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The Hecke group algebra HW̊ of a finite Coxeter group W̊ , as introduced by the first and last author, is obtained from
W̊ by gluing appropriately its 0-Hecke algebra and its group algebra. In this paper, we give an equivalent alternative
construction in the case when W̊ is the classical Weyl group associated to an affine Weyl group W . Namely, we
prove that, for q not a root of unity, HW̊ is the natural quotient of the affine Hecke algebra H(W )(q) through its
level 0 representation. The proof relies on the following core combinatorial result: at level 0 the 0-Hecke algebra acts
transitively on W̊ . Equivalently, in type A, a word written on a circle can be both sorted and antisorted by elementary
bubble sort operators. We further show that the level 0 representation is a calibrated principal series representation
M(t) for a suitable choice of character t, so that the quotient factors (non trivially) through the principal central
specialization. This explains in particular the similarities between the representation theory of the classical 0-Hecke
algebra and that of the affine Hecke algebra at this specialization.

L’algèbre de Hecke groupe HW̊ d’un groupe de Coxeter fini W̊ , introduite par le premier et le dernier auteur, est
obtenue en recollant de manière appropriée son algèbre de Hecke dégénérée et son algèbre de groupe. Dans cet
article, nous donnons une construction alternative dans le cas où W̊ est un groupe de Weyl associé à un groupe
de Weyl affine W . Plus précisément, nous montrons que quand q n’est ni nul ni une racine de l’unité, HW̊ est le
quotient naturel de l’algèbre de Hecke affine H(W̊ )(q) dans sa représentation de niveau 0. Nous montrons de plus
que la représentation de niveau 0 est une représentation de série principale calibrée M(t) pour un certain caractère
t, de sorte que le quotient se factorise par la spécialisation centrale principale. Ce fait explique en particulier les
similarités entre les théories des représentations de l’algèbre de Hecke dégénérée et de l’algèbre de Hecke affine sous
cette spécialisation.

Keywords: Coxeter groups, (affine) Weyl groups, (affine) Hecke algebras

1 Introduction
The starting point of this research lies in the striking similarities between the representation theories of the
degenerate (Iwahori-)Hecke algebras on one side and of the principal central specialization of the affine
Hecke algebras on the other. For the sake of simplicity, we describe those similarities for type A in this
introduction, but they carry over straightforwardly to any affine Weyl groupW and its associated classical
Weyl group W̊ .
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The representation theory of the degenerate Hecke algebras Hn(0) for general type has been worked out
by Norton [Nor79] and special combinatorial features of type A have been described by Carter [Car86].
In particular, the projective modules PI of the type A degenerate Hecke algebra Hn(0) are indexed by
subsets I of {1, . . . , n−1}, and the basis of each PI is indexed by those permutations of n whose descent
set is I .

On the other hand, the classification of the irreducible finite dimensional representations of the affine
Hecke algebra is due to Zelevinsky [Zel80]. They are indexed by simple combinatorial objects called
multisegments. However, in this work, we are interested in a particular subcategory related to a central
specialization for which the multisegments are also in bijection with subsets of {1, . . . , n − 1}. This
relation is as follows. It is well known from Bernstein-Zelevinsky [BZ77] and Lusztig [Lus83], that
the center of the affine Hecke algebra is the ring of symmetric polynomials C[Y1, . . . , Yn]Sn in some
particular elements Y1, . . . , Yn such that as vector space,

H̃n(q) ' Hn(q)⊗ C[Y1, . . . , Yn] . (1)

As a center, it acts by scalar multiplication in all irreducible representations, and one way to select a
particular class of representations is to specialize the center in the algebra itself. Thus any ring morphism
from C[Y1, . . . , Yn]Sn to C, or in other words any scalar alphabet, defines a quotient of the affine Hecke
algebra of dimension

dim (Hn(q)) dim
(
C[Y1, . . . , Yn]/C[Y1, . . . , Yn]Sn

)
= n!2 . (2)

Let us denote by Hn(q) the quotient of H̃n(q) obtained by the principal specialization of its center to the
alphabet 1−qn

1−q := {1, q, . . . , qn−1}, that is

Hn(q) := H̃n(q) / 〈ei(Y1, . . . , Yn)− ei(1, q, . . . , qn−1) | i = 1, . . . , n〉 , (3)

where ei denote the elementary symmetric polynomials. Then, in this particular case, the multisegments
of Zelevinsky are in bijection with subsets I of {1, . . . , n − 1} and the irreducible representations SI
of Hn(q) have their bases indexed by descent classes of permutations. Thus one expects a strong link
between Hn(0) andHn(q).

The goal of this paper is to explain this relation by means of the Hecke group algebra HW̊ introduced by
the first and the last authors [HT06, HT07]. Indeed, by definition, HW̊ contains naturally the degenerated
Hecke algebra H(W̊ )(0) and it was shown that the simple modules of HW̊ , when restricted to H(W̊ )(0)
form a complete family of projective ones. The relation comes from the fact that there is a natural surjec-
tive morphism from the affine Hecke algebra H(W )(q) to HW̊ . As a consequence the simple modules of
HW̊ are also simple modules of H(W )(q) elucidating the similarities. This can be restated as follows:

Theorem 1.1. For q not a root of unity, there is a particular finite dimensional quotient HW̊ of the affine
Hecke algebra H(W )(q) which contains the 0-Hecke algebra H(W̊ )(0) and such that any simple HW̊
module is projective when restricted to H(W̊ )(0).

The remainder of this paper is structured as follows.
In Sections 2 and 3, we briefly review the required material on Coxeter groups, Hecke algebras, and

Hecke group algebras, as well as on the central theme of this article: the level 0 action of an affine Weyl
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group W on the associated classical Weyl group W̊ and the corresponding level 0 representation of the
affine Hecke algebra on CW̊ .

In Section 4, we prove the core combinatorial property (Theorem 4.2) which states that an affine 0-
Hecke algebra acts at level zero transitively on the classical chambers (or equivalently on the classical
Weyl group). We first treat type A where Theorem 4.2 states that a word written on a circle can be
both sorted and antisorted by elementary bubble sort operators (explicit (anti)sorting algorithms are also
provided for types B,C, and D). We proceed with a type-free geometric proof of Theorem 4.2. The ideas
used in the proof are inspired by private notes on finite-dimensional representations of quantized affine
algebras by Kashiwara [Kas08], albeit reexpressed in terms of alcove paths. In Section 5, we derive new
sets of generators for the Hecke group algebra of a finite Weyl group, and in Section 6 we prove the
main result of the paper, namely that for generic q, the Hecke group algebra is the natural quotient of the
(extended) affine Hecke algebra through its representation at level 0 (Theorem 6.1). Interestingly enough,
and unlike for the affine Weyl groupW , the torus Y does not degenerate trivially. In Section 7, we describe
exactly this degeneracy, and show that, for a suitable choice of character on Y , the level 0 representation
is a calibrated principal series representation (Theorem 7.1). This allows to refine Theorem 6.1 to q not
a root of unity. Altogether, Theorems 6.1 and 7.1 can be interpreted as two new equivalent alternative
constructions of the Hecke group algebra, while the latter provides a parametrized family of maximal
decompositions of its identity into idempotents (Corollary 7.3).

A long version of this extended abstract, containing proofs, further figures, and applications, is available
at arXiv:0804.3781v1 [math.RT].

2 Coxeter groups, Hecke algebras, and Hecke group algebras
In this and the next section, we briefly recall the notations and properties of Coxeter groups, Weyl groups,
their Hecke and Hecke group algebras that we need in the sequel. For further reading on those topics, we
refer the reader to [Hum90, Kac90, BB05].

2.1 Coxeter groups and their geometric representations
Let W be a Coxeter group and I the index set of its Dynkin diagram. Denote by si for i ∈ I its simple
reflections and w0 its maximal element (when W finite). For J ⊂ I , write WJ for the parabolic subgroup
generated by (si)i∈J . The left and right descent sets of an element w ∈ W are respectively DL(w) and
DR(w).

Fixing a (generalized) Cartan matrix M = (mi,j)i,j∈I for W with coefficients in a ring K ⊂ R,
allows for realizing W geometrically. Take the module h∗ := h∗K :=

⊕
i∈I Kαi and its K-dual h :=

hK :=
⊕

i∈I KΛ∨i , with the natural pairing 〈Λ∨i , αj〉 = δij . The αi are the simple roots, and the Λ∨i the
fundamental coweights. The simple coroots are given by α∨i :=

∑
jmi,jΛ∨i . The Coxeter group acts on

h by the number game:
si(x∨) := x∨ − 〈x∨, αi〉α∨i for x∨ ∈ h, (4)

and on h∗ by the dual number game:

si(x) := x− 〈α∨i , x〉αi for x ∈ h∗. (5)

Denote by R := {w(αi) | w ∈ W, i ∈ I} the set of roots, and by R∨ := {w(α∨i ) | w ∈ W, i ∈ I} the
set of coroots. To each root α corresponds the reflection sα across the associated coroot α∨ and along the
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hyperplane Hα which splits h into a positive H+
α and a negative half-space H−α :

Hα := {x∨ ∈ h | 〈x∨, α〉 = 0} H+
α := {x∨ ∈ h | 〈x∨, α〉 > 0} H−α := {x∨ ∈ h | 〈x∨, α〉 < 0} .

Take now K = R. Define the fundamental chamber as the open simplicial cone C := {x∨ | 〈x∨, αi〉 >
0,∀i ∈ I}. For each root α, the fundamental chamber C lies either entirely in H+

α or in H−α ; R splits
accordingly into the sets of positive roots R+ and of negative roots R−, and similarly for coroots.

The closure C of C is a fundamental domain for the action of W on the Tits cone U :=
⋃
w∈W w(C),

and the elements w of W are in bijection with the chambers w(C). This bijection induces both a left
and a right action of W on the chambers. The right action is particularly nice as the chambers w(C) and
w(C).si = wsi(C) share a common wall. Any sequence i1, . . . , ir gives therefore rise to a sequence of
adjacent chambers C, si1(C), si1si2(C), . . . , si1 · · · sir (C) from C to w(C) (where w = si1 · · · sir ),
called a gallery. By abuse of notation we denote the gallery also by i1, . . . , ir.

2.2 (Iwahori)-Hecke algebras
Let W be a Coxeter group and q1 and q2 two complex numbers. When defined, set q =: − q1q2 . The
(generic, Iwahori) (q1, q2)-Hecke algebra H(W )(q1, q2) of W is the C-algebra generated by the operators
Ti subject to the same braid-like relations as the operators si of W , and to the quadratic relation (Ti −
q1)(Ti − q2) = 0. Its dimension is |W |, and a basis is given by the elements Tw := Ti1 · · ·Tir where
w ∈W and i1, . . . , ir is a reduced word for w.

At q1 = 1, q2 = −1 (so q = 1), we recover the usual group algebra C[W ] of W ; in general, when
q1 + q2 = 0 one still recovers C[W ] up to a scaling of the generators: si = 1

q1
Ti. On the opposite

side, taking q1 = 0 and q2 6= 0 (so q = 0) yields the 0-Hecke algebra; it is also a monoid algebra for
the 0-Hecke monoid {πw | w ∈ W} generated by the idempotents πi := 1

q2
Ti. At q1 = q2 = 0, one

obtains the NilCoxeter algebra. Traditionally, and depending on the application in mind, different authors
choose different specializations of q1 and q2, typically q1 = q and q2 = −1 (cf. [Wik08]), or q1 = t

1
2

and q2 = t−
1
2 (cf. for example [RY08]). For our needs, keeping the two eigenvalues generic yields more

symmetrical formulas which are also easier to specialize to other conventions.
Define the unique operators T i such that Ti + T i = q1 + q2. They satisfy the same relations as the Ti,

and further TiT i = T iTi = q1q2.
We may realize the 0-Hecke monoid geometrically on h as follows. For each i ∈ I , define the (half-

linear) idempotent πi (resp. πi) which projects onto the negative (resp. positive) half space with respect
to the root αi:

πi(x∨) :=

{
si(x∨) if 〈x∨, αi〉 > 0,
x∨ otherwise;

πi(x∨) :=

{
si(x∨) if 〈x∨, αi〉 < 0,
x∨ otherwise.

(6)

As the reflection si, these projections map chambers to chambers. None of the projections π1, . . . , πn fix
the fundamental chamber, and (when W is finite) all of them fix the negative chamber. The correspon-
dence between chambers and Weyl group elements induces an action on the group W itself: this is the
usual right regular actions of the 0-Hecke monoid, where πi adds a left descent at position i if it is not
readily there, and πi does the converse. This definition can be extended to any root α by calling α∨ a
descent of w if w(α∨) is a negative coroot, and defining πα accordingly. The action of the πi’s can be
depicted by a graph on W , with an i-arrow from w to w′ if πi(w) = w′. Examples of such graphs are
given in Figure 1.
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Except for the nilCoxeter algebra (q1 = q2 = 0), the Hecke algebra H(W )(q1, q2) can be realized as
acting on CW by interpolation, mapping Ti to (q1 + q2)πi − q1si. Indeed, by identifying each w ∈ CW
with Tw, one recovers the right regular representation of H(W )(q1, q2), where

TwTi =

{
(q1 + q2)Tw − q1Twsi if i descent of w,
q2Twsi otherwise.

(7)

Through this mapping, T i = (q1 + q2)πi − q2si.

2.3 Hecke group algebras
Let W be a finite Coxeter group, and CW the vector space of dimension |W | it spans. As we have
just seen, we may embed simultaneously the Hecke algebra H(W )(0) and the group algebra C[W ] in
End(CW ), via their right regular representations. The Hecke group algebra HW of W is the smallest
subalgebra of End(CW ) containing them both (see [HT07]). It is therefore generated by (πi)i∈I and
(si)i∈I , and by interpolation it contains all q1, q2-Hecke algebras but the nilCoxeter algebra. A basis for
HW is given by {wπw′ | DR(w) ∩ DL(w′) = ∅}. A more conceptual characterization is as follows: call
a vector v in CW i-left antisymmetric if siv = −v; then, HW is the subalgebra of End(CW ) of those
operators which preserve all i-left antisymmetries.

3 Affine Weyl groups, Hecke algebras, and their level 0 actions
Let now W be an affine Weyl group, with index set I := {0, . . . , n} and Cartan matrix M . We always
assume that W is irreducible. We denote respectively by ai and a∨i the coefficients of the canonical linear
combination annihilating the columns and rows of M , respectively.

The geometric setting described in Section 3.1 differs slightly from the usual one [Kac90]; it turns out
to be simpler yet sufficient for our purpose. Note first that R := {w(αi) | w ∈ W, i ∈ I} is the set
of real roots; by abuse, we call them roots, as the imaginary roots do not play a role for our purposes.
The geometric representations h∗Z and h defined in Section 2.1 correspond to the root lattice and the
coweight space respectively; however, we use neither the inner product, nor the central extension by
c :=

∑n
i=0 a

∨
i α
∨
i . As a consequence, the coroot lattice

⊕
i∈I Zα∨i does not embed faithfully in hZ (since

c = 0 in hZ), which has the effect of (almost) identifying affine coroots and classical coroots. We also do
not make use of the inner product.

3.1 Affine Weyl groups and alcove walks
Let δ :=

∑
i∈I aiαi be the so-called null root. The level of an element x∨ of h is given by `(x∨) =

〈x∨, δ〉; in particular, and by construction, all the coroots are of level 0. Since δ is fixed by W , the affine
hyperplanes h` := {x∨ | 〈x∨, δ〉 = `} are stabilized by W .

At level 0, the action cl of the affine Weyl group W on h̊ reduces to that of a classical finite Weyl group
W̊ := cl(W ); assuming an appropriate labeling of the Dynkin diagram W̊ = 〈s1, . . . , sn〉. This induces
a right action of W on W̊ : for w in W̊ and si ∈ W , w.si := wcl(si), where cl : W → W̊ denotes
the canonical quotient map. We denote respectively by R̊ and R̊∨ the sets of classical roots and classical
coroots.

The reflections in W are given by

{sα,m := sα−mδ | α ∈ R̊+ and m ∈ cαZ} . (8)
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Here sα,m is the reflection across the hyperplane Hα,m := Hα−mδ along the classical coroot α∨, and
cα ∈ Q (cα = 1 always in the untwisted case; for the twisted case see Kac [Kac90, Proposition 6.5]).
Accordingly, in hZ, each coroot α∨ can be written in a unique way as α∨ = t cl(α∨), where cl(α∨)
is a classical coroot, and t ∈ Q+. By construction, cl is compatible with the action: cl(w(α∨)) =
cl(w)(cl(α∨)). Furthermore, cl(α∨i ) = α∨i for i = 1, . . . , n and, in the untwisted case t is always 1 and
cl(α∨0 ) = −θ∨ where θ∨ is the highest classical coroot.

At level `, each classical positive root α gives rise to a family (H`
α,m)m∈cαZ of parallel reflection

hyperplanes (which all collapse to H0
α at level 0):

H`
α,m := Hα−mδ ∩ h` =

{
x∨ ∈ h` | 〈x∨, α〉 = `m

}
. (9)

The Tits cone is {x∨ | 〈x∨, δ〉 > 0}, and slicing it at level ` > 0 gives rise to the alcove picture. The
fundamental alcove A := C ∩ h` is a simplex, and the alcoves w(A) in its orbit form a tessellation of h`.
We call classical fundamental chamber the open simplicial cone {x∨ ∈ h` | 〈x∨, αi〉 > 0,∀i = 1, . . . , n},
and denote by 0` the intersection point of its walls (H`

αi)i=1,...,n. Galleries C, si1(C), . . . , si1 · · · sir (C)
induce alcove walks A, si1(A), . . . , si1 · · · sir (A).

Consider an i-crossing for i ∈ {0, . . . , n} from an alcove w(A) to the adjacent alcove wsi(A), and
let Hα,m the crossed affine wall. The crossing is positive if wsi(A) is on the positive side of Hα,m, and
negative otherwise.

Remark 3.1. The crossing is positive if and only if cl(w)(cl(α∨i )) is a classical negative coroot, that is i
is a descent of cl(w).

Given an alcove path i1, . . . , ir, define ε1, . . . , εr by εk = 1 if the k-th crossing is positive and −1
otherwise. Denote respectively by #+ = |{i | εi = 1}| and #− = |{i | εi = −1}| the number of positive
and negative crossings. Define the height ht(w(A)) of an alcovew(A) withw = si1 · · · sir as the (signed)
number of hyperplanes Hα,m separating A from w(A), where each hyperplane is counted positively if
w(A) is on the positive side of H and negatively otherwise. This is given by ht(w(A)) = 1

2 (# +−#−)
for any alcove path from A to w(A).

For a simple coroot α∨i , let ci = cαi and define tα∨i = sαi,cisαi,0; at level `, tα∨i is the composition of
two reflections along parallel hyperplanes, and acts as a translation by ci`α∨i . For any λ∨ =

∑n
i=1 λiα

∨
i

in the classical coroot lattice h̊∗Z, set c(λ∨) =
∑n
i=1 ciλiα

∨
i . Then in general, tλ∨ : h → h defined by

tλ∨(x∨) = x∨ + `(x∨)c(λ∨) (10)

belongs to W . More specifically, tλ∨ = si1 · · · sir , where i1, . . . , ir is an alcove walk from A to the
translated alcove tλ∨A.

Remark 3.2. The height of the alcove tλ∨(A) coincides with the height of the classical coroot λ∨,
ht(λ∨) := 〈λ∨, ρ̊〉, where ρ̊ := 1

2

∑
α∈R̊+ α. In particular, a coroot is of height one if and only if it

is a simple coroot (ρ̊ is also the sum of the fundamental weights).

3.2 Affine Hecke algebras

The Hecke algebra H(W )(q1, q2) of W is affine. In particular, it is isomorphic to H(W̊ )(q1, q2)⊗ C[Y ],
where C[Y ] := C.{Y λ∨ | λ∨ ∈ h̊∗Z} is the group algebra of the coroot lattice. The Y λ

∨
’s have an
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expression in terms of the Ti’s which generalizes that for translations tλ∨ in the affine Weyl group [Mac03,
Equation (3.2.10)]:

Y λ
∨

:= (
1√
−q1q2

Ti1)ε1 · · · ( 1√
−q1q2

Tir )
εr = (−q1q2)− ht(λ∨)T ε1i1 · · ·T

εr
ir
, (11)

where i1, . . . , ir is an alcove walk from A to tλ(A). The center of H(W )(q1, q2) is the subring of invari-
ants YW := {p ∈ Y | p.w = p}. In type A, this is the ring of symmetric functions.

As forW , the geometric realization at level 0 induces an action cl of the 0-Hecke monoid 〈πi | i ∈ I〉 of
W on W̊ or equivalently on its classical chambers. Namely, for w ∈ W̊ , and i ∈ {0, . . . , n}, w.πi := w
if i is a descent of w and w.πi := wsi otherwise. This extends for all q1, q2 to a representation cl of the
affine Hecke algebra H(W )(q1, q2) on CW̊ .

Interestingly enough, and this is the central topic of this paper, the algebra cl(H(W )(q1, q2)) turns out
not to be the classical Hecke algebra H(W̊ )(q1, q2), except at q = 1 and certain roots of unity.

4 Transitivity of the level 0 action of affine 0-Hecke algebras
In this section we state and prove the core combinatorial Theorem 4.2 of this paper about transitivity of
the level 0 action of affine 0-Hecke algebras and mention some applications to crystal graphs.

We start with type An to illustrate the results. Here, each πi can be interpreted as a partial (anti)sort
operator: it acts on a permutation (or word) w := (w1, . . . , wn+1) by exchanging wi and wi+1 if wi <
wi+1. By bubble sort, any permutation can be mapped via π1, . . . , πn to the maximal permutation w0, but
not conversely. More precisely the (oriented) graph of the action is the usual right permutohedron, which
is acyclic with 1 as minimal element and w0 as maximal element.

Consider now w as written along a circle, and let π0 act as above with i taken modulo n + 1. As
suggested by Figure 1 for n = 2, adding the 0 edges makes the graph of the action strongly connected.

Proposition 4.1. π0, . . . , πn act transitively on permutations of {1, . . . , n+ 1}.
We start with any permutation w and identify it with w(%∨) =: x∨ = (x1, . . . , xn+1), where %∨ =

(n + 1, . . . , 1).Suppose that the letter z = n + 1 is at position k in x∨. Then π0πn · · ·πk+1πk(x∨) has
letter z in position 1. The operator π̃0, which acts in the same way as π0, but only on the last n positions,
is defined as follows:

z x1 x2 . . . xn−1 xn
πn−1···π1qqx1 x2 . . . xn−1 z xn
π0qq

x′1 x2 . . . xn−1 z x
′
n

π0πnqq
z x2 . . . xn−1x

′
n x
′
1

(π0πn···π1)n−1qq
z x′1 x2 . . . xn−1 x

′
n

(12)

where x′1 = xn and x′n = x1 if xn > x1 and x′1 = x1 and x′n = xn otherwise. In the last step we have
used that the operator π0πn · · ·π1 rotates the last n letters cyclically one step to the left, leaving the letter
z in position 1 unchanged.

Let now W̊ be any finite Weyl group, and H(W̊ )(0) its 0-Hecke algebra. Via π1, . . . , πn the identity of
W̊ can be mapped to any w ∈ W̊ , but not back (the graph of the action is just the Hasse diagram of the
right weak Bruhat order). Embed now W̊ in an affine Weyl group W , and consider the extra generator π0
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Fig. 1: Top: Graph of the action of π0, π1, . . . , πn on the classical Weyl group W̊ , using (signed) permutation
notation. Bottom: The top graph can be realized geometrically by quotienting the alcove picture by the translations,
or equivalently by identifying opposite edges of the "hexagons". An i-arrow in the graph corresponds to a negative
i-crossing. The alcove walk goes from the antifundamental chamber w0(A) back the fundamental chamber A.

of its 0-Hecke algebra acting on W̊ . As the classical dominant chamber is on the negative side of Hα0 , π0

tends to map elements of W̊ back to the identity (see Figure 1).

Theorem 4.2. LetW be an affine Weyl group, W̊ the associated classical Weyl group, and π0, π1, . . . , πn
the generators of the 0-Hecke algebra of W . Then, the level 0 action of π0, π1, . . . , πn on W̊ (or equiva-
lently on the classical chambers) is transitive.

We first prove Theorem 4.2 by a type free geometric argument using Lemma 4.3 below. Figure 1
illustrates the proof, actually covering all the rank 2 affine Weyl groups.

Lemma 4.3 (Cf. Remark 3.5 of [Ram06]). Let w(A) be an alcove in the classical dominant chamber, and
consider a shortest alcove path i1, . . . , ir from A to w(A). Then, each crossing is positive. In particular,
ik is a descent of cl(si1 · · · sik−1).

We now exhibit a recursive sorting algorithm for type Bn, using the usual signed permutation represen-
tation [BB05, EE98], similar to the recursive sorting algorithm for type A at the beginning of this section.
This is an explicit algorithm which achieves the results of Theorem 4.2 (but not necessarily in the most
efficient way). Sorting algorithms for type Cn and Dn are analogous. We have also verified by computer
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that explicit recursive sorting algorithms exist for the exceptional types; the base cases B2, B3, C2, and
D3 can be worked out explicitly. Details are available upon request.

Let w be a permutation of type Bn for n ≥ 4. As before we identify w with w(%∨) = x∨ =
(x1, . . . , xn). We can bring the maximal letter z = n to any position, as z or −z:

x1 . . . xk−1 z xk . . . xn−1
πn−1···πkqq

x1 x2 . . . xn−1 z
πnqq

x1 x2 . . . xn−1 − z
π2···πn−1qq

x1 − z x1 . . . xn−1
π0qq

z − x1 x2 . . . xn−1
πk−1···π1qq−x1 . . . xk−1 z xk . . . xn−1

(13)

In particular, we can move z to the left of y = n− 1 (or −z to the right of −y). The pair zy (or −y − z)
can move around in a circle to any position by similar arguments as above without disturbing any of the
other letters, noting that if zy are in the last two positions of x∨, then πnπn−1πn(x∨) contains −y − z in
the last two positions, and if−y− z is in the first two positions of x∨, then π0(x∨) contains zy in the first
two positions.

Next suppose that zy occupy the first two positions of x∨. We construct π̃0 on such x∨, which acts the
same way as π0, but on the last n− 2 letters:

z y x1 x2 · · ·xn−2
π2π1π3π2qqx1 x2 z y · · ·xn−2
π0qq

x′1 x
′
2 z y · · ·xn−2

(14)

followed by the above circling to move zy back to position 1 and 2.

5 Alternative generators for Hecke group algebras
In this section we show that the Hecke group algebra can be entirely generated by π0, π1, . . . , πn.

Proposition 5.1. Let W̊ be a finite Coxeter group, and S be a set of roots of W̊ such that the associated
projections {πα | α ∈ S} act transitively on W̊ . Then, the Hecke group algebra HW̊ is generated as an
algebra by {πα | α ∈ S}.
Corollary 5.2. Let W be an affine Weyl group, W̊ the associated classical group, and π0, . . . , πn be the
projections associated to the classical roots cl(α0), . . . , cl(αn). Then, the Hecke group algebra HW̊ is
generated as an algebra by π0, . . . , πn.

Alternatively, π0 may be replaced by any Ω ∈W mapping α0 to some simple root, typically one induced
by some special Dynkin diagram automorphism.

Let w ∈ W̊ . An S-reduced word for w is a word i1, . . . , ir of minimal length such that ij ∈ S
and w−1.πi1 . . . πir = 1. Since the {πα | α ∈ S} acts transitively on W̊ , there always exists such an
S-reduced word, and we choose once for all one of them for each w. More generally, for a right coset
wW̊J , we choose an S-reduced word i1, . . . , ir of minimal length such that there exists ν ∈ W̊Jw

−1 and
µ ∈ W̊J with ν.πi1 . . . πir = µ.
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Example 5.3. In type C2, the word 0, 1, 2, 0, 1, 0 is S-reduced for w0 = w0
−1 = (1, 2), where we write

1 and 2 for −1 and −2 (see Figure 1).
In type A3 the word 1, 0 is S-reduced for 4123W̊{1,3}. Here w = 4123, ν = w−1 = 2341, and

µ = 1243. Looking at W̊J left-cosets is the Coxeter equivalent to looking at words with repetitions: we
may think of left W̊{1,3}-cosets as identifying the values 1, 2 and 3, 4, and represent W̊{1,3}w−1 = 2341
by the word 1331; this word gets sorted by π1π0 to 1133 which represents W̊{1,3}.

Setting ∇i := (πi − 1), define the operator ∇wW̊J
:= ∇i1 · · · ∇ir where i1, . . . , ir is the chosen

S-reduced word. The operator may actually depend on the choice of the S-reduced word, but this is
irrelevant for our purpose.

Proposition 5.4. The following family forms a basis for HW̊ :

B := {∇wW̊DL(w′)
πw′ | DL(w) ∩DR(w′) = ∅} . (15)

6 Hecke group algebras as quotients of affine Hecke algebras
We now in the position to state the main theorem of this paper. Let W be an affine Weyl group and
H(W )(q1, q2) its Hecke algebra. Let W̊ be the associated classical group, and HW̊ its Hecke group
algebra. Then the level 0-representation

cl :

{
H(W )(q1, q2) → End(CW̊ )
Ti 7→ (q1 + q2)πi − q1si

(16)

actually defines a morphism from H(W )(q1, q2) to HW̊ (as noted in the proof of Proposition 5.1 all πi and
si, including π0 and s0, belong to HW̊ ). When the Dynkin diagram has special automorphisms Ω, this
morphism can be extended to the extended affine Hecke algebra by sending the special Dynkin diagram
automorphisms to the corresponding element of the finite Weyl group W̊ .

Theorem 6.1. Let W be an affine Weyl group. Except when q1 + q2 = 0 (and possibly when q := − q1q2 is

a k-th root of unity with k ≤ 2 ht(θ∨)), the morphism cl : H(W )(q1, q2)→ HW̊ is surjective and makes
the Hecke group algebra HW̊ into a quotient of the affine Hecke algebra H(W )(q1, q2).

Problem 6.2. Determine for which roots of unity q the morphism cl is not surjective.

7 Hecke group algebras and principal series representations of
affine Hecke algebras

Let t : Y → C∗ be a character of the multiplicative group Y (or equivalently of the additive group h∗Z). It
induces a representationM(t) := t ↑H(W )(q1,q2)

C[Y ] called principal series representation of the affine Hecke

algebra H(W )(q1, q2). Since H(W )(q1, q2) = H(W̊ )(q1, q2)⊗ C[Y ], this representation is of dimension
|W̊ |. When t is regular, the representation is calibrated: it admits a basis (Ew)w∈W̊ which diagonalizes
the action of Y with a distinct character wt on eachEw. This basis can be constructed explicitly by means
of intertwining operators τi which skew commute with the elements of Y . We refer to [Ram03, Section
2.5] for details. Note also that the construction of the τi operators by deformation of the Ti is reminiscent
of Yang-Baxter graphs [Las03, § 10.7], in which t corresponds to a choice of spectral parameters.
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The main result of this section is that for q1, q2 6= 0 and q not a root of unity, there exists a suitable
character t, such that the level 0 representation of the affine Hecke algebra is isomorphic to the principal
series representation M(t) (Theorem 7.1), and to deduce that the morphism cl : H(W )(q1, q2) 7→ HW̊ is
surjective (Theorem 7.4).

Theorem 7.1. Assume q1, q2 are such that q1, q2 6= 0 and q := − q1q2 is not a k-th root of unity with
k ≤ 2 ht(θ∨). Then, the level 0 representation of the affine Hecke algebra H(W )(q1, q2) is isomorphic to
the principal series representation M(t) for the character t : Y λ

∨ 7→ q− ht(λ∨).

Note that t(Y α
∨
i ) = q−1 for any simple coroot. By a result of Kato [Ram03, Theorem 2.12 (c)] one

sees right away that M(t) is not irreducible. Note also that this is, up to inversion, the same character as
for the action of C[Y ] on the constant Macdonald polynomial 1 [RY08, Equation (3.4)].

Proposition 7.2. Assuming the same conditions as in Theorem 7.1, there exists a basis (Ew)w∈W̊ of CW̊
which diagonalizes simultaneously all Y λ

∨
:

Ew.Y
λ∨ = (wt)(Y λ

∨
)Ew , (17)

where (wt)(Y λ
∨

) := q− ht(w(λ∨)).

Corollary 7.3. Each choice of q1 and q2 as in Theorem 7.1 determines a maximal decomposition of the
identity into idempotents in HW̊ .

Theorem 7.4. The morphism cl from the affine Hecke algebra H(W )(q1, q2) to the Hecke group algebra
HW̊ is surjective for q1, q2 as in Theorem 7.1.

Acknowledgements
We would like to thank Jean-Yves Thibon for suggesting the investigation of the connection between
affine Hecke algebras and Hecke group algebras. We are also very grateful to Masaki Kashiwara for
sharing his private notes on finite-dimensional representations of quantized affine algebras with us, to
Arun Ram for pointing out the link with calibrated representations, and to Francesco Brenti, Christophe
Holweg, Mark Shimozono, John Stembridge, and Monica Vazirani for fruitful discussions.

This research was partially supported by NSF grants DMS-0501101, DMS-0652641, and DMS-0652652.
It started during a visit of the authors at the University of California, San Diego in 2006, under the kind
invitation of Adriano Garsia and Richard and Isabelle Kauffmann. It was completed during the inspiring
2008 MSRI Combinatorial Representation Theory program.

The research was driven by computer exploration using the open-source algebraic combinatorics pack-
age MuPAD-Combinat [HT04]. The pictures have been produced (semi)-automatically, using MuPAD-Combinat,
graphviz, dot2tex, and pgf/tikz.

References
[BB05] Anders Björner and Francesco Brenti. Combinatorics of Coxeter groups, volume 231 of Grad-

uate Texts in Mathematics. Springer, New York, 2005.

[BZ77] I. N. Bernstein and A. V. Zelevinsky. Induced representations of reductive p-adic groups. I.
Ann. Sci. École Norm. Sup. (4), 10(4):441–472, 1977.



12 Florent Hivert, Anne Schilling, and Nicolas M. Thiéry

[Car86] R. W. Carter. Representation theory of the 0-Hecke algebra. J. Algebra, 104(1):89–103, 1986.

[EE98] Henrik Eriksson and Kimmo Eriksson. Affine Weyl groups as infinite permutations. Electron.
J. Combin., 5:Research Paper 18, 32 pp. (electronic), 1998.

[HT04] Florent Hivert and Nicolas M. Thiéry. MuPAD-Combinat, an open-source package for research
in algebraic combinatorics. Sém. Lothar. Combin., 51:Art. B51z, 70 pp. (electronic), 2004.
http://mupad-combinat.sf.net/.

[HT06] Florent Hivert and Nicolas M. Thiéry. Representation theories of some towers of algebras
related to the symmetric groups and their hecke algebras. In Proceedings of FPSAC’06 San
Diego, 2006. arXiv:math/0607391v2 [math.RT].

[HT07] Florent Hivert and Nicolas M. Thiéry. The Hecke group algebra of a Coxeter group and its
representation theory. Submitted, arXiv:0711.1561v1 [math.RT], 2007.

[Hum90] James E. Humphreys. Reflection groups and Coxeter groups, volume 29 of Cambridge Studies
in Advanced Mathematics. Cambridge University Press, Cambridge, 1990.

[Kac90] Victor G. Kac. Infinite-dimensional Lie algebras. Cambridge University Press, Cambridge,
third edition, 1990.

[Kas08] Masaki Kashiwara. Private notes on finite-dimensional representations of quantized affine al-
gebras. Private communication, 2008.

[Las03] Alain Lascoux. Symmetric functions and combinatorial operators on polynomials, volume 99
of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of
the Mathematical Sciences, Washington, DC, 2003.

[Lus83] George Lusztig. Singularities, character formulas, and a q-analog of weight multiplicities. In
Analysis and topology on singular spaces, II, III (Luminy, 1981), volume 101 of Astérisque,
pages 208–229. Soc. Math. France, Paris, 1983.

[Mac03] I. G. Macdonald. Affine Hecke algebras and orthogonal polynomials, volume 157 of Cambridge
Tracts in Mathematics. Cambridge University Press, Cambridge, 2003.

[Nor79] P. N. Norton. 0-Hecke algebras. J. Austral. Math. Soc. Ser. A, 27(3):337–357, 1979.

[Ram03] Arun Ram. Affine Hecke algebras and generalized standard Young tableaux. J. Algebra,
260(1):367–415, 2003. Special issue celebrating the 80th birthday of Robert Steinberg.

[Ram06] Arun Ram. Alcove walks, Hecke algebras, spherical functions, crystals and column strict
tableaux. Pure Appl. Math. Q., 2(4):963–1013, 2006.

[RY08] Arun Ram and Martha Yip. A combinatorial formula for macdonald polynomials. preprint
arXiv:0803.1146 [math.CO], 2008.

[Wik08] Wikipedia, 2008. http://en.wikipedia.org/wiki/Hecke_algebra.

[Zel80] A. V. Zelevinsky. Induced representations of reductive p-adic groups. II. On irreducible repre-
sentations of GL(n). Ann. Sci. École Norm. Sup. (4), 13(2):165–210, 1980.


	Introduction
	Coxeter groups, Hecke algebras, and Hecke group algebras
	Coxeter groups and their geometric representations
	(Iwahori)-Hecke algebras
	Hecke group algebras

	Affine Weyl groups, Hecke algebras, and their level 0 actions
	Affine Weyl groups and alcove walks
	Affine Hecke algebras

	Transitivity of the level 0 action of affine 0-Hecke algebras
	Alternative generators for Hecke group algebras
	Hecke group algebras as quotients of affine Hecke algebras
	Hecke group algebras and principal series representations of affine Hecke algebras

