
ar
X

iv
:0

80
4.

37
81

v3
  [

m
at

h.
R

T
] 

 1
6 

D
ec

 2
00

8

HECKE GROUP ALGEBRASAS QUOTIENTS OF AFFINE HECKE ALGEBRAS AT LEVEL 0FLORENT HIVERT, ANNE SCHILLING, AND NICOLAS M. THIÉRYAbstra
t. The He
ke group algebra HW̊ of a �nite Coxeter group W̊ , asintrodu
ed by the �rst and last authors, is obtained from W̊ by gluing ap-propriately its 0-He
ke algebra and its group algebra. In this paper, we givean equivalent alternative 
onstru
tion in the 
ase when W̊ is the �nite Weylgroup asso
iated to an a�ne Weyl group W . Namely, we prove that, for q nota root of unity of small order, HW̊ is the natural quotient of the a�ne He
kealgebra H(W )(q) through its level 0 representation.The proof relies on the following 
ore 
ombinatorial result: at level 0 the 0-He
ke algebra H(W )(0) a
ts transitively on W̊ . Equivalently, in type A, a wordwritten on a 
ir
le 
an be both sorted and antisorted by elementary bubblesort operators. We further show that the level 0 representation is a 
alibratedprin
ipal series representation M(t) for a suitable 
hoi
e of 
hara
ter t, so thatthe quotient fa
tors (non-trivially) through the prin
ipal 
entral spe
ialization.This explains in parti
ular the similarities between the representation theoryof the 0-He
ke algebra H(W̊ )(0) and that of the a�ne He
ke algebra H(W )(q)at this spe
ialization. 1. Introdu
tionThe starting point of this resear
h lies in the striking similarities between therepresentation theories of the degenerate (Iwahori)-He
ke algebras on one side andof the prin
ipal 
entral spe
ialization of the a�ne He
ke algebras on the other. Forthe sake of simpli
ity, we des
ribe those similarities for type A in this introdu
tion,but they 
arry over straightforwardly to any a�ne Weyl group W and its asso
iated�nite Weyl group W̊ .The representation theory of the degenerate He
ke algebras Hn(0) for generaltype has been worked out by Norton [Nor79℄ and spe
ial 
ombinatorial featuresof type A have been des
ribed by Carter [Car86℄. In parti
ular, the proje
tivemodules PI of the type A degenerate He
ke algebra Hn(0) are indexed by subsets
I of {1, . . . , n− 1}, and the basis of ea
h PI is indexed by those permutations of nwhose des
ent set is I.On the other hand, the 
lassi�
ation of the irredu
ible �nite-dimensional rep-resentations of the a�ne He
ke algebra H̃n(q) is due to Zelevinsky [Zel80℄. Theyare indexed by simple 
ombinatorial obje
ts 
alled multisegments. However, in thiswork, we are interested in a parti
ular sub
ategory related to a 
entral spe
ializationfor whi
h the multisegments are also in bije
tion with subsets of {1, . . . , n−1}. Thisrelation is as follows. It is well known from Bernstein and Zelevinsky [BZ77℄ andLusztig [Lus83℄, that the 
enter of the a�ne He
ke algebra is the ring of symmetri
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2 FLORENT HIVERT, ANNE SCHILLING, AND NICOLAS M. THIÉRYpolynomials C[Y1, . . . , Yn]Sn in some parti
ular elements Y1, . . . , Yn su
h that asve
tor spa
e,(1) H̃n(q) ≃ Hn(q) ⊗ C[Y1, . . . , Yn] .As a 
enter, it a
ts by s
alar multipli
ation in all irredu
ible representations, andone way to sele
t a parti
ular 
lass of representations is to spe
ialize the 
enterin the algebra itself. Thus any ring morphism from C[Y1, . . . , Yn]Sn to C, or inother words any s
alar alphabet, de�nes a quotient of the a�ne He
ke algebra ofdimension(2) dim (Hn(q)) dim
(
C[Y1, . . . , Yn]/C[Y1, . . . , Yn]Sn

)
= n!2 .Let us denote by Hn(q) the quotient of H̃n(q) obtained by the prin
ipal spe
ializa-tion of its 
enter to the alphabet 1−qn

1−q
:= {1, q, . . . , qn−1}, that is(3) Hn(q) := H̃n(q) / 〈ei(Y1, . . . , Yn) − ei(1, q, . . . , qn−1) | i = 1, . . . , n〉 ,where ei denote the elementary symmetri
 polynomials. Then, in this parti
ular
ase, the multisegments of Zelevinsky are in bije
tion with subsets I of {1, . . . , n−1}and the irredu
ible representations SI of Hn(q) have their bases indexed by des
ent
lasses of permutations. Thus one expe
ts a strong link between Hn(0) and Hn(q).The goal of this paper is to explain this relation by means of the He
ke groupalgebra HW̊ introdu
ed by the �rst and the last authors [HT06, HT08℄. Indeed,by de�nition, HW̊ 
ontains naturally the degenerated He
ke algebra H(W̊ )(0) andit was shown that the simple modules of HW̊ , when restri
ted to H(W̊ )(0) forma 
omplete family of proje
tive ones. The relation 
omes from the fa
t that thereis a natural surje
tive morphism from the a�ne He
ke algebra H(W )(q) to HW̊ .As a 
onsequen
e the simple modules of HW̊ are also simple modules of H(W )(q)elu
idating the similarities. This 
an be restated as follows:Theorem 1.1. For q not a root of unity, there is a parti
ular �nite-dimensionalquotient HW̊ of the a�ne He
ke algebra H(W )(q) whi
h 
ontains the 0-He
ke al-gebra H(W̊ )(0) and su
h that any simple HW̊ module is proje
tive when restri
tedto H(W̊ )(0).The remainder of this paper is stru
tured as follows.In Se
tions 2 and 3, we brie�y review the required material on Coxeter groups,He
ke algebras, and He
ke group algebras, as well as on the 
entral theme of thispaper: the level 0 a
tion of an a�ne Weyl group W on the asso
iated �nite Weylgroup W̊ and the 
orresponding level 0 representation of the a�ne He
ke algebraon CW̊ .In Se
tion 4, we prove the 
ore 
ombinatorial property (Theorem 4.2) whi
hstates that, at level 0, the a�ne 0-He
ke algebra H(W )(0) a
ts transitively onthe 
hambers of W̊ (or equivalently on the �nite Weyl group). We �rst treattype A where Theorem 4.2 states that a word written on a 
ir
le 
an be bothsorted and antisorted by elementary bubble sort operators (expli
it (anti)sortingalgorithms are also provided for types B, C, and D). We pro
eed with a type-free geometri
 proof of Theorem 4.2. The ideas used in the proof are inspired byprivate notes on �nite-dimensional representations of quantized a�ne algebras by



HECKE GROUP ALGEBRAS AS QUOTIENTS OF AFFINE HECKE ALGEBRAS 3Kashiwara [Kas08℄, albeit reexpressed in terms of al
ove walks. We also mention
onne
tions with a�ne 
rystals.In Se
tion 5 we prove the main result of the paper, namely that for q not aroot of unity of small order, the He
ke group algebra is the natural quotient of the(extended) a�ne He
ke algebra through its representation at level 0 (Theorem 5.1).The proof relies on the results from the subsequent se
tions, namely Corollary 6.2for q = 0 and Theorem 7.7 for q non-zero and not a root of unity. Both yield aproof for generi
 q.In Se
tion 6, we derive new sets of generators for the He
ke group algebra of a�nite Weyl whi
h, together with the 
ombinatorial results of Se
tion 4 give Corol-lary 6.2.Unlike for the a�ne Weyl group W , and interestingly enough, the torus Y doesnot degenerate trivially. In Se
tion 7, we des
ribe pre
isely this degenera
y, andshow that, for a suitable 
hoi
e of 
hara
ter on Y , the level 0 representation is a
alibrated prin
ipal series representation (Theorem 7.1). This allows to us re�neTheorem 5.1 to q not a root of unity.Altogether, Theorems 5.1 and 7.1 
an be interpreted as two new equivalentalternative 
onstru
tions of the He
ke group algebra, while the latter provides aparametrized family of maximal de
ompositions of its identity into idempotents(Corollary 7.4).2. Coxeter groups, He
ke algebras, and He
ke group algebrasIn this and the next se
tion, we brie�y re
all the notations and properties ofCoxeter groups, (a�ne) Weyl groups, their He
ke and He
ke group algebras, as wellas root systems and al
ove walks that we need in the sequel. For further readingon those topi
s, we refer the reader to [Hum90, Ka
90, Ma
03, BB05, Ram06℄.2.1. Coxeter groups and their geometri
 representations. Let W be a Cox-eter group and I the index set of its Dynkin diagram. Denote by (si)i∈I its simplere�e
tions and by w0 its maximal element (when W is �nite). A presentation of Wis given by the generators si together with their quadrati
 and braid-like relations:(4) s2
i = 1 and sisj · · ·︸ ︷︷ ︸

m(i,j)

= sjsi · · ·︸ ︷︷ ︸
m(i,j)

for i 6= j,where the m(i, j)'s are integers depending on W .For J ⊂ I, write WJ for the paraboli
 subgroup generated by (si)i∈J . The leftand right des
ent sets of an element w ∈ W are respe
tively
DL(w) := {i ∈ I | siw < w} and DR(w) := {i ∈ I | wsi < w} .The Coxeter group W 
an be realized geometri
ally as follows. Take the module

h∗ := h∗
K

:=
⊕

i∈I Kαi and its K-dual h := hK :=
⊕

i∈I KΛ∨
i , with the naturalpairing 〈Λ∨

i , αj〉 = δij . The αi are the simple roots, and the Λ∨
i the fundamental
oweights. The simple 
oroots are given by α∨

i :=
∑

j ai,jΛ
∨
i , where M = (ai,j)i,j∈Iwith ai,j = 〈α∨

i , αi〉 is the (generalized) Cartan matrix for W with 
oe�
ients in aring K ⊂ R. The Coxeter group a
ts on h by the number game:(5) si(x
∨) := x∨ − 〈x∨, αi〉α∨

i for x∨ ∈ h,and on h∗ by the dual number game:(6) si(x) := x − 〈α∨
i , x〉αi for x ∈ h∗.



4 FLORENT HIVERT, ANNE SCHILLING, AND NICOLAS M. THIÉRYDenote by R := {w(αi) | w ∈ W, i ∈ I} the set of roots, and by R∨ :=
{w(α∨

i ) | w ∈ W, i ∈ I} the set of 
oroots. To ea
h root α 
orresponds the re-�e
tion sα a
ross the asso
iated 
oroot α∨ and along the hyperplane Hα whi
hsplits h into a positive H+
α and a negative half-spa
e H−

α :
Hα := {x∨ ∈ h | 〈x∨, α〉 = 0} ,

H+
α := {x∨ ∈ h | 〈x∨, α〉 > 0} ,

H−
α := {x∨ ∈ h | 〈x∨, α〉 < 0} .

(7)Take now K = R. De�ne the fundamental 
hamber as the open simpli
ial 
one
C := {x∨ | 〈x∨, αi〉 > 0, ∀i ∈ I}. For ea
h root α, the fundamental 
hamber C lieseither entirely in H+

α or in H−
α ; R splits a

ordingly into the sets of positive roots

R+ := {α ∈ R | C ⊆ H+
α } and of negative roots R− := {α ∈ R | C ⊆ H−

α } = −R+.The 
losure C of C is a fundamental domain for the a
tion of W on the Tits
one U :=
⋃

w∈W w(C), and the elements w of W are in bije
tion with the 
hambers
w(C). This bije
tion indu
es both a left and a right a
tions of W on the 
hambers.The right a
tion is parti
ularly ni
e as the 
hambers w(C) and w(C).si = wsi(C)share a 
ommon wall. Any sequen
e i1, . . . , ir gives therefore rise to a sequen
eof adja
ent 
hambers C, si1(C), si1si2(C), . . . , (si1 · · · sir

)(C) from C to w(C)(where w = si1 · · · sir
), 
alled a gallery. For short, we often denote this gallery byjust i1, . . . , ir.2.2. (Iwahori)-He
ke algebras. Let W be a Coxeter group and q1 and q2 two
omplex numbers. When de�ned, set q =: − q1

q2
. The (generi
, Iwahori) (q1, q2)-He
ke algebra H(W )(q1, q2) of W is the C-algebra generated by the operators Tisubje
t to the quadrati
 and braid-like relations:(8) (Ti − q1)(Ti − q2) = 0 and TiTj · · ·︸ ︷︷ ︸

m(i,j)

= TjTi · · ·︸ ︷︷ ︸
m(i,j)

for i 6= j.Its dimension is |W |, and a basis is given by the elements Tw := Ti1 · · ·Tir
where

w ∈ W and i1, . . . , ir is a redu
ed word for w. The right regular representation of
H(W )(q1, q2) is given by(9) TwTi =

{
(q1 + q2)Tw − q1q2Twsi

if i des
ent of w,
Twsi

otherwise.De�ne the unique operators T i su
h that Ti + T i = q1 + q2. They satisfy the samerelations as the Ti, and further TiT i = T iTi = q1q2.At q1 = 1, q2 = −1 (so q = 1), we re
over the usual group algebra C[W ] of W ; ingeneral, when q1 + q2 = 0 one still re
overs C[W ] up to a s
aling of the generators:
si = 1

q1
Ti. Note that when q1 and q2 are non-zero and q is not a root of unity

H(W )(q1, q2) is still isomorphi
 to C[W ], but in a non-trivial way. On the oppositeside, taking q1 = 0 and q2 6= 0 (so q = 0) yields the 0-He
ke algebra H(W )(0);it is also a monoid algebra for the 0-He
ke monoid {πw | w ∈ W} generated bythe idempotents πi := 1
q2

Ti. At q1 = q2 = 0, one obtains the nilCoxeter algebra.Traditionally, and depending on the appli
ation in mind, di�erent authors 
hoosedi�erent spe
ializations of q1 and q2, typi
ally q1 = q and q2 = −1 (
f. [Wik08℄),or q1 = t
1
2 and q2 = t−

1
2 (
f. for example [RY08℄). For our needs, keeping thetwo eigenvalues generi
 yields more symmetri
al formulas whi
h are also easier tospe
ialize to other 
onventions. There also exists a more general de�nition of the



HECKE GROUP ALGEBRAS AS QUOTIENTS OF AFFINE HECKE ALGEBRAS 5He
ke algebra by allowing a di�erent pair of parameters (q1, q2) for ea
h 
onjuga
y
lass of re�e
tions in W . For the sake of simpli
ity, we did not try to extend theresults presented in this paper to this larger setting, but would not expe
t spe
i�
di�
ulties either.We may realize the 0-He
ke monoid geometri
ally on h as follows. For ea
h i ∈ I,de�ne the (half-linear) idempotent πi (resp. πi) whi
h proje
ts onto the negative(resp. positive) half spa
e with respe
t to the root αi:(10) πi(x
∨) :=

{
si(x

∨) if 〈x∨, αi〉 > 0,

x∨ otherwise; πi(x
∨) :=

{
si(x

∨) if 〈x∨, αi〉 < 0,

x∨ otherwise.As with the re�e
tion si, these proje
tions map 
hambers to 
hambers. None of theproje
tions π1, . . . , πn �x the fundamental 
hamber, and (when W is �nite) all ofthem �x the negative 
hamber. The 
orresponden
e between 
hambers and Weylgroup elements indu
es an a
tion on the group W itself: this is the usual rightregular a
tions of the 0-He
ke monoid, where πi adds a left des
ent at position iif it is not readily there, and πi does the 
onverse. The a
tion of the πi's 
an bedepi
ted by a graph on W , with an i-arrow from w to w′ if πi(w) = w′. Examplesof su
h graphs are given in Figure 3 (ignoring the 0-arrows).Let CW be the ve
tor spa
e of dimension |W | spanned by W . Ex
ept for thenilCoxeter algebra (q1 = q2 = 0), the He
ke algebra H(W )(q1, q2) 
an be realizedas a
ting on CW by interpolation, mapping Ti to (q1 + q2)πi − q1si. This amountsto identify CW with the right regular representation of H(W )(q1, q2) via w 7→
q
−ℓ(w)
2 Tw, where ℓ(w) is the length of w. Through this mapping, T i = (q1 + q2)πi −

q2si.2.3. He
ke group algebras. Let now W be a �nite Coxeter group. As we havejust seen, we may embed simultaneously the He
ke algebra H(W )(0) and the groupalgebra C[W ] in End(CW ), via their right regular representations. The He
ke groupalgebra HW of W is the smallest subalgebra of End(CW ) 
ontaining them both(see [HT08℄). It is therefore generated by (πi)i∈I and (si)i∈I , and by interpolationit 
ontains all q1, q2-He
ke algebras where (q1, q2) 6= (0, 0)1.A basis for HW is given by {wπw′ | DR(w) ∩ DL(w′) = ∅}. A more 
on
eptual
hara
terization is as follows: 
all a ve
tor v in CW i-left antisymmetri
 if siv = −v;then, HW is the subalgebra of End(CW ) of those operators whi
h preserve all i-leftantisymmetries [HT08℄.3. Affine Weyl groups, He
ke algebras, and their level 0 a
tionsNow let W be an a�ne Weyl group, with index set I := {0, . . . , n} and Cartanmatrix M . We always assume that W is irredu
ible. We denote respe
tively by aiand a∨
i the 
oe�
ients of the 
anoni
al linear 
ombination annihilating the 
olumnsand rows of M , respe
tively.In the sequel, we sti
k to the number game / dual number game geometri
 settingof Se
tion 2.1. (see also Figure 1) This di�ers slightly from the usual setting fora�ne or Ka
-Moody Lie algebras [Ka
90℄; it turns out to be simpler yet su�
ientfor our purpose. Note �rst that R := {w(αi) | w ∈ W, i ∈ I} is the set of real1However, the nilCoxeter algebra does not embed naturally. More pre
isely, up to a s
alarthere is a single nilpotent element di := 1 + si − 2πi in the algebrai
 span of si and πi. A dire
t
al
ulation shows that, for example, d1 and d2 do not satisfy the braid relations.
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h0

h1ρ∨

01

Hα1,0 = Hα1 Hα1,1 = Hα0

Hα1,−2

Hα1,−1

Hα1,2

Hα1,3

s0(C) C s1(C)

s0s1(A) s0(A) A s1(A) s1s0(A)

+- +- +- +-
Λ∨

0 Λ∨
1

α∨
0 α∨

1

Figure 1. Realization of the al
ove pi
ture at the level 1 hyper-plane h1 of the 
oweight spa
e h in type A
(1)
1 .roots ; by abuse, we 
all them roots, as the imaginary roots do not play a rolefor our purposes. The geometri
 representations h∗
Z
and h de�ned in Se
tion 2.1
orrespond to the root latti
e and the 
oweight spa
e, respe
tively; we do not usethe 
entral extension by c :=

∑n
i=0 a∨

i α∨
i . As a 
onsequen
e, the 
oroot latti
e⊕

i∈I Zα∨
i does not embed faithfully in hZ (sin
e c = 0 in hZ). In parti
ular, theset of 
oroots R∨ is �nite, and (essentially) 
oin
ides with the set R̊∨ of 
oroots of

W̊ . We also keep separate the dual latti
es, without embedding them in a singleambient spa
e endowed with an inner produ
t.3.1. A�ne Weyl groups and al
ove walks. Let δ :=
∑

i∈I aiαi be the so-
allednull root2. The level of an element x∨ of h is given by ℓ(x∨) = 〈x∨, δ〉; in parti
ular,and by 
onstru
tion, all the 
oroots are of level 0. Sin
e δ is �xed by W , the a�nehyperplanes hℓ := {x∨ | 〈x∨, δ〉 = ℓ} are stabilized by W .At level 0, the a
tion cl of the a�ne Weyl group W on h0 redu
es to that of a�nite Weyl group W̊ := cl(W ); in fa
t W̊ = 〈s1, . . . , sn〉, assuming an appropriatelabeling of the Dynkin diagram. This indu
es a right a
tion of W on W̊ : for win W̊ and si ∈ W , w.si := wcl(si), where cl : W → W̊ denotes the 
anoni
alquotient map. We denote respe
tively by R̊ := {w(αi) | w ∈ W, i = 1, . . . , n} and
R̊∨ := {w(α∨

i ) | w ∈ W, i = 1, . . . , n} the sets of roots and 
oroots of W̊ . The
oroot α∨
0 is of the form α∨

0 = ǫα∨ where α∨ ∈ R̊∨+ and ǫ < 0. In the untwisted
ase, ǫ = −1 so that R∨ = R̊∨. In the other 
ases R∨ and R̊∨ may di�er by theorbit of α∨
0 .The re�e
tions in W are given by(11) {sα,m := sα−mδ | α ∈ R̊+ and m ∈ cαZ} .Here sα,m is the re�e
tion a
ross the hyperplane Hα,m := Hα−mδ along the 
oroot

α∨ of W̊ , and cα ∈ Q (cα = 1 always in the untwisted 
ase; for the twisted 
ase seeKa
 [Ka
90, Proposition 6.5℄).2Beware that this is not a root in the 
urrent setting!



HECKE GROUP ALGEBRAS AS QUOTIENTS OF AFFINE HECKE ALGEBRAS 7At level ℓ, ea
h positive root α of W̊ gives rise to a family (Hℓ
α,m)m∈cαZ of parallelre�e
tion hyperplanes (whi
h all 
ollapse to H0

α at level 0):(12) Hℓ
α,m := Hα−mδ ∩ hℓ = {x∨ ∈ hℓ | 〈x∨, α〉 = ℓm} .The Tits 
one is {x∨ | 〈x∨, δ〉 > 0}, and sli
ing it at level ℓ > 0 gives rise tothe al
ove pi
ture (see Figure 1). The fundamental al
ove A := C ∩ hℓ is a sim-plex, and the al
oves w(A) in its orbit form a tessellation of hℓ. Ea
h gallery

C, si1(C), . . . , (si1 · · · sir
)(C) indu
es an al
ove walk A, si1(A), . . . , (si1 · · · sir

)(A).As for galleries, we often denote this al
ove walk by just i1, . . . , ir.For a simple 
oroot α∨
i , let ci = cαi

and de�ne tα∨

i
= sαi,ci

sαi,0; at level ℓ,
tα∨

i
is the 
omposition of two re�e
tions along parallel hyperplanes, and a
ts as atranslation by ciℓα

∨
i . For any λ∨ =

∑n
i=1 λiα

∨
i in the 
oroot latti
e R̊∨ of W̊ , set

c(λ∨) =
∑n

i=1 ciλiα
∨
i . Then, in general, tλ∨ : h → h de�ned by(13) tλ∨(x∨) = x∨ + ℓ(x∨)c(λ∨)belongs to W . More spe
i�
ally, tλ∨ = si1 · · · sir

, where i1, . . . , ir is an al
ove walkfrom A to the translated al
ove tλ∨A. By abuse, we 
all tλ∨ a translation of W .This gives the usual semi-dire
t produ
t de
omposition W = W̊ ⋊R̊∨. In parti
ular,
cl : W 7→ W̊ is the group morphism whi
h kills the translations tλ∨ , λ∨ ∈ R̊∨.The fundamental 
hamber for W̊ is the open simpli
ial 
one

{x∨ ∈ hℓ | 〈x∨, αi〉 > 0, ∀i = 1, . . . , n} .We denote by 0ℓ the interse
tion point of its walls (Hℓ
αi

)i=1,...,n. The orientation ofthe al
ove walls is the periodi
 orientation where only points in�nitely deep insidethe fundamental 
hamber for W̊ is on the positive side of all walls. Consider an
i-
rossing for i ∈ {0, . . . , n} from an al
ove w(A) to the adja
ent al
ove wsi(A),and let Hα,m the 
rossed a�ne wall. The 
rossing is positive if wsi(A) is on thepositive side of Hα,m, and negative otherwise. For an al
ove walk i1, . . . , ik, de�ne
ǫ1, . . . , ǫr by ǫk = 1 if the kth 
rossing is positive and −1 otherwise.The height of an al
ove w(A) is given by ht(w(A)) = 1

2 (ǫ1 + · · · + ǫk), for anyal
ove walk i1, . . . , ik from A to w(A). This is well-de�ned, sin
e ǫ1+ · · ·+ǫk 
ountsthe number of hyperplanes Hα,m separating A from w(A), where those with w(A)on the positive side are 
ounted positively, and the others negatively.Remark 3.1. The height of the al
ove tλ∨(A) 
oin
ides with the height of the 
oroot
λ∨ of W̊ , ht(λ∨) := 〈λ∨, ρ̊〉, where ρ̊ := 1

2

∑
α∈R̊+ α. In parti
ular, a 
oroot is ofheight one if and only if it is a simple 
oroot (ρ̊ is also the sum of the fundamentalweights of W̊ ).Proof. For ea
h positive root α of W̊ , the family of parallel hyperplanes (Hα,m)m∈cαZ
ontributes to ǫ1 + · · · + ǫk the (relative) number of those separating ℓ

n+1ρ∨ and
ℓ

n+1ρ∨ + ℓc(λ∨); this is given by 〈λ∨, α〉. The result follows by summing up overall positive roots. �3.2. A�ne He
ke algebras. The a�ne He
ke algebra of W is H(W )(q1, q2). Inparti
ular, it is isomorphi
 to H(W̊ )(q1, q2) ⊗ C[Y ], where(14) C[Y ] := C.{Y λ∨ | λ∨ ∈ R̊∨}is the group algebra of the 
oroot latti
e. The Y λ∨ 's have an expression in terms ofthe Ti's whi
h generalizes that for translations tλ∨ in the a�ne Weyl group [Ma
03,



8 FLORENT HIVERT, ANNE SCHILLING, AND NICOLAS M. THIÉRYEquation (3.2.10)℄:(15) Y λ∨

:= (
1√−q1q2

Ti1)
ǫ1 · · · ( 1√−q1q2

Tir
)ǫr = (−q1q2)

− ht(λ∨)T ǫ1
i1

· · ·T ǫr

ir
,where i1, . . . , ir is an al
ove walk from A to tλ∨(A). The 
enter of H(W )(q1, q2) isthe subring of invariants Y W := {p ∈ Y | p.w = p}. In type A, this is the ring ofsymmetri
 fun
tions.As for W , the geometri
 realization at level 0 indu
es an a
tion cl of the 0-He
kemonoid 〈πi | i ∈ I〉 on the 
hambers of W̊ , and therefore on W̊ itself:(16) w.cl(πi) :=

{
wsi if πi(w

−1(ρ̊∨)) = w−1(ρ̊∨), that is 〈w−1(ρ̊∨), αi〉 > 0,
w otherwise,where ρ̊∨ = 1

2

∑
α∨∈R̊∨ α∨ is the 
anoni
al representative of the fundamental 
ham-ber of R̊∨. Geometri
ally, it 
an be interpreted as a quotient of the a
tion at level

ℓ by identifying a point in a 
hamber at level 0 with a point in�nitely deep in-side the 
orresponding 
hamber for W̊ at level ℓ. We re
ognize the usual a
tion of
π1, . . . , πn, where w.πi = w if i is a (right) des
ent of w and w.πi = wsi otherwise.By extension 0 is 
alled an (a�ne) des
ent if w.π0 = w. Sin
e there is no ambiguity,we write w.πi for w.cl(πi). Let us relate a�ne des
ents and positivity of 
rossings.Remark 3.2. Consider an i-
rossing for i ∈ {0, . . . , n} from an al
ove w(A) to theadja
ent al
ove wsi(A). Let Hα,m be the wall separating w(A) and wsi(A). Then
w(αi) 
an be written as w(αi) = ǫ(α − mδ), where ǫ ∈ R (in fa
t ǫ = ±1 in theuntwisted 
ase). Furthermore, the following 
onditions are equivalent:(i) The i-
rossing is positive;(ii) i is an (a�ne) des
ent of cl(w);(iii) ǫ < 0.Condition (iii) is to be interpreted as cl(w) maps αi (resp. α∨

i ) to a negative root(resp. 
oroot) for W̊ (possibly up to a positive s
alar fa
tor for i = 0 in the twisted
ase).Proof. Note that wsi(A) = wsiw
−1w(A) = sw(αi)w(A), so sw(αi) = sα,m. The formfor w(αi) follows. It remains to prove the equivalen
e between the three 
onditions.(i) ⇐⇒ (ii): Let ρ∨ = ℓ

n+1 (Λ∨
0 + · · ·+ Λ∨

n) be the 
anoni
al representative of thefundamental al
ove at level ℓ: for i in I, 〈ρ∨, αi〉 = ℓ
n+1 > 0. We 
ompute how therepresentative w(ρ∨) of w(A) is moved in the 
rossing:

wsi(ρ
∨) − w(ρ∨) = sw(αi)w(ρ∨) − w(ρ∨) = −〈w(ρ∨), w(αi)〉w(α∨

i )

= −〈ρ∨, αi〉w(α∨
i ) = − ℓ

n + 1
w(α∨

i ) .
(17)The 
rossing is positive if 〈wsi(ρ

∨) − w(ρ∨), α〉 > 0, or equivalently(18) 0 > 〈w(α∨
i ), α〉 = 〈w(α∨

i ),
1

ǫ
w(αi) + mδ〉 =

1

ǫ
〈w(α∨

i ), w(αi)〉 =
2

ǫ
,that is ǫ < 0.(i) ⇐⇒ (iii): Using (16), i is a des
ent of cl(w) if and only if:(19) 0 > 〈w−1(ρ̊∨), αi〉 = 〈ρ̊∨, w(αi)〉 = 〈ρ̊∨, ǫ(α − mδ)〉 = ǫ〈ρ̊∨, α〉 ,or equivalently ǫ < 0. �
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α∨
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α∨
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α∨
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α∨
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α∨
2

0 1 2 0 1 2 0 1 2

C̃2 = C
(1)
2 C̃∨

2 = D
(2)
3 B̃C2 = A

(2)
4Figure 2. The al
ove pi
tures and Dynkin diagrams for the threerealizations of the Coxeter group C̃2 = C

(1)
2 as an a�ne Weylgroup, drawn in the 
oweight latti
e. The sample al
ove walk isthe same as in Figure 3. Noti
e that the pi
tures are identi
al upto a diagonal deformation.By using the interpolation formula Ti = (q1+q2)πi−q1si, the level 0 a
tions cl ofthe Weyl group W and of the 0-He
ke monoid 〈πi | i ∈ I〉 on W̊ 
an be extended forany (q1, q2) 6= (0, 0) to a representation cl of the a�ne He
ke algebra H(W )(q1, q2)on CW̊ .Interestingly enough, and this is the 
entral topi
 of this paper, the algebra

cl(H(W )(q1, q2)) = 〈cl(T0), . . . , cl(Tn)〉 turns out not to be the He
ke algebra H(W̊ )(q1, q2),ex
ept at q = 1 and 
ertain roots of unity.3.3. Cartan matrix independen
e. In this subse
tion, we show that the geo-metri
 pi
ture is independent of the 
hosen generalized Cartan matrix of W (seeFigure 2). In other words, this paper is really about Coxeter groups whi
h happento have a realization as a�ne Weyl groups, and not about Weyl groups. In parti
-ular, one 
ould always assume without loss of generality that the 
hosen geometri
representation 
omes from a realization of W as an untwisted a�ne Weyl group.Let W be any Coxeter group, and M and M ′ be two symmetrizable generalizedCartan matri
es for W , and D = (di)i∈I be the diagonal matrix su
h that M ′ =
DMD−1. We denote by h and h′ the 
orresponding geometri
 realizations of W , by
h0 and h0′ the linear span of the 
oroots, et
. Consider the isomorphism d : h∗′ → h∗determined by d(α′

i) := 1
di

αi. Further �x an isomorphism d∨ : h′ → h su
h that
d∨(α∨

i
′
) := diα

∨
i (d∨ is a well-de�ned and unique isomorphism from h0′ to h0: giventhe relation between M ′ and M linear relations between the α∨

i
′'s are mapped tolinear relations between the α∨

i 's, and one 
an extend it to h).



10 FLORENT HIVERT, ANNE SCHILLING, AND NICOLAS M. THIÉRYStraightforward 
omputations show that 〈d∨(x∨), d(y)〉 = 〈x∨, y〉, si(d
∨(x∨)) =

d∨(si(x
∨)) and si(d(y)) = d(si(y)), so that d∨ and d are W -morphisms. It followsthat a root α′ = wα′

i of W in h∗′ is mapped by d∨ to a positive s
alar multiple of
α = wαi in h∗. So, d∨ preserves the hyperplane Hα and the half spa
es H+

α and
H−

α . Therefore d∨ preserves 
hambers and in parti
ular the fundamental one, theTits 
one, the bije
tion between 
hambers and elements of W ; furthermore d∨ is amorphism for the a
tion of the πi's.Assume now that W 
an be realized as an a�ne Weyl group. The a
tion of
W on the level 0-hyperplanes are isomorphi
, and thus W̊ ′ and W̊ form the samequotient of W . Also, the level 0 a
tion of W and of the 0-He
ke monoid on W̊ , andtherefore the representation of the q1, q2-a�ne He
ke algebra on CW̊ mat
h. Theset of translations (elements of W a
ting trivially at level 0) are the same, and for
λ∨ in the 
oroot latti
e of W̊ we get identi
al expressions for tλ∨ in terms of the
si's, and for Y λ∨ in terms of the Ti's.Finally, d∨ 
an be 
hosen su
h as to further preserve the level and therefore thefull al
ove pi
ture.
3.4. Expli
it (
o)ambient spa
e realizations for types An, Bn, Cn, Dn. In thesequel, we use for types An, Bn, Cn, and Dn the following ambient spa
e realizationsof the �nite 
oroot systems whi
h realize W̊ as groups of signed permutations [BB05,EE98℄. For type An, we take h = Qn+1 and for types Bn, Cn, and Dn h = Qn.Denoting by (ε∨i )i the 
anoni
al basis of Qn+1 (resp. Qn) and identifying it withits dual basis (εi)i, the simple roots are given by

Type An: αi =

{
εn+1 − ε1 for i = 0,
εi − εi+1 for 1 ≤ i ≤ n;Type Bn : αi =





−ε1 − ε2 for i = 0,
εi − εi+1 for 1 ≤ i < n,
εn for i = n;Type Cn : αi =





−2ε1 for i = 0,
εi − εi+1 for 1 ≤ i < n,
2εn for i = n;Type Dn : αi =





−ε1 − ε2 for i = 0,
εi − εi+1 for 1 ≤ i < n,
εn−1 + εn for i = n.

(20)
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tion (10) of πi on x∨ = (x1, x2, . . . ) ∈ h be
omesType An: πi(x
∨) =





(xn+1, x2, . . . , xn, x1) if i = 0 and xn+1 > x1,
(x1, . . . , xi+1, xi, . . . , xn+1) if 1 ≤ i ≤ n and xi > xi+1,
x otherwise;Type Bn: πi(x

∨) =





(−x2,−x1, x3, . . . , xn) if i = 0 and x1 + x2 < 0,
(x1, . . . , xi+1, xi, . . . , xn) if 1 ≤ i < n and xi > xi+1,
(x1, . . . , xn−1,−xn) if i = n and xn > 0,
x otherwise;Type Cn: πi(x

∨) =





(−x1, x2, . . . , xn) if i = 0 and x1 < 0,
(x1, . . . , xi+1, xi, . . . , xn) if 1 ≤ i < n and xi > xi+1,
(x1, . . . , xn−1,−xn) if i = n and xn > 0,
x otherwise;Type Dn: πi(x

∨) =





(−x2,−x1, x3, . . . , xn) if i = 0 and x1 + x2 < 0,
(x1, . . . , xi+1, xi, . . . , xn) if 1 ≤ i < n and xi > xi+1,
(x1, . . . , xn−2,−xn,−xn−1) if i = n and xn−1 + xn > 0,
x otherwise.

(21)

We may pi
k ρ∨ := (d, d−1, . . . , 1) (where d is the dimension of h) as representativeof the fundamental 
hamber for W̊ : 〈ρ∨, αi〉 > 0, for all i = 1, . . . , n. Instead of siand πi a
ting on the 
oambient spa
e, they 
an equivalently a
t on group elementsthemselves. The 
orresponden
e 
an be realized by evaluating w(ρ∨). Whereas thea
tion on the 
oambient spa
e (21) is an a
tion from the left, the a
tion on thegroup itself is an a
tion from the right.4. Transitivity of the level 0 a
tion of affine 0-He
ke algebrasIn this se
tion we state and prove the 
ore 
ombinatorial Theorem 4.2 of thispaper about transitivity of the level 0 a
tion of a�ne 0-He
ke algebras and mentionsome appli
ations to 
rystal graphs.4.1. Transitivity. We start with type An to illustrate the results. Here, ea
h πi
an be interpreted as a partial (anti)sort operator: it a
ts on a permutation (orword) w := (w1, . . . , wn+1) by ex
hanging wi and wi+1 if wi < wi+1. By bubblesort, any permutation 
an be mapped via π1, . . . , πn to the maximal permutation
w0, but not 
onversely. More pre
isely the (oriented) graph of the a
tion is theusual right permutohedron, whi
h is a
y
li
 with 1 as minimal element and w0 asmaximal element.Consider now w as written along a 
ir
le, and let π0 a
t as above with i takenmodulo n + 1. As suggested by Figure 3 for n = 2, adding the 0 edges makes thegraph of the a
tion strongly 
onne
ted.Proposition 4.1. π0, . . . , πn a
t transitively on permutations of {1, . . . , n + 1}.Proof. We start with any permutation w and identify it with w(ρ∨) =: x∨ =
(x1, . . . , xn+1). Then the πi a
t as in (21).



12 FLORENT HIVERT, ANNE SCHILLING, AND NICOLAS M. THIÉRYSuppose that the letter z = n+1 is at position k in x∨. Then π0πn · · ·πk+1πk(x∨)has letter z in position 1. The operator π̃0 = (π0πn · · ·π1)
n−1(π0πn)(π0)(πn−1 · · ·π1)a
ts in the same way as π0, ex
ept only on the last n positions:(22) z x1 x2 . . . xn−1 xn

πn−1···π1
qqx1 x2 . . . xn−1 z xn

π0
qq

x′
1 x2 . . . xn−1 z x′

n
π0πn

qq

z x2 . . . xn−1x
′
n x′

1
(π0πn···π1)

n−1
qq

z x′
1 x2 . . . xn−1 x′

nwhere x′
1 = xn and x′

n = x1 if xn > x1 and x′
1 = x1 and x′

n = xn otherwise. Inthe last step we have used that the operator π0πn · · ·π1 rotates the last n letters
y
li
ally one step to the left, leaving the letter z in position 1 un
hanged. Theresult follows by indu
tion. �Let now W̊ be any �nite Weyl group, and H(W̊ )(0) its 0-He
ke algebra. Via
π1, . . . , πn the identity of W̊ 
an be mapped to any w ∈ W̊ , but not ba
k (thegraph of the a
tion is just the Hasse diagram of the right weak Bruhat order). Nowembed W̊ in an a�ne Weyl group W , and 
onsider the extra generator π0 of its
0-He
ke algebra a
ting on W̊ . As the dominant 
hamber of W̊ is on the negativeside of Hα0 , π0 tends to map elements of W̊ ba
k to the identity (see Figure 3).Theorem 4.2. Let W be an a�ne Weyl group, W̊ the asso
iated �nite Weyl group,and π0, π1, . . . , πn the generators of the 0-He
ke algebra of W . Then, the level 0a
tion of π0, π1, . . . , πn on W̊ (or equivalently on the 
hambers of W̊ ) is transitive.We prove Theorem 4.2 by a type free geometri
 argument using Lemma 4.3below. Figure 3 illustrates the proof, and thanks to Se
tion 3.3 
overs all the rank
2 a�ne Weyl groups.Lemma 4.3 (Cf. Remark 3.5 of [Ram06℄). Let w(A) be an al
ove in the dominant
hamber of W̊ , and 
onsider a shortest al
ove walk i1, . . . , ir from A to w(A). Then,ea
h 
rossing is positive. In parti
ular, ik is a des
ent of cl(si1 · · · sik−1

).Proof. If w(A) is the fundamental al
ove A, the path is empty, and we are done.Otherwise, let Hα,m be the wall separatingw(A) from the previous al
ove si1 · · · sir−1(A).Assume that w(A) is in H−
α,m. Taking some point x∨ in w(A),(23) 0 > 〈x∨, α − δm〉 = 〈x∨, α〉 − ℓm .Then, using that w(A) is in the fundamental 
hamber, m > 1

ℓ
〈x∨, α〉 > 0. Onthe other hand, sin
e the al
ove walk is shortest, Hα,m separates w(A) and A, so

A ∈ H+
α,m. Sin
e 0ℓ is in the 
losure of A, 0 ≤ 〈0ℓ, α − δm〉 = 0 − ℓm. It followsthat m ≤ 0, a 
ontradi
tion. �Proof of Theorem 4.2. Take w ∈ W̊ , and w(A) the 
orresponding al
ove. One 
an
hoose a long enough stri
tly dominant element λ∨ of the 
oroot latti
e so that

tλ∨(w(A)) lies in the dominant 
hamber of W̊ . Consider some shortest al
ove walk
i1, . . . , ir from tλ∨(w(A)) ba
k to the fundamental al
ove A (see Figure 3). Then,in W̊ , wcl(si1) · · · cl(sir

) = 1. Furthermore, by Lemma 4.3, at ea
h step ik is nota des
ent of wcl(si1) · · · cl(sik−1
). Therefore, w.πi1 . . . πir

= wcl(si1 ) · · · cl(sir
) = 1,as desired. �
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2Figure 3. Top: Graph of the a
tion of π0, π1, . . . , πn on the �-nite Weyl group W̊ , using (signed) permutation notation.Center: The al
ove pi
ture in the ambient spa
e, with a shortestal
ove walk from an al
ove w(A) in the dominant 
hamber su
hthat cl(w) = w0 down to the fundamental al
ove A. An i-
rossingis negative if it goes down or straight to the left.Bottom: The top graph 
an be realized geometri
ally in the Stein-berg torus, quotient of the al
ove pi
ture by the translations, orequivalently by identi�
ation of the opposite edges of the funda-mental polygon. An i-arrow in the graph 
orresponds to a nega-tive i-
rossing. The al
ove walk of the 
enter �gure then be
omesa path from the antifundamental 
hamber w0(A) ba
k the funda-mental 
hamber A.



14 FLORENT HIVERT, ANNE SCHILLING, AND NICOLAS M. THIÉRYWe now exhibit a re
ursive sorting algorithm for type Bn, where the operators
πi a
t on the 
oambient spa
e as outlined in Se
tion 3.4, similar to the re
ursivesorting algorithm for type A at the beginning of this se
tion. This is an expli
italgorithm whi
h a
hieves the results of Theorem 4.2 (but not ne
essarily in the moste�
ient way). This sorting algorithm a
tually 
ontains all the ingredients for type
Cn and Dn, sin
e the Dynkin diagram of type Bn 
ontains both kinds of endings.We have also veri�ed by 
omputer that expli
it re
ursive sorting algorithms existfor the ex
eptional types; the base 
ases B2, B3, C2, and D3 
an be worked outexpli
itly. Details are available upon request.Let w be a permutation of type Bn for n ≥ 4. As before we identify w with
w(ρ∨) = x∨ = (x1, . . . , xn). We 
an bring the maximal letter z = n to any position,as z or −z:(24) x1 . . . xk−1 z xk . . . xn−1

πn−1···πk
qq

x1 x2 . . . xn−1 z
πn

qq

x1 x2 . . . xn−1 − z
π2···πn−1

qq

x1 − z x1 . . . xn−1
π0

qq

z − x1 x2 . . . xn−1
πk−1···π1

qq−x1 . . . xk−1 z xk . . . xn−1In parti
ular, we 
an move z to the left of y = n − 1 (or −z to the right of −y).The pair zy (or −y − z) 
an move around in a 
ir
le to any position by similararguments as above without disturbing any of the other letters, noting that if zyare in the last two positions of x∨, then πnπn−1πn(x∨) 
ontains −y − z in the lasttwo positions, and if −y− z is in the �rst two positions of x∨, then π0(x
∨) 
ontains

zy in the �rst two positions.Next suppose that zy o

upy the �rst two positions of x∨. We 
onstru
t π̃0 onsu
h x∨, whi
h a
ts the same way as π0, but on the last n − 2 letters:(25) z y x1 x2 · · ·xn−2
π2π1π3π2

qqx1 x2 z y · · ·xn−2
π0

qq

x′
1 x′

2 z y · · ·xn−2followed by the above 
ir
ling to move zy ba
k to position 1 and 2.Problem 4.4. We had �rst proved a variant of Proposition 4.1 with the 
y
le
(1, . . . , n) and π1, . . . , πn as operators. There, the sorting of a permutation σ in-volves de
omposing it re
ursively in terms of the following strong generating set of
Sn (as a permutation group):(26) (

((1, . . . , i)k)k=0,...,i−1

)
i=1,...n

.The sequen
e (kn, . . . , k1) des
ribing whi
h power ki of (1, . . . , i) is used for ea
hbase point i is (essentially) the �ag 
ode of σ, as de�ned in [AR01℄.Similar �ag 
odes have been de�ned for types Bn, Cn, Dn, and even for generalre�e
tion groups [ABR05, BC04, BB07℄. Do there exist related re
ursive sortingalgorithms?4.2. Strong 
onne
tivity of 
rystals. Crystal bases are 
ombinatorial bases ofmodules of quantum algebras Uq(g) as the parameter q tends to zero. They 
onsistof a non-empty set B together with raising and lowering operators ei and fi for
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Figure 4. Left: Crystal B2,1⊗B1,1 of type A
(1)
2 . By 
ontra
tionof all i-strings to a single edge i, one re
overs the left most graphof Figure 3. Right: Crystal (B1,1)⊗3 of type A
(1)
1 .

i ∈ I from B to B ∪ {0} and a weight fun
tion wt : B → P . For more informationon 
rystal theory see [HK02℄. Of parti
ular interest are 
rystals 
oming from �nite-dimensional a�ne Uq(g)-modules, where g is an a�ne Ka
-Moody algebra. These
rystals are not highest weight. In this se
tion we dedu
e from the transitivity ofthe level 0 a
tion of the 0-He
ke algebra on W̊ of Theorem 4.2 that these �nite-dimensional a�ne 
rystals are strongly 
onne
ted; that is, any two elements b, b′ ∈
B 
an be 
onne
ted via a sequen
e of operators fi: b′ = fi1 · · · fir

(b) for ij ∈ I.There is an a
tion of the Weyl group on any �nite a�ne 
rystal B de�ned by(27) si(b) =

{
f
〈α∨

i ,wt(b)〉
i (b) if 〈α∨

i , wt(b)〉 > 0,
e
−〈α∨

i ,wt(b)〉
i (b) if 〈α∨

i , wt(b)〉 ≤ 0,where b ∈ B and i ∈ I. This a
tion is 
ompatible with the weights, that is,
si(wt(b)) = wt(si(b)). In parti
ular we also have wt(πi(b)) = πi(wt(b)), where(28) πi(b) :=

{
f
〈α∨

i ,wt(b)〉
i (b) if 〈α∨

i , wt(b)〉 > 0,
b if 〈α∨

i , wt(b)〉 ≤ 0.Remark 4.5. Comparing (10) and (28), it is 
lear that if a sequen
e i1, . . . , ir issu
h that at ea
h step in πir
· · ·πi1(wt(b)) the operator πi a
ts as si, then the sameholds in πir

· · ·πi1 (b).Theorem 4.6. Let B be a �nite 
onne
ted a�ne 
rystal. Then B is strongly
onne
ted.Proof. It is su�
ient to prove that if x and y in B are in the same i0-string with
y = fa

i0
(x) for some i0 ∈ I and a > 0, then there is an f -path from y to x. Using�niteness, we may further assume without loss of generality that y = si0(x) = πi0(x)(moving for example x and y to respe
tively to top and bottom of the string).By Theorem 4.2, there exists a sequen
e i1, . . . , ir su
h that πir

· · ·πi1 (wt(y)) =
wt(x). Choose su
h a sequen
e of minimal length, so that ea
h πij

above a
ts as
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sij

. Consider p := πir
· · ·πi1πi0 , and w := sir

· · · si0 . Then, p(wt(x)) = w(wt(x)) =
wt(x). Now, p(x) might not be x, but by Remark 4.5 we may apply p repeatedly andstill have pk(x) = wk(x). Sin
e the 
rystal is �nite, eventually we will have pk(x) =
wk(x) = x. Sin
e any appli
ation of πi results from a sequen
e of appli
ations of
fi, this proves the existen
e of an f -path from y ba
k to x. �Theorem 4.6 is equivalent to [Kas08, Theorem 3.37℄.Remark 4.7. As noted in the proof of Theorem 4.6, the a
tion of the a�ne Weylgroup on a 
rystal is not ne
essarily the level 0 a
tion: only a power of p maps agiven 
rystal element x to itself pk(x) = x. Take for example x = 1 ⊗ 1 ⊗ 2in (B1,1)⊗3 of type A

(1)
1 , where Br,s denotes a Kirillov�Reshetikhin 
rystal. Thenfor p = s0s1 we have p(wt(x)) = wt(x), but only p3(x) = x as 
an be seen fromFigure 4.Remark 4.8. Interpreting the πi's as Demazure operators, Theorem 4.2 is relatedto properties of a�ne 
rystals. Let g be an a�ne Ka
�Moody algebra, W the
orresponding a�ne Weyl group, and Br,s a Kirillov�Reshetikhin 
rystal of type

g [HKO+02, OS08℄. Consider the a�ne 
rystal B := Bn,1 ⊗ Bn−1,1 ⊗ · · · ⊗ B1,1,and de�ne the Demazure operators on b ∈ B as in [Kas93℄:(29) Πi(b) =

{ ∑
0≤k≤ 〈α∨

i
,wt(b)〉 fk

i (b) if 〈α∨
i , wt(b)〉 ≥ 0 ,

−∑
1≤k≤−〈α∨

i
,wt(b)〉 ek

i (b) if 〈α∨
i , wt(b)〉 < 0 .Let Λi be the fundamental weights of g, and take for ui the unique element in Bi,1of weight Λi −Λ0. Then, the transitivity of the a
tion of H(W )(0) on W̊ is 
loselyrelated to the strong 
onne
tivity of the graph generated by Π0, . . . , Πn a
ting on

un ⊗ · · · ⊗ u1 [Kas02, FSS07℄, see Figure 4.5. He
ke group algebras as quotients of affine He
ke algebrasWe are now in the position to state the main theorem of this paper. Let W bean a�ne Weyl group and H(W )(q1, q2) its He
ke algebra. Let W̊ be the asso
iated�nite Weyl group, and HW̊ its He
ke group algebra. Then the level 0-representation(30) cl :

{
H(W )(q1, q2) → End(CW̊ )

Ti 7→ (q1 + q2)πi − q1sia
tually de�nes a morphism from H(W )(q1, q2) to HW̊ . (Note that πα and in par-ti
ular π0 is indeed an element of HW̊ : it 
an be written as πα = wπiw
−1 where

w is an element of W̊ 
onjugating α to some simple root αi.) When the Dynkindiagram has spe
ial automorphisms Ω, this morphism 
an be extended to the ex-tended a�ne He
ke algebra by sending the spe
ial Dynkin diagram automorphismsto the 
orresponding element of the �nite Weyl group W̊ .Theorem 5.1. Let W be an a�ne Weyl group. Ex
ept when q1 + q2 = 0 (andpossibly when q := − q1

q2
is a kth root of unity with k ≤ 2 ht(θ∨)), the morphism

cl : H(W )(q1, q2) → HW̊ is surje
tive and makes the He
ke group algebra HW̊ intoa quotient of the a�ne He
ke algebra H(W )(q1, q2).Proof. Here we outline the proof whi
h relies on material in the next two se
tions.When q1 + q2 = 0, the image of cl is obviously C[W̊ ] (or just {0} if q1 = q2 = 0);so the morphism is not surje
tive.
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tly Corollary 6.2 below. If q2 = 0 and q1 6= 0,then cl(T i) = q1πi, and by symmetry, we 
an also use Corollary 6.2. The theoremfollows right away for all values of q = −q1/q2 but a �nite number using a standardspe
ialization argument: take q formal, and 
onsider the family Bq obtained from
B by repla
ing ea
h πi by (1 − q)πi + qsi. This family has polynomial 
oe�
ientswhen expressed in terms of the basis {wπw′ | DR(w) ∩ DL(w′) = ∅} of HW̊ . Itsdeterminant is a polynomial in q with a non-zero 
onstant sin
e B0 is a basis. Thusit vanishes for at most a �nite number of values of q.Theorem 7.7 below allows to further redu
e the possible inappropriate values of
q to kth roots of unity with k small. Note however that Theorem 7.7 does not applyat q1 = 0 or q2 = 0. �Theorem 5.1 raises immediately the following problem, 
urrently under investi-gation together with Ni
olas Borie.Problem 5.2. Determine for whi
h roots of unity q the morphism cl is not surje
-tive. 6. Alternative generators for He
ke group algebrasIn this se
tion we show that the He
ke group algebra 
an be entirely generatedby π0, π1, . . . , πn.Proposition 6.1. Let W̊ be a �nite Coxeter group, and S be a set of roots of W̊su
h that the asso
iated proje
tions {πα | α ∈ S} a
t transitively on W̊ . Then, theHe
ke group algebra HW̊ is generated as an algebra by {πα | α ∈ S}.Proof. First note that πα is indeed an element of HW̊ : it 
an be written as πα =

wπiw
−1 where w is an element of W̊ 
onjugating α to some simple root αi. InProposition 6.4 below, we exhibit a su�
iently large family of operators whi
h arelinearly independent, be
ause they display the same triangularity property as thebasis {wπw′ | DR(w) ∩ DL(w′) = ∅} of HW̊ (see Lemma 3.8 of [HT08℄). �Corollary 6.2. Let W be an a�ne Weyl group, W̊ be the asso
iated �nite Weylgroup, and π0, . . . , πn be the proje
tions asso
iated to the roots cl(α0), . . . , cl(αn)of the �nite Weyl group. Then, the He
ke group algebra HW̊ is generated as analgebra by π0, . . . , πn.Alternatively, π0 may be repla
ed by any Ω ∈ W mapping α0 to some simpleroot, typi
ally one indu
ed by some spe
ial Dynkin diagram automorphism.Let w ∈ W̊ . An S-redu
ed word for w is a word i1, . . . , ir of minimal length su
hthat ij ∈ S and w−1.πi1 . . . πir

= 1. Sin
e the {πα | α ∈ S} a
ts transitively on
W̊ , there always exists su
h an S-redu
ed word, and we 
hoose on
e for all one ofthem for ea
h w. More generally, for a right 
oset wW̊J , we 
hoose an S-redu
edword i1, . . . , ir of minimal length su
h that there exists ν ∈ W̊Jw−1 and µ ∈ W̊Jwith ν.πi1 . . . πir

= µ.Example 6.3. In type C2, the word 0, 1, 2, 0, 1, 0 is S-redu
ed for w0 = w0
−1 =

(1, 2), where we write 1 and 2 for −1 and −2 (see Figure 3).In type A3 the word 1, 0 is S-redu
ed for 4123W̊{1,3}. Here w = 4123, ν =

w−1 = 2341, and µ = 1243. Looking at W̊J left-
osets is the Coxeter equivalent tolooking at words with repetitions: we may think of left W̊{1,3}-
osets as identifying
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−1 = 2341 by the word 1331; thisword gets sorted by π1π0 to 1133 whi
h represents W̊{1,3}.Setting ∇i := (πi − 1), de�ne the operator ∇wW̊J

:= ∇i1 · · · ∇ir
where i1, . . . , iris the 
hosen S-redu
ed word. The operator may a
tually depend on the 
hoi
e ofthe S-redu
ed word, but this is irrelevant for our purpose.Proposition 6.4. The following family forms a basis for HW̊ :(31) B := {∇

wW̊DL(w′)
πw′ | DL(w) ∩ DR(w′) = ∅} .Proof. The number of elements of B is the same as the dimension of the He
kegroup algebra by Se
tion 2.3. Corollary 6.7 shows that the elements in B arelinearly independent. This proves the 
laim. �Lemma 6.5. Let wW̊J be a right 
oset in W̊ , and i1, . . . , ir be the 
orresponding

S-redu
ed word. Set w′ = si1 · · · sir
. Then, πi1 · · ·πir

restri
ted to W̊Jw−1 a
ts byright multipli
ation by w′. In parti
ular, it indu
es a bije
tion from W̊Jw−1 to W̊J .Proof. Take ν in W̊Jw−1 su
h that ν.πi1 . . . πir
∈ W̊J . By minimality of the S-redu
ed word, no πi a
ts trivially, so ν.πi1 . . . πir
= νw′. Furthermore, πi1 · · ·πiris in HW̊ and thus preserves left-antisymmetries. Taking i ∈ I, this implies that

(siν).πi1 . . . πir
is either siνw′ or νw′. By minimality of the S-redu
ed word, thelatter 
ase is impossible: indeed if any of the πij

a
ts trivially we get a stri
tlyshorter S-redu
ed word from siν ∈ W̊Jw−1 to νw′ ∈ W̊J . Applying transitivity, weget that πi1 · · ·πir
a
ts by multipli
ation by w′ on W̊Jw−1. �Let < be any linear extension of the right Bruhat order on W̊ . Given an endomor-phism f of CW̊ , we order the rows and 
olumns of its matrix Mf := [fµν := f(ν)|µ]a

ording to < (beware that, the a
tion being on the right, Mfg = MgMf ). Denoteby init(f) := min{µ | ∃ν, fµν 6= 0} the index of the �rst non-zero row of Mf .Lemma 6.6. Let f := ∇wW̊J

. Then, for any µ ∈ W̊ , there exists a unique ν ∈ W̊su
h that the 
oe�
ient fµν is non-zero; this 
oe�
ient is either 1 or −1 (in otherwords, f is the transpose of a signed-monoidal appli
ation).In parti
ular, if µ ∈ W̊J then ν belongs to W̊Jw−1, and fµν = 1.Proof. This is 
lear if f = ∇J ; here is for example the matrix of ∇1 in type A1:(32) (
−1 0
1 0

)
.By produ
ts, this extends to any f .Take now µ ∈ W̊J . Using Lemma 6.5, let ν be the unique element in W̊Jw−1su
h that ν.πi1 . . . πir

= µ. By minimality of the S-redu
ed word, µ 
annot o

urin any other term of the expansion of(33) ν.∇i1 . . .∇ir
= ν.(πi1 − 1) . . . (πir

− 1) .Therefore, fµν = 1, and fµν′ = 0 for ν′ 6= ν. �We get as a 
orollary that the basis B is triangular.
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wW̊DL(w′)

πw′ in B. Then, init(f) = w′, and(34) fw′ν =

{
1 if ν ∈ W̊DL(w′)w

−1 ,

0 otherwise.7. He
ke group algebras and prin
ipal series representations ofaffine He
ke algebrasLet t : Y → C∗ be a 
hara
ter of the multipli
ative group Y (or equivalently ofthe additive group h∗
Z
). It indu
es a representation M(t) := t ↑H(W )(q1,q2)

C[Y ] 
alledprin
ipal series representation of the a�ne He
ke algebra H(W )(q1, q2). Sin
e
H(W )(q1, q2) = H(W̊ )(q1, q2)⊗C[Y ], this representation is of dimension |W̊ |. When
t is regular, the representation is 
alibrated : it admits a basis (Ew)w∈W̊ whi
h diag-onalizes the a
tion of Y with a distin
t 
hara
ter wt on ea
h Ew. This basis 
an be
onstru
ted expli
itly by means of intertwining operators τi whi
h skew 
ommutewith the elements of Y . We refer to [Ram03, Se
tion 2.5℄ for details. Note alsothat the 
onstru
tion of the τi operators by deformation of the Ti is reminis
ent ofYang-Baxter graphs [Las03, � 10.7℄, in whi
h t 
orresponds to a 
hoi
e of spe
tralparameters.The main result of this se
tion is that for q1, q2 6= 0 and q not a root of unity, thereexists a suitable 
hara
ter t, su
h that the level 0 representation of the a�ne He
kealgebra is isomorphi
 to the prin
ipal series representationM(t) (Theorem 7.1), andto dedu
e that the morphism cl : H(W )(q1, q2) 7→ HW̊ is surje
tive (Theorem 7.7).Theorem 7.1. Assume q1, q2 are su
h that q1, q2 6= 0 and q := − q1

q2
is not a kthroot of unity with k ≤ 2 ht(θ∨). Then, the level 0 representation of the a�ne He
kealgebra H(W )(q1, q2) is isomorphi
 to the prin
ipal series representation M(t) forthe 
hara
ter t : Y λ∨ 7→ q− ht(λ∨).Note that t(Y α∨

i ) = q−1 for any simple 
oroot. By a result of Kato [Kat81,Theorem 2.2℄ (see also [Ram03, Theorem 2.12 (
)℄) one sees right away that M(t)is not irredu
ible. Note also that this is, up to inversion, the same 
hara
ter asfor the a
tion of C[Y ] on the 
onstant Ma
donald polynomial 1 [RY08, Equation(3.4)℄.Proof. In the up
oming Lemma 7.5, we prove that w0 is an eigenve
tor for the
hara
ter t, and 
he
k that t is regular (that is the orbit W̊ t of t is of size |W̊ |). Wethen mimi
 [Ram03℄ and use the intertwining operators to expli
itly diagonalize thea
tion of Y on CW̊ in Proposition 7.3. Although this is more than stri
tly ne
essaryto prove the desired isomorphism, the results will be useful for the subsequentTheorem 7.7. �Lemma 7.2. Let i1, . . . , ir be an al
ove walk from the fundamental al
ove, and
ǫ1, . . . , ǫr as de�ned in Se
tion 3.1. Then,(35) w0.T

ǫ1
i1

· · ·T ǫr

ir
= qǫ1+···+ǫr

2 w0si1 · · · sir
.Proof. Take w ∈ W̊ , and i ∈ {0, . . . , n}. If i is not a des
ent of w, then, using (30):(36) w.Ti = w.cl(Ti) = w. ((q1 + q2)πi − q1si) = w((q1 + q2)si − q1si) = q2wsi .Inverting this equation yields that, when i is a des
ent of w, w.T−1

i = q−1
2 wsi.
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on
lude by indu
tion sin
e ǫk = 1 if and only if ik is a des
ent of wk−1 =
si1 · · · sik−1

(
f. Remark 3.2), that is not a des
ent of w0si1 · · · sik−1
. �Proposition 7.3. Assuming the same 
onditions as in Theorem 7.1, there existsa basis (Ew)

w∈W̊
of CW̊ whi
h diagonalizes simultaneously all Y λ∨ :(37) Ew.Y λ∨

= (wt)(Y λ∨

)Ew ,where (wt)(Y λ∨

) := q− ht(w(λ∨)). In parti
ular, the eigenvalue for Y λ∨ on Ew is
q−1 if and only if w(λ∨) is a simple 
oroot.Note that a
ting with T i's instead, or equivalently de�ning Ti's in term of theoperators πi's would allow to revert the pi
ture and use 1 as initial eigenve
torinstead of w0. We also get the following side result on the He
ke group algebra.Proof. First note that t is regular; indeed, ρ̊ is regular, and q is not a kth root ofunity with k too small, so one 
an use(38) (wt)(Y α∨

i ) = q− ht(w(α∨

i )) = q−〈α∨

i ,w−1(ρ̊)〉to re
over the 
oordinates of w(ρ̊) on ea
h ith fundamental weight. For the samereason, (wt)(Y α∨

i ) is never 1.We �rst prove in Lemma 7.5 that E1 = w0 is an appropriate eigenve
tor, andthen de�ne intertwining operators τi to 
onstru
t the other Ew (Lemma 7.6). �Corollary 7.4. Ea
h 
hoi
e of q1 and q2 as in Theorem 7.1 determines in HW̊a maximal de
omposition of the identity into idempotents, namely, 1 =
∑

w∈W pw,where pw is the proje
tion onto Ew, orthogonal to all Ew′ , w′ 6= w.Proof. Sin
e t is regular, one 
an 
onstru
t ea
h pw from cl(Y α∨

1 ), . . . , cl(Y α∨

n ) ∈
HW̊ by multivariate Lagrange interpolation. Therefore pw belongs to HW̊ . �Lemma 7.5. Let w0 be the maximal element of W̊ in CW̊ , and λ∨ an elementof the (�nite) 
oroot latti
e. Then w0 is an eigenve
tor for Y λ∨ with eigenvalue
q− ht(λ∨).Proof. Let i1, . . . , ir be an al
ove walk for the translation tλ∨ . Then, si1 · · · sir

a
tstrivially on the �nite Weyl group: w0si1 · · · sir
= w0. Therefore,

w0.Y
λ∨

= w0.(−q1q2)
− ht(λ∨)T ǫ1

i1
· · ·T ǫr

ir

= (−q1q2)
− 1

2 (ǫ1+···+ǫr)q
(ǫ1+···+ǫr)
2 w0si1 . . . sir

=

(
−q1

q2

)− 1
2 (ǫ1+···+ǫr)

w0 = q− ht(λ∨)w0 ,

(39)using Equation (15), Lemma 7.2, and Remark 3.1. �As in [RY08℄, de�ne τi := Ti − q1+q2

1−Y
−α∨

i
∈ End(CW̊ ) for i = 1, . . . , n. Note thatthis operator is a priori only de�ned for eigenve
tors of Y −α∨

i for an eigenvalue
6= 1. Whenever they are well-de�ned, they satisfy the braid relations, as well as thefollowing skew-
ommutation relation: τiY

λ∨

= Y si(λ
∨)τi. Therefore, τi sends an

Y -weight spa
e for the 
hara
ter wt to an Y -weight spa
e for the 
hara
ter wsit.For w ∈ W̊ , de�ne Ew := w0.τi1 · · · τir
where i1, . . . , ir is any redu
ed word for

w.
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w∈W̊

are well-de�ned, and triangular with respe
t to the
anoni
al basis of CW̊ :(40) Ew = (−q1)
ℓ(w)w0w +

∑

w′>w0w

cw,w′w′ ,for some 
oe�
ients cw,w′ ∈ C. In parti
ular, the Ew are all non-zero.Proof. The de�nition of Ew does not depend on the 
hoi
e of the redu
ed wordthanks to the braid relations. Furthermore, at ea
h step the appli
ation of τi on
Ewsi

is well-de�ned be
ause (wsit)Y
−α∨

i 6= 1.The triangularity is easily proved by indu
tion: when i is not a des
ent of w:(41) Ewsi
= Ew.τi = Ew.

(
(q1 + q2)πi − q1si −

q1 + q2

1 − Y −α∨

i

)
,and only the se
ond term 
an 
ontribute to the 
oe�
ient of w0w. �Theorem 7.7. The morphism cl from the a�ne He
ke algebra H(W )(q1, q2) to theHe
ke group algebra HW̊ is surje
tive for q1, q2 as in Theorem 7.1.Proof. Consider the de
omposition 1 =

∑
w∈W pw of the identity of HW̊ given inCorollary 7.4.Writing (1−Y −α∨

i )−1 =
∑

w∈W̊ pw(1−Y −α∨

i )−1 =
∑

w∈W̊ pw(1−(wt)(Y −α∨

i ))−1shows that 1−Y −α∨

i is invertible not only in End(CW̊ ) but even inside cl(H(W )(q1, q2)).Therefore τi = Ti − q1+q2

1−Y
−α∨

i
also belongs to cl(H(W )(q1, q2)).Consider the operator pwτi whi
h kills all eigenspa
es C.Ew′ , w 6= w′, and sendsthe eigenspa
e C.Ew to C.Ewsi
.The 
alibration graph is the graph on W with an arrow from w to wsi if pwτi 6=

0, or equivalently if Ew.τi 6= 0. We 
laim that this is the 
ase if and only if
DL(w) ⊂ DL(wsi). Take indeed w ∈ W with a non-des
ent at position i. Then,
DL(w) ⊂ DL(wsi) and by Lemma 7.6, Ew.τi = Ewsi

6= 0. Next, there is no arrowba
k from wsi to w if and only if Ew.(τi)
2 = 0. Using the quadrati
 relation satis�edby τi,(42) τ2

i =
(q1 + q2Y

α∨

i )(q1 + q2Y
−α∨

i )

(1 − Y α∨

i )(1 − Y −α∨

i )
,this is the 
ase if ht(w(α∨

i )) = ±1. Sin
e i is not a des
ent of w, this is equivalentto w(α∨
i ) = −α∨

j for some simple 
oroot α∨
j , that is wsi = sjw. In turn, this isequivalent to DL(wsi) = DL(sjw) ) DL(w), whi
h 
on
ludes the 
laim.For ea
h w and w′ with DL(w) ⊂ DL(w′) there exists a path i1, . . . , ir from wto w′ in the 
alibration graph; 
hoose one, and set τw,w′ = τi1 · · · τir

. The followingfamily(43) {pwτw,w′ | DL(w) ⊂ DL(w′)}is linearly independent, and by dimension 
omparison with HW̊ forms a basis
cl(H(W )(q1, q2)). Therefore, cl(H(W )(q1, q2)) = HW̊ . �
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