
themselves separated into this number of blocks with given necessary separations
(case 4a), and necessary non-separations (case 2a). The number of such blocks for
each pair of permutations depends only on the lengths of their G-compositions, and
a fortiori only on their G-compositions, so that our equivalence relation on permu-
tations indeed induces a quotient algebra of FQSym.
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Let us now determine the structure constants of this algebra. The previous remark
can be reformulated as follows. We have two cases depending on whether K = K ′ ·K ′′

or K = K ′ ⊲ K ′′.
In the first case, the number of permutations τ with G-composition I is

(19)

max(n,m)
∑

k=1

(

m − l(I)

k − 1 − (l(I) − l(K ′))

)(

n

l(K ′′) + 1 − k

)

.

This sum of binomial coefficients is easily simplified, and one gets

(20)

(

m − l(I) + l(J)

l(K ′) + l(K ′′) − l(I)

)

.

In the second case, the number of permutations τ with G-composition I is

(21)

max(n,m)
∑

k=1

(

m − l(I)

k − 1 − (l(I) − l(K ′)

)(

n

l(K ′′) − k

)

.

Similarly, this sum of binomial coefficients reduces to

(22)

(

m − l(I) + l(J)

l(K ′) + l(K ′′) − 1 − l(I)

)

,

so that CK
IJ is indeed given by (18) in any case.

One can notice that these coefficients coincide, in the special case I = (n) with
those of the product LILJ (see Proposition 4.6 of [14]), so that, since the Ln are
algebraic generators of Sym, the Tn are algebraic generators of T. Moreover, since
Sym is free over the sequence Ln = Sn, the algebra T is free over the Tn.

Example 4.2. Let I = (2, 2, 1), J = (1, 3), and K = (4, 2, 1, 1, 1). We can choose
σ = 32514 and τ = 2134.

We then have K ′ = (4, 1) and K ′′ = (1, 1, 1, 1). The coefficient of K in TITJ is
(

5+2−3
5−3

)

= 6 and, indeed, there are six permutations in the shifted shuffle 32514⋒2134
with G-composition K:

(23) 372685194, 376825194, 376829514, 736825194, 736829514, 768392514.

Those six permutations are obtained as follows: σ has one necessary separation
between 3 and 2 and one necessary non-separation between 1 and 5, and nothing
after 4. The permutation τ [5] has two necessary separations, between 8 and 9, and
after 9, and one necessary non-separation between 6 and 8. Then one inserts the
blocks of τ [5] in σ, satisfying the separation/non-separation constraints and gets the
six permutations.

Note 4.3. Note that this quotient is not a Hopf quotient, since as one can easily
check, J is not a coideal. For example, 231 ∼ 312 but

(24) ∆(F231) = F12 ⊗ F1 + F1 ⊗ F21, and ∆(F312) = F21 ⊗ F1 + F1 ⊗ F12.
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5. Change of bases in Sym

Thanks to the previous result, we have a map going from Sym to itself in a very
unusual way: start with the injection of Sym into FQSym∗, and compose it with
the self duality isomorphism of FQSym, which reads

(25) RI :=
∑

D(σ)=I

Gσ =
∑

D(τ−1)=I

Fτ ,

where D is the composition whose descent set is equal to the descent set of σ, and
then go from FQSym to Sym by the G-quotient homomorphism.

Let φ be the composition of those maps and let R′
I be the image of RI by φ:

(26)
φ : Sym → T

RI 7→ R′
I .

By definition of φ, we have

(27) R′
I :=

∑

D(σ−1)=I

Fσ =
∑

D(σ−1)=I

GC(σ)=J

TJ ,

where Fσ is the image of Fσ by the G-quotient homomorphism. Then, since Ln = Rn

and R′
n = F12...n = Tn, we have φ(Ln) = Tn for all n, so that, thanks to the product

formulas of Ln and Tn, φ(LI) = TI for all compositions I.
Since the Tn are algebraic generators of T, the algebra morphism φ is an isomor-

phism of algebras, so that, applying φ−1 to Equation (27), one gets

Theorem 5.1. Let I be a composition of n. Then

(28) RI =
∑

J�n

GIJLJ ,

where GIJ is the number of permutations satisfying D(σ−1) = I and GC(σ) = J . In

particular, the GIJ are nonnegative integers.

Examples of the transition matrices are given in Section 7.1, together with the
same matrices filled with the corresponding permutations. The Genocchi numbers
appear as the sums of the values in the rows indexed by compositions of the form
(2n) or (2n1).

Combining this last result with Equation (4), one then gets

Corollary 5.2. Let I be a composition of n. Then

(29) RI =
∑

J�n

KIJΨJ ,

where KIJ are nonnegative integers.

One can easily describe those integers in terms of permutations. They can be
described in a much more natural way in terms of packed words as one shall see in
the following section.
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Note 5.3. Theorems 17 and 5.1 prove Conjecture 4.1 of [14]. Theorem 5.1 proves
Conjecture 5.4 of [14]. Corollary 5.2 proves Conjecture 5.3 of [14]. Corresponding
statements for the “forgotten” basis are obtained by applying the canonical involution
ω.

6. Permutations replaced by packed words

The previous section was devoted to the study of the transition matrices from R
to L, we now apply a similar analysis to the transition matrices from R to Ψ. As
already mentioned, the latter can be described in terms of the former, since there
is a very simple transition matrix from L to Ψ: it is the matrix of the refinement
order on compositions. Nevertheless, as the sum of the entries of the transition
matrix Mn(R, L) is n!, the sum of the entries of a transition matrix Mn(R, Ψ) is
the nth ordered Bell number (sequence A000670 of [13]) counting, for example, set
compositions (ordered set partitions), or packed words.

This suggests the existence of two statistics on packed words giving back the entries
of the transition matrices, exactly as in the (R, L) case. The algebraic context is
essentially the same as before if one replaces the algebra FQSym by the algebra
WQSym (see [5, 11]).

The proof of the connection between the two statistics and the matrices M(R, Ψ)
follows the same guidelines as the previous proof. We first define a composition-
valued statistic on packed words, then prove that this statistic defines a quotient
of WQSym, isomorphic to Sym as an algebra. Then, comparing the structure
constants of the natural base with those of the ΨI , we prove that they are mapped
to each other by a simple isomorphism, hence giving the coefficients of the matrix
M(R, Ψ).

6.1. A statistic on packed words. Let w be a packed word. The Word composition

(W-composition) of w is the composition whose descent set is given by the positions
of the last occurrences of each letter in w. For example,

(30) WC(1543421323) = (2, 3, 2, 2, 1).

Indeed, the descent set is {2, 5, 7, 9, 10} since the last 5 is in position 2, the last 4 is
in position 5, the last 1 is in position 7, the last 3 is in position 9, the last 2 is in
position 10.

The following tables represent the W-compositions of all packed words in PW2 and
PW3. One can recover from the matrix M

′
4 in Section 7.2 the W-compositions in

PW4: it is the composition indexing their row.

(31)

2 11

11 12
21

3 21 12 111

111 112 122 123
121 211 132
212 213
221 231

312
321
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6.2. A Sym quotient of WQSym. Let ∼ be the equivalence relation on packed
words defined by u ∼ v iff WC(u) = WC(v). Let J ′ be the subspace of WQSym

spanned by the differences

(32) {Mu − Mv | u ∼ v}.

Theorem 6.1. J ′ is a two-sided ideal of WQSym, and the quotient T′ defined by

T′ = WQSym/J ′ is isomorphic to Sym as an algebra.

Moreover, let UI be the image of Mu in T′. Then

(33) UIUJ :=
∑

K

DK
I,JUK ,

where DK
I,J is computed as follows. Let K ′ and K ′′ be the compositions such that

|K ′| = |I| and either K = K ′ ·K ′′, or K = K ′ ⊲K ′′. If K ′ is not coarser than I, then

DK
I,J is 0. Otherwise,

(34) DK
I,J =

(

l(K)

l(I)

)

.

Proof – The proof follows essentially the same lines as the proof of Theorem 4.1, so we
only sketch it. In fact, the details are much simpler than for Theorem 4.1. Looking
at the definitions of the W-composition and of the convolution of packed words, it is
clear that the multiset of the W-compositions of the words in the convolution of two
packed words depends only on the W-compositions of the words. So the product is
well-defined and T′ is a quotient of WQSym.

Let us now see why the product UIUJ is given by Equations (33) and (34). Let
us choose two words u and v such that WC(u) = I, and WC(v) = J . Since there is
exactly one nondecreasing word having a given WC, we can assume that u and v are
nondecreasing. Let |v| be the size of v. Let us compute MuMv.

The idea is that a word w ∈ u∗Wv satisfies WC(w) = K iff the last |v| letters
of w have specific values, depending on K ′. Indeed, by definition of WC, if K ′ is
not coarser than I, or if K ′′ 6= J , then the coefficient of UK is zero. Now, let us fix
a composition I = (i1, . . . , il) and a composition K satisfying the conditions of the
theorem. Then any word of u∗Wv = w = u′ · v′ satisfying WC(w) = K has also |K|
different letters. Now, for all j < l, if Ij and Ij+1 come from the same part of K,
the letter u′

i1+···+ij
has to appear in v′, otherwise this letter does not appear in v′.

Hence, given the letters appearing in u′, the letters appearing in v′ are also fixed,
which completely determines v′ too (since its packed word is given). The number
of ways of choosing the letters appearing in u′ obviously is the binomial coefficient
(

l(K)
l(I)

)

.

Example 6.2. Let I = (2, 2, 1), J = (1, 3), and K = (4, 1, 1, 3). We can choose
σ = 23212 and τ = 2111. Then K ′ = (4, 1) and K ′′ = (1, 3). The coefficient of
K in UIUJ is

(

4
2

)

= 6 and, indeed, there are four packed words in the (modified)
convolution 11223∗W1222 with W-composition K:

(35) 112241333, 113341222, 112231444, 223341222.
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Those four packed words are obtained as follows: since (4, 1, 1, 3) is obtained by
gluing together the first two parts of I, this means that, if WC(w) = K, the last four
letters of w have to be the first letter of w or the one not used in its first five letters.

Note 6.3. This quotient is not a Hopf quotient, since again, J ′ is not a coideal. For
example, 221 ∼ 112 but

(36) ∆(M221) = M1 ⊗M11, and ∆(M112) = M11 ⊗ M1.

6.3. Change of bases in Sym. As in the case of permutations, we have a map
going from Sym to itself: start with the injection of Sym into WQSym, which
reads

(37) RI :=
∑

D(u)=I

Mu,

and then go from WQSym to Sym by the W-quotient homomorphism.
Let φ′ be the composition of those maps and let R′

I be the image of RI by φ′:

(38)
φ′ : Sym → T′

RI 7→ R′
I .

By definition of φ′, we have

(39) R′
I :=

∑

D(u)=I

Mu =
∑

D(u)=I

WC(u)=J

ΨJ ,

where Mu is the image of Mu by the W-quotient homomorphism. Then, since Ψ1n =
R1n and R′

1n = Mn...21 = U1n , we have φ′(Ψn) = Un for all n, so that, thanks to the
product formulas of Ψn and Un, φ′(ΨI) = UI for all compositions I.

Since the Un are algebraic generators of T′, the algebra morphism φ′ is an isomor-
phism of algebras, so that, applying φ′−1 to Equation (39), one gets

Theorem 6.4. Let I be a composition of n. Then

(40) RI =
∑

J�n

KIJΨJ ,

where KIJ is the number of permutations satisfying D(u) = I and WC(u) = J . In

particular, the KIJ are nonnegative integers.

Combining this last result with Equation (4), one then gets back Corollary 5.2.
Examples of the transition matrices are given in Section 7.2, together with the same
matrices filled with the corresponding packed words.

7. Tables

7.1. Coefficients GIJ . Here are the transition matrices from R to L (the matrices
of the coefficients GIJ) for n = 3 and n = 4, the compositions being in lexicographic
order. To save space and for better readability, 0 has been represented by a dot.
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(41) M3(R, L) =









1 . . .
. 2 1 .
. . 1 .
. . . 1









(42) M4(R, L) =























1 . . . . . . .
. 3 2 . 1 1 . .
. . 2 . 1 . . .
. . 1 3 . 2 1 .
. . . . 1 . . .
. . . . . 2 1 .
. . . . . . 1 .
. . . . . . . 1























Here are the same matrices with the list of permutations having a given recoil
composition (or descent composition of the inverse) and G-composition, instead of
their number.

(43) M3 =

GC \ Rec 3 21 12 111

3 123

21 132
312

231

12 213

111 321

(44)

M4 =

GC \ Rec 4 31 22 211 13 121 112 1111

4 1234

31 1243, 1423
4123

1342
3412

2341 2413

22 1324
3124

2314

211 3142 1432, 4132
4312

2431
4231

3241

13 2134

121 2143
4213

3421

112 3214

1111 4321

7.2. Coefficients KIJ . Here are the transition matrices from R to Ψ (the matrices
of the coefficients KIJ) for n = 3 and n = 4, the compositions being in lexicographic
order. To save space and for better readability, 0 has been represented by a dot.
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(45) M3(R, Ψ) =









1 . . .
1 2 1 .
1 . 1 .
1 2 2 1









(46) M4(R, Ψ) =























1 . . . . . . .
1 3 2 . 1 1 . .
1 . 2 . 1 . . .
1 3 5 3 2 3 1 .
1 . . . 1 . . .
1 3 2 . 2 3 1 .
1 . 2 . 2 . 1 .
1 3 5 3 3 5 3 1























Here are the same matrices with the list of packed words having a given descent
composition and W-composition, instead of their number.

(47) M
′
3 =

WC \D 3 21 12 111

3 111

21 112 121
221

212

12 122 211

111 123 132
231

312
213

321

M
′
4 =

WC \D 4 31 22 211 13 121 112 1111

4 1111

31 1112 1121, 1221
2221

2212
1212

2112 2121

22 1122 1211
2211

2122

211 1123 1132,1231
2231

1213,1312,2213
2312,3312

1321,2321
3321

2123
3123

2132,3132
3231

3213

13 1222 2111

121 1223 1232,1332
2331

1323
2313

2113
3112

2131,3121
3221

3212

112 1233 1322
2311

2133
3122

3211

1111 1234 1243,1342
2341

1324,1423,2314
2413,3412

1432,2431
3421

2134,3124
4123

2143,3142,3241
4132,4231

3214,4213
4312

4321
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