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ABSTRACT. We extend to several combinatorial Hopf algebras the endomorphism
of symmetric functions sending the first power-sum to zero and leaving the other
ones invariant. As a “transformation of alphabets”, this is the (1 — E)-transform,
where E is the “exponential alphabet”, whose elementary symmetric functions are
en = % In the case of noncommutative symmetric functions, we recover Schocker’s
idempotents for derangement numbers [Discr. Math. 269 (2003), 239]. From these
idempotents, we construct subalgebras of the descent algebras analogous to the
peak algebras and study their representation theory. The case of WQSym leads
to similar subalgebras of the Solomon-Tits algebras. In FQSym, the study of the
transformation boils down to a simple solution of the Tsetlin library in the uniform
case.
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1. VIRTUAL ALPHABETS IN COMBINATORIAL HOPF ALGEBRAS

The notion of wvirtual alphabet provides a powerful symbolic notation for dealing
with endomorphisms of combinatorial Hopf algebras, at least for those which can be
realized in terms of (noncommutative) polynomials. Examples include Sym (non-
commutative symmetric functions, [12], 19]), FQSym (Free quasi-symmetric func-
tions [9, 10], which realize the Malvenuto-Reutenauer algebra [23]), WQSym (Word
quasi-symmetric functions [18]), PQSym (Parking quasi-symmetric functions [2§]),
and their subalgebras as long as they are stable under the internal product. These al-
gebras can be regarded as generalizations of the Hopf algebra of symmetric functions,
for which this formalism was essentially promoted by A. Lascoux [21], 20].

The algebra of symmetric functions is denoted by Sym. Apart from this detail,
our notation for symmetric functions follows Macdonald’s book [22].

1.1. Virtual alphabets for symmetric functions. It is convenient to use the
generic term alphabet to designate the argument of a symmetric function. Indeed,
a symmetric function f is characterized by its expression f(x,zs,...) in terms of
monomials in an infinite sequence of independent indeterminates x;, to which various
sets or multisets of algebraic expressions (numbers, monomials, cohomology classes,
vector bundles, etc.) can be substituted. The diversity of possible interpretations
suggests to treat as far as possible these arguments as formal symbols (or letters,
whence the term alphabet), and the possible occurence of multiple arguments suggests
to extend the usual meaning of this term and to understand it as a multiset of symbols.

Actually, a multiset A = {a,c,c,c, f, f} is nothing but a formal linear combination
of symbols with nonnegative integer coefficients, and it is more convenient to represent
it as A = a+3c+2f. With this notation, the union of multisets becomes just a sum
A+ B, and if we have sums, we can also have differences A — B, at least when B is
contained in A.
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This leads us to the point of this paragraph. When B is not contained in A, let us
call the formal combination A— B a virtual alphabet. 1t is easy to define the value of a
symmetric function on a virtual alphabet. Indeed, it is well known that any symmetric
function f can be expressed in terms of the elementary symmetric functions e;. The
elementary functions e, (A) of a genuine alphabet A are the coefficients of the product

(1) M(A) = [ +ta) =) ex(A)t*

acA k
and when B is contained in A, those of the alphabet C' = A — B are obtained by
division of the generating functions:

(2) M(A = B) = MN(A)/M\(B).

When B is not contained in A, this still defines coefficients e(A — B), which are,
by definition, the elementary symmetric functions of the virtual alphabet A — B.
This defines all symmetric functions of A — B, and one has for example the simple
expression p,(A — B) = p,(A) — p,(B) for the power sums.

More generally, a virtual alphabet can be defined by any sequence (e,(A))n>1,
interpreted as its elementary symmetric functions (or as any sequence of independent
generators of the algebra of symmetric functions, such as power sums p,, or complete
homogeneous functions h,,).

For example, although the exponential function e’ has no zeros in the complex
plane, we can introduce a virtual alphabet E such that

(3) en(B) = —

This is a useful trick, allowing to understand a lot of formulas in combinatorics or
analysis as specializations of simple identities on symmetric functions. For example,
the exponential generating function of the derangement numbers d,, is just

eft

1-—1¢
Also, for a partition A of n, nls)(E) = f\, the number of standard tableaux of shape
A. Another virtual alphabet of interest is 1 — ¢, where p,(1 — q) = 1 — ¢". It plays
an essential role in the theory of Hall-Littlewood functions [22].

Our expression of alphabets as formal sums or differences also allows the consid-
eration of products. For genuine alphabets A, B,

(5) AB={ab|ac A beB}=> a) b

M(E) = e

(4) o(1—-FE):=X,(1-E)*

and for virtual alphabets, the symmetric functions of AB are defined by any of the
formulas like p,(AB) = p,(A)pn(B), or

(6) ha(AB) =Y sx(A)sa(B),
AFn

the famous Cauchy identity (the s, are the Schur functions). More generally, for any
function f, we have: f(AX) = F(X)x0;(AX), where % denotes the internal product,
and o(X) = > t"h,(X) is the generating series of homogeneous complete functions.
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Hence, with this formalism, we can consider transformations of alphabets on sym-
metric functions, which are ring homomorphisms mapping any f(X) to f(EX),
f(I-E)X), f((1—q)X), f(X/(1—¢q)), and so on. Remark that in this setting, the vir-
tual alphabet 1—gq is the inverse of the genuine alphabet {1,q,¢*...} = 14+q+¢*+---.

Actually, Sym is a A-ring [20] 21], and the notion of plethysm allows much more
complicated transformations, but in the present paper, we concentrate on the above
mentioned ones since these can be defined only in terms of the (combinatorial) Hopf
algebra structure.

1.2. Extension to combinatorial Hopf algebras. Let X and Y be two infinite
alphabets. Identifying expressions like f(X)g(Y') with the tensor product f ® g, we
can regard the transformations

(7) A f(X)— f(X+Y)
and
(8) §: f(X) — fFIXY)

as linear maps Sym — Sym ® Sym, that is, as comultiplications. Moreover, both
are (obviously) algebra morphisms, and the first one being graded in the sense that

(9) A: Sym, — @ Sym; ® Sym;

i+j=n

defines actually a Hopf algebra structure, whose antipode is simply f(X) — f(—X).

Clearly, the transformations f(EX), f((1 —E)X), f((1 —¢)X and so on can be
defined only in terms of these coproducts, of the antipode, and of the internal prod-
uct. It turns out that most combinatorial Hopf algebras can be realized in terms of
polynomials in some infinite and totally ordered alphabet, denoted by A = {a,|n > 1}
in the case of noncommuting letters, and by X = {x,|n > 1} in the case of commut-
ing letters. The basic example is the pair Noncommutative Symmetric Functions —
Quasi-symmetric functions (Sym, @ Sym) of mutually dual combinatorial Hopf alge-
bras. Sums and differences of alphabets are defined on both sides, and it is possible
to make sense of the product X A (see [19]). Hence, our transformations are defined
in this case.

The subject of this article is the study of the (1 — E)-transform in the pair
(Sym, QQSym), and its extension to other combinatorial Hopf algebras.

2. THE (1 — E)-TRANSFORM IN Sym

2.1. Background. Our notations for the Hopf algebra of noncommutative sym-
metric functions are as in [12, 19]. This Hopf algebra is denoted by Sym, or by
Sym(A) if we consider the realization in terms of an auxiliary alphabet. Bases
of its homogeneous component Sym,, are labelled by compositions I = (iy,...,1,)
of n. The noncommutative complete and elementary functions are denoted by .S,
and A, and the notation S’ means S;, ---S;,. The ribbon basis is denoted by Rj.
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The notation I F n means that [ is a composition of n. The conjugate composi-
tion is denoted by I~, the mirror image composition by I. The descent set of I is
DGS(I) = {’il, le +’i2,...,i1 —|——|—er1}

The graded dual of Sym is QSym (quasi-symmetric functions). The dual basis of
(S7) is (M;) (monomial), and that of (Ry) is (Fy).

The Hopf structures on Sym and Q) Sym allows one to partially extend the A-ring
notation of ordinary symmetric functions (see [19], and [20] for background on the
original commutative version). If A and X represent totally ordered sets of non-
commuting and commuting variables respectively, the noncommutative symmetric
functions of X A are defined by

(10) oi(XA) = S (XA) = [] o1a(A) = Y MM (X)S"(A).
n>0 reX I

Now, X can be a virtual alphabet, defined by an arbitrary specialization of an inde-

pend set of generators of QSym. An alternative way to express the transformation

of alphabets defined by X is [19]

(11) F(XA) = F(A) % 01(XA)

where # is the internal product. Since o1(XA) is grouplike, the X-transform is a
bialgebra morphism, thanks to the splitting formula

(12) (FFy- F)«G=p [(F1®- @ F)+A'G]

where in the right-hand side, u, denotes the r-fold ordinary multiplication and
stands for the operation induced on Sym®" by *.

Thanks to the commutative image homomorphism Sym — Sym, noncommutative
symmetric functions can be evaluated on any element = of a A-ring, S,(x) being
S™(x), the n-th symmetric power. Recall that x is said of rank one (resp. binomial)
if oy(x) = (1 —tz)~! (resp. oy(x) = (1 —t)~*). The scalar z = 1 is the only element
having both properties. We usually consider that our auxiliary variable ¢ is of rank
one, so that o,(A) = o1(tA).

The argument A of a noncommutative symmetric function can be a virtual alphabet.
This means that, being algebraically independent, the S,, can be specialized to any
sequence «,, € A of elements of any associative algebra A. Writing o, = S,(A)
defines all the symmetric functions of A. Quasi-symmetric functions of a virtual
alphabet X can be defined by a specialization of the algebraic generators of QQSym,
which is more easily done by expressing the noncommutative symmetric functions of
XA in terms of A.

The specializations X = E, defined by

(13) Su(BA) = 15, (A)"

(so that Fy(E) = ;) and X = =, for which

T onl

(14) sn( 4 ): Ly i, (4)

1- q <q)n IFn
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are of special importance. The second one can be used to define the peak algebras
and simplifies considerably their investigation [3| [I, 24]. Here, we will study the
(1 — E)- transform by the methods developed in these references.

2.2. Noncommutative derangement numbers. A possible motivation for the
(1 — E)-transforms is the combinatorics of derangements. Indeed, as already men-
tioned, the generating function of the derangement numbers

(15) D(t) = Zdng =

n>0

—t

e
1—t

can be expressed as
(16) D(t) =o1((1 =E)t).

The specializations of the various bases of symmetric functions at 1 —E are obtained
by expanding the Cauchy kernel o1((1 —E)X), and, analogously, its quasi-symmetric
functions can be defined as the coefficients of the expansion of the non-commutative
Cauchy kernel

(17) o1(1 —E)A) = e 51 Wg (A)
on any basis of noncommutative symmetric functions.

For example, since the quasi-monomial basis M; is dual to S, we have

(18) o1((1—E)A) = > Su((1 —E)A) =Y  M;(1-E)S(4),
n>0 I
so that
(19) S1((1 =E)A) =0, S2((1 —E)A) = S5(A4) — 51 (4)/2,
(20) S3((1 —R)A) = S3(A) — S (A) + S111(A)/3,
hence impliying
(21) Mi(1-E)=0, Mo(1-E)=1, M1;(1-E) = —1/2,
and
(22) Ms(1-E) =1, My;(1-E) = -1, Mi5(1-E) =0, Mi11(1-E) = 1/3.

Since for A =1, S, ((1-E)A) = d,,/n!, these noncommutative symmetric functions
might be called noncommutative derangement numbers (see [29] for other examples
of noncommutative combinatorial numbers).

Another natural noncommutative analogue of d,, is given by
(23) A (A) (1~ t81(A) 7
which gives back the d,, for A = E, and d,,(¢) for A = ﬁ. Its expansion of the ribbon basis is
easily seen to be
[n/2

]
(24) Ztnz Z Ryzip g

n>0  i=1 |J|=n—2i
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(ribbons whose first column is of even height, or permutations whose position of the first local
minimum is even; the observation that these permutations are counted by d,, is due to Désarménien,
and an explicit bijection has been given by Désarménien and Wachs [6] [7]).

Similarly,

(25) Au—t(A)(1 —tS1(A) T

gives a natural noncommutative analog of the generating series D(¢,u) = €“~*/(1 — t) for permuta-
tions by number of fixed points, and the expansion in FQSym of

(26) au(A)(1 — £51(4))

yields a class of permutations in bijection with arrangements: for A = [E, this series is f—jt

Denote for short by a £ the (1 — E) transform, i.e.,

(27) Ft .= F(1-E)A) = F % o*
where
(28) ot =0 (1=E)A) = e 5oy,
that is,
f_ i i .
(29) SE=Y (-1 = S
=0

Lemma 2.1. The ti-transform is a projector, i.e.,

(30) ol x ol = ot

or, equivalently,

(31) SE xSt = SF for all n.

Proof — Since the f transform is a homomorphism,
ol xol = (eNoy) kot = (e % 0h) (01 % 0F)

(32)
= e’sii a% = a%.

Hence, S? corresponds to an idempotent , of the descent algebra ¥,. We shall
see later that the dimension of the representation CS,,d,, is the derangement number
d,, and that ¢,, coincides with Schocker’s derangement idempotent [32], whence the
name derangement algebra below for the corresponding ideal of the descent algebra.

2.3. The small derangement algebra D),

2.3.1. Definition of D©). Imitating the construction of the peak algebra in [3], we
define the small derangement algebra, or the derangement ideal as

(33) DY .= Sym* = Sym(A) % o} .
By definition of the transformation of alphabet, D is a Hopf subalgebra of Sym.,

and thanks to the second equality, each homogenous component DY is a left ideal of
Sym,, for the internal product, explaing the two names for D®, depending on which
property we want to emphasize.
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2.3.2. Dimension and bases of DY, We have Sf = 0, and the other S? are clearly

algebraically independent. Hence, the dimension d¥ of DY is given by the number
of compositions of n with no part equal to 1. These elements satisfy the induction

(34) dV =1, d% =0, 4 =d", +d9, forn>2,

hence are shifted Fibonacci numbers.

Let us say that a composition is non-unitary if it does not contain the part 1.
Then, the S™ with I non-unitary form a basis of DY

Since the coproducts

_ # 8
(35) ASE= > Sies
i+j=n

are given by the same formula as those of the S,,, we see that DY is isomorphic

to the quotient Sym’ of Sym by the two-sided ideal generated by S;. Hence, its
(graded) dual is isomorphic to the subalgebra QSym’ of QSym spanned by the M;
for I non-unitary.

Since aﬁ is a projector, we have

(36) frxgh=(f*g).
Sym’ being stable under the internal product, DY

Recall that the ribbon basis of Sym is given by

(37 R=Y 8

J<I

is also #-isomorphic to Sym.,.

where < is the reverse refinement order. If [ is non-unitary, so are all J < I, thus
(38) Q=R (1¢1)
is a basis of DSLO)

2.4. Algebraic structure of (DSLO), x). Since the construction of D® mimicks the
one of the peak ideal, obtained in [3] as the image of the (1 — ¢)-tranform at ¢ = —1,
one may expect that D) shares many properties with the peak ideal. There are some
differences however. Whilst the peak ideal has no unity for the internal product ,
we have:

Proposition 2.2. For all n, (D,(LO), x) is a unital algebra with S as neutral element.
Proof — From Lemma 2.1}, we already know that crg is neutral on the right. To prove
that it is neutral on the left, let us consider its action on the generating series of a

basis of DO
(39) a1 (X - ( Z M (X)S™(A).

We have
(40) ot o (X - (1 —E)A) = of %01 (XA) % 0!
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and
ot % 01(XA) = (e W (A)) * 01 (X A)

(41) = p (e @ 01(A)) %5 (01(X A) © 01(X A))]

= (e @ 5 01 (X A)) (01(A) * 01 (X A))

= 15 (X A)
so that

ol x o1 (X - (1 - E)A) = [e™ X (X A)] * o}
(42) — ¢ SUX0-BA) 5 (X . (1 —E)A)
=0 (X-(1-E)A)

since S1(X - (1 —E)A) =0. -

2.5. Representation theory of DY, Now that we know that DY is unital, we can

investigate its representation theory. We first look at the idempotents.

2.5.1. Idempotents in D{”. Recall that the (right) Zassenhaus idempotents (, are
defined as the homogeneous elements of degree n (that is, (,, € Sym,) satisfying
(see [19]):

(43) o =: H e = eS1e2es

k>1

Obviously, (; = 57 so that Cf = 0. Since the f-transform is multiplicative,

(44) ol = eSielh
but also
(45) ol = e gy = %265

so that Qf = (;. Extracting the term of degree n, we have

g)\

[X|=n
1¢x

where for a partition A = (A\; > XAy > ...), (M == (- -Gy, and my = Hz21 m;(A)!,
where m;(A) the multiplicity of ¢ in A.
We shall make use of the notation ey := % For a composition I, we set (! =

C@'l---C@'T andmlzm,\ lf[lz)\

2.5.2. A basis of idempotents. The (,, are primitive elements with commutative image
pn/n, hence are Lie idempotents [19]. As with any sequence of Lie idempotents, we
can construct an idempotent basis of Sym,, from the ¢,.

We need the following lemma from [24], easily derived from the splitting formula
(compare [19, Lemma 3.10]).

Recall that the radical of (Sym,,, %) is R,, = R N Sym,,, where R is the kernel of
the commutative image Sym — Sym.
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Lemma 2.3. Denote by &(J) the set of distinct rearrangements of a composition J.
Let I = (iy,...,i,) and J = (j1,...,Js) be two compositions of n. Then,

(i) if £(J) < £(I) then ¢! % ¢ = 0.
(ii) if £(J) > £(I) then ¢! % ¢! € Vect (¢ : K € &(J)) N'R. More precisely,
(47) ¢he¢t= >0 (I, AW W)y, Ty,

le---Jr
| Tk | =ik

where for a composition K of k, 'k := (, * (X, and W denotes the shuffle products
of compositions reqarded as words over the positive integers.

(iii) if €(J) = L(I), then (TxC7 # 0 only for J € &(I), in which case {1+ = my ¢

Corollary 2.4. (i) The elements
1

(48) er=—C", IEn,
my

are all idempotents and form a basis of Sym,. This basis contains in particular a
complete set of minimal orthogonal idempotents, ey of Sym,,.

(i1) The e; such that I does not have a part equal to 1 form a basis of DY
(11i) The ey with no part equal to 1 in A form a complete set of minimal orthogonal

idempotents of DY, -

2.6. Cartan invariants of D . By (iii) of lemma 23] the indecomposable projec-
tive module Py = DY x e, contains the e; for I € &()). For I ¢ &(A), (i) and (ii)
imply that e; * ey is in Vect ((® : K € &()\)). Hence, this space coincides with P.
So, we get immediately an explicit decomposition

(49) DV = P B, P~=E& Ce.
AFn, 1€A Ie&(N)

The Cartan invariants

(50) cxpy = dim (e, * DO % ey)

are now easily obtained. The above space is spanned by the

(51) e yxerxey=e,xer, Ie6(N).

From (ii) of Lemma 23], this space has the dimension of the space [S*(L)]\, spanned
by all symmetrized products of Lie polynomials of degrees i, pio, ... formed from
Ciys Cigs - - -, as in the classical result of Garsia-Reutenauer for the descent algebra [15].

In the following examples, partitions are ordered by reverse lexicographic order.
For n < 4, the Cartan matrix of D? is trivial: it is the identity matrix of size d,&o),
since there is at most one value in a partition of n with no part one. For n up to 7,
the Cartan invariants are given by the matrices (60) and (61I]) at ¢ = 1. Indeed, the
g-analogues defined from the Loewy series can be explicitely calculated.
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2.7. Quiver and ¢-Cartan invariants (Loewy series). We shall use the following
modified refinement order on partitions: we write A <, p, and say that A is p-finer
than p, if each part of u is either a part of A or a sum of distinct parts of A. Hence,
A covers g iff p is obtained from A by merging two distinct parts.

Still relying upon point (ii) of the lemma, we see that cy, = 0 if A is not p-finer
than (or equal to) u, and that if p is obtained from A by adding up two parts A;, A;,
e, * e = 0if \; = A\; and is a nonzero element of the radical otherwise.

The g-analogues of the Cartan invariants

(52) Coap = Z ¢"dim [(e, xrad "D x e,)/rad "' D]
k
can now be obtained from Proposition and the following lemma.

Lemma 2.5. Let A be an associative algebra. If e is an idempotent of A such that e
is neutral in B = Ae, then

(53) rad "B = e(rad* A)e.

Proof — Let x € rad B. There exists an integer n such that (zB)™ = 0. Then,
(54) (redAe)” = (zA)"e = 0,

so that, as well

(55) (zA)"exA = (zA)"zA = (zA)"™ = 0.

Thus, the right ideal xA is nilpotent, which proves that x € rad A. Since x = exe,
x € erad Ae and we have shown that rad B C erad Ae.

Conversely, if x € rad A, so that 2™ = 0 for a certain n, then (exe)” = a™e = 0,
whence exe € rad B, which proves the claim for k£ = 1.

Now, if z € radkB, r =x1...x with x; = ey,e, for some y; € rad A. Hence

(56) T =eye...eyse = eyiys . .. yre € erad* Ae.

Conversely, any z of the form ey; ...y.e with y; € rad A can be rewritten as x =
eYr€ . .. eYre € rad*B. -

Applying this to A = Sym,,, and e = S%, we obtain from the known description of
the ¢g-Cartan matrices of Sym,, [31]:

Theorem 2.6. (i) In the quiver of D,(LO), there is an arrow A\ — pu iff p is obtained
from X\ by adding two distinct parts,

(ii) The q-Cartan invariants of DY are given by

(57) exu(q) = e gt =t

if X is finer than or equal to p1, and cy,(q) = 0 otherwise. -
The result can also be derived as follows: In [4], it is shown that the powers of the

radical of Sym,, for the internal product coincide with the homogeneous component
of degree n of the lower central series of Sym for the external product:

(58) R* =+/(Sym)
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where 77 (Sym) is the ideal of Sym generated by the commutators [Sym, 7~ (Sym)].

Since D is a free associative algebra over a sequence of primitive elements ((j)g>2
with the same internal product as in Sym, the argument of [4] can be reproduced
verbatim, and we see that

(59) (rad D)9 = 43(DV) = R N DO

This shows that, in D© as well as in Sym, for A finer than g, e, * ey is nonzero
modulo rad*® iff y is obtained from A\ by summing two distinct parts. And more
generally, e, * e; is in rad™ and nonzero modulo rad** ™ iff £(\) — £(u) = k.

2.8. Tables of the ¢-Cartan invariants of D&O). The labels for row and columns of
the ¢g-Cartan matrices, namely partitions with no part one, are in reverse lexicographic
order. In the following matrices, the zero entries are represented by dots to enhance
readability.

For n < 4, the ¢-Cartan matrix of D? is the identity matrix of size d?. The first

non-trivial example arises for n = 5. The ¢-Cartan matrices of Déo), Déo), and Déo)
are respectively

1 qg . . 1 ¢ q ¢
1 ¢ A .1 . q
(o) (Y1) |t B
| |
and those of Déo) and DE()O) are
1 224 . &
Vv g . @ @ 10460 . O
1 . . . .. q q . q
1 q
1 . q 1 q
(61) 1 . 1
1 ; 1
' A
1 .
1 1 .
1

On these matrices, one can read the quiver of DY, Note that it is a subquiver of
the quiver of Sym,, (see [31]), since one cannot create parts 1 by merging parts of
non-unitary partitions.

2.9. The (large) derangement algebra D = D). Pursuing the analogy with
the peak algebra, let us define

(62) D:= P sD0.
k>0
Note already that D is not a subalgebra of Sym. It is only a sub-coalgebra. Moreover,

we have:

Theorem 2.7. Fach homogeneous component D,, of D s stable under x. It is a
unital algebra, since it contains S, the neutral element of * in Sym.



THE (1 — E)-TRANSFORM 13

We shall prove a slightly more general result, interpolating between D® and D.
2.10. A filtration of D. Define DI by

k
(63) p® = P s,D\,.

For k = 0, this is DT(LO) and for k > n, one recovers D,,.
The following alternative definition of the filtration will be useful in the sequel:

Lemma 2.8.

min(n,k)

(64) EB ip?

Sy

Proof — Expanding 01 = e”'o], we see that

k‘
(65) Sp=°% (mod P S, D))

i<k

2.11. Dimensions of the D). From ([©3), we see that the dimension d¥ of DY is
(66) d® =3"d?,.
i<k
For k = oo, these are the usual Fibonacci numbers.
The first values are given in the following table:

n o |ol1]2]3|4]5]6]7|8]09
d9 [1lol1l1]2]3]5]8]13]21
dV 111 )2]3]5]8|13]21]34
(67) d? [1]11]2]2]4]6]10]16]26]42
d? [1]1|2|3]4]7]11]18]29]47
A 1]1]2]3]5]8]13]21]34]55

2.12. The complete picture.

Theorem 2.9. For all n and k, each homogeneous component D of D®) s stable
under x. It is a unital algebra cmd the neutral element is

min(k,n)

(68) PF = 3 ,—‘15,’1%.
2!

i=0
The theorem is a consequence of the following lemma:

Lemma 2.10. Let f and g be in Sym. Then

S_lm 4 ﬁ A 0 me 7é n,
(69) (m! f ) * <n! 9 )= i—?(fﬁ x g*)  otherwise.
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Proof — Replacing the right factor by its generating series, we have

(S %) % (517 = SO # (€51 g,))) (FF % (% gfy)

(9)

(70)
= (el # S (FFx (¢ gy,

since S7" is central for . Now, (65151ti % S1) = 0 if I is not empty since S% x SP =
Sn% S8 =0 forn>1as e xof =1. So the whole sum reduces to

(71) ST(fF* (e”1g))
Thus,
(72) fix (e%1g%) = fxof =+ (e g%)

Consider now the generic case g = o1(X A):
b % (€510 (X A)) = (e7ay) * (eM 01 (X A))
= (e~ 5k eMo (XA (%o (XA)ﬁ)
= (7 xe™) (o1 (XA % e7) (%01 (X A)Y)
= e " (e x 0 (X A)) (e o (X A)Y)
= ¢ S1e S Si5 (X A
= e 1M (XA = 0y (XA)

(73)

where the third and fourth equalities come from the fact that e is central for *
and idempotent. Multiplying by f on the left yields
(74) [x (e%gF) = [+ ¢,
whence the statement. -

Proof — [of the theorem] From Lemma 28, we have P{* € D). Moreover, since the
Sks! " with I non-unitary form a basis of D adapted to the direct sum decomposi-

tion, that P™ is neutral on both sides is equivalent to the already known fact that

S# is neutral in DY -

Corollary 2.11. The map ¢y, : D(O) — D m defined by
Sm

ml

(75) Om(f) =

is a (non-unital) monomorphism of algebras.

Corollary 2.12. As an algebra, D,, is isomorphic to the direct sum

(76) D, ~ P DY,
k=0
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Proof — As a vector space, D,, is the direct sum of the spaces v = SfDﬁLOzk. By

Lemma 2.10, Vv = 0 for k # (, and by Corollary 2.11], each V" is a subalgebra
0)

isomorphic to Df% & -
2.13. Representation theory of D . We are now in a position to deduce the

representation theory of the D from that of D). We can extend Corollary 2.4 to
all values of k, as a direct consequence of Lemma 2.3

Corollary 2.13. Let e; be the idempotents of Sym defined in Corollary[2.4)
(i) The ey such that J = (17, 1) with j < k and I does not contain a part 1 form a

basis of D
(i1) The principal idempotents of D are the ey such that mi(A) < k. -

We can now state the general result on the representation theory of DY

Corollary 2.14. The irreducible representations of DF are of dimension 1 and
parametrized by partitions of n with at most k parts equal to 1. -

Note that the principal idempotents of D, are also a complete set of minimal
orthogonal idempotents of Sym .

2.14. g-Cartan matrix of D). We order the labels of the rows and columns of the
g-Cartan matrices, namely partltlons with at most k£ ones, first by their number of
ones and then in reverse lexicographic order. So, for example, with n =5 and k = 3,
the order is

(77) [5, 32, 41, 221, 311, 2111].

With this convention, the ¢-Cartan matrix of D is the block-diagonal matrix ob-

tained by putting on the diagonal the ¢-Cartan matrices of ngi for i < min(k,n).
Indeed, from the previous results, one easily sees that

Lemma 2.15.
(78) D® = P s Sym,, « P*).
Since each P{" is a sum of orthogonal idempotents (the S§S: ./i!), this proves

that the ¢-Cartan matrix of D is deduced from the g-Cartan matrlx of Sym, by
putting to 0 the entries whose row and column do not have the same number of ones.

2.15. Block projectors. We have seen that each space S{'Dé@j has as unit a part

of P,E’“), namely
Sl ﬁ
(79) Dn,k k! S

Their double generating series is

(80) D(t,u; A) ZZt" Fuk Dy, j(A) = @991 W 5 (A),

n>0 k=0
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that is, the noncommutative analog of the generating function of d,, x, the number of
permutations in &,, with exactly k fixed points:

u—t

_ IS kn—k _ €

n>0

2.16. g-dimension polynomials. If one sums up the entries of the g-Cartan matrix
of Dr(fo), one gets the following polynomials in ¢, refining the Fibonacci numbers:

(82) 1,2,3 5 q+7, 2¢+11, ¢ +5q+15, 3¢°+9¢+22,...
better represented in the following triangle:

1

2

3

5

7 1

11 2

15 5 1

22 9 3

30 17 7 1

42 28 16 3

56 47 31 9 1
73 58 21 4

101 114 102 47 12 1
135 170 175 94 32 4
176 253 286 183 74 14 1
231 365 461 333 162 40 5

The first column (constant terms of the polynomials) corresponds to the size of the
matrix, hence the number of partitions of n. The second column is sequence A000097
of [34]: from the characterization of the quiver of Sym,,, we also have that the second
column gives to the number of ways of selecting two different parts different from 1,
in all partitions of n. Finally, it is also equal to the number of ways of selecting two
different parts, in all partitions of n — 2, hence justifying that the number of arrows

in the quiver of DY is equal to the number of arrows in the quiver of Sym,,_,.

3. THE (1 — E) TRANSFORM IN WQSym"

3.1. Word quasi-symmetric functions. A word u over N* is said to be packed
if the set of letters occuring in u is an interval of N* containing 1. The algebra
WQSym(A) (Word Quasi-Symmetric functions) is defined as the subalgebra of K(A)
based on packed words and spanned by the elements

pack (w)=u
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where pack (w) is the packed word of w, that is, the word obtained by replacing all
occurrences of the k-th smallest letter of w by k. For example,

(85) pack (871883319) = 431442215,

This is the invariant algebra of the quasi-symmetrizing action of &(A) on K(A)
[10]. Packed words can be identified with set compositions in an obvious way, and
geometrically, they can be interpreted as facets of the permutohedron: a packed
word w = wy ... w, with largest entry ¢ can be identified with the set composition
[Py, ..., P where P; = {i <n | w; = j}. For example, 431442215 corresponds to

[{3,8},{6,7}, {2}, {1,4,5},{9}].

Let N, = M be the dual basis of (M,,). It is known that WQSym is a self-dual
Hopf algebra [18, 27] and that on the graded dual WQSym*, an internal product
may be defined by

(86) Nu * Nv - Npack (u,v) s

where the packing of biwords is defined with respect to the lexicographic order on
biletters, so that, for example,

(42412253
pac

(87) 53154323

) = 62513274.

This product is induced from the internal product of parking functions [26] 25|
28] and allows one to identify the homogeneous components WQSym, with the
(opposite) Solomon-Tits algebras, in the sense of [30].

The (opposite) Solomon descent algebra, realized as Sym,,, is embedded in the
(opposite) Solomon-Tits algebra realized as WQSym, by

(88) S = Z N,

where ev (u) is the evaluation of w.
From now on, we shall denote WQSym™ by W.

3.2. Idempotents of W.

3.2.1. The semi-simple quotient. It is known that the radical of W, is spanned by
the differences

(89) N, — N,,

where v = o(u) for some permutation o of the support of u, supp(u) = {i | |u|; # 0}.
This is easily seen: Equation (8@]) implies that the N,, — N, are nilpotent of order
2 if v = o(u), and that their span is an ideal R,,. Moreover, any product of n such
factors N,, — N,, vanishes since the product of two such factors is either strictly
finer than wu; or zero, so that R, is nilpotent. The quotient W,,/R,, is semi-simple.
It can be identified with the (commutative) algebra of set partitions with A (the inf
for the refinement order on set partitions) as product. Indeed, packed words encode
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set compositions, u = uy ... u, corresponding to the set composition of [n] in which
¢ belongs to the block u;, e.g.,

(90) u= 21231 < [{2,5},{1,3}, {4}].

and the left action of permutations amounts to permuting the blocks, e.g., with
o =231,

(91) 0(21231) = 32312 < [{4},{2,5},{1,3}].

Hence, the idempotents of a complete family of W, are parametrized by set parti-
tions of [n].

3.2.2. The idempotents of Saliola. In [31], Saliola has given a general recipe for con-
structing such complete sets. Given a packed word u, denote by I1(u) the set partition
obtained by forgetting the order among the blocks of the set compositions encoded
by u.

For each set partition 7 of [n], choose a linear combination

(92) L= > N,
II(u)=m

where the coefficient ¢, depends only on the evaluation ev (u) of u, and

(93) > =1

II(u)=n

Start with the initial condition

1
(94) L {2}fn} = > N,

T oes,

hence equal to S7"/n! in Sym, and define by the induction

(95) er = lp % (Nyn — Z )

>
where Ni» = S, is the identity of %, and > is the refinement order. Then, the e,
form a complete set of orthogonal idempotents of W,,.

3.2.3. A non-recursive construction. Families of Saliola idempotents can be com-
puted for all W, simultaneously, in a non-recursive way from families of idempotents
of the descent algebra Sym,, constructed by the method developed in [19]. Recall that
the starting point of this construction is a sequence of Lie idempotents v,, € Sym,,,
that is, an arbitrary sequence of primitive elements whose commutative image in
Sym is p,/n.

Then, if we decompose the identity S, of Sym,, as

(96) Sn - Z CI’YIa
IFn
the elements

(97) ey = Zcml,

I|ln
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with A a partition of n form a complete family of orthogonal idempotents of Sym,,.
Let us fix such a family, and define for each set partition 7 of [n]

(98) Z Cev (u
M(u)=n

These elements satisfy Saliola’s conditions: obviously, cey () depends only on ev (u),
and

(99) Z Cev (u) H mz Z

II(u)=n I|X

is the coefficient of py/z, in the commutative image of S,,, which is h,, so it is 1.
Hence, the sequence (7,,) determines idempotents e, of the W, by the recursion (93)).
But we can also compute these directly as follows:

Theorem 3.1. The idempotents e, are given by the internal products
(100) er =l *ey.

Proof — Let é, = I, xey. For m = {{1},...,{n}}, we have I, = S7/n!, ex = S}/n!,
so that &, = S /nl.

Let Iy =) A(r)=x I, where A(7) is the integer partition recording the block lengths
of m. We have

(101) I\ = ZC[SI =e, mod @ K%,
IlA (I)>1(A

so that ey = [ x ey in Sym.

We want to show that é, = e,. For that, recall from [3I] that, if TI(u) £ m,
N, *xe; = 0, so that Iy x ey = 0if m ¥ 7, and A(x") # A(w). This implies in
partlcular that ey = > Ar)=A Er- Indeed, this is true for A = 1", and, by induction,

7=l x (Niw = 320 sim ew) since 7' > 7 implies {(7’) > [(7). Hence

(102) Er = l7r * (Nln — Z 6)\/) = lﬂ * Z Ex .
IA)>1(N) LA)<I(N)
Summing over m, we get
(103) Z er =y * Z ey = €.
A(m)=x IV)<I(N)
Now,

ewzlﬂ*(Nln—Zeﬂ)—lw*Zew

> Tl AT

=1, *(ex+ Z en) = lp * ey = €.
T AmA (R ) £A ()

(104)
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3.3. The (1—-E)-transform in W. The embedding (88) of Sym in W can be defined
on the generators as

(105) S, —> Ny .

It is clearly a bialgebra morphism. The element

(106) ol =e ™M) Ny

n>0
is well-defined in W, and so is the g-transform
(107) Ff = Fxob.
3.4. Bases of W*. Let us say that a packed word u is non-unitary (and unitary

otherwise) if no letter occurs exactly once in u. These words correspond to set
compositions without singletons.

Proposition 3.2. The N¥ with u non-unitary form a basis of VWW*.

Proof — Let us say that v is finer than u (and write v > wu) if the set composition
encoded by v is finer than the set composition encoding v. Then,

(108) N, *0f =Ny + ) Ny,

where v > u or v is unitary. Hence, the N¥ with u non-unitary are linearly indepen-
dent. .

3.5. Algebraic structure of W*. Let J be the two-sided ideal of W generated by
the N, such that u has at least a letter occuring exactly once. The product rule (86)
shows that J is an ideal for the internal product as well. Hence, the projection

(109) T W—W/J

is a morphism for . Its restriction to W* is then an isomorphism, and clearly,

(110) m(o?) =0y

Since o7 is neutral in W/J, we have:

Proposition 3.3. aﬁ is neutral in W". -
Note that this proof would apply to Sym as well. To summarize,

Proposition 3.4. W* is isomorphic to W/J as a Hopf algebra, and each WY is
x-isomorphic to Wy /T, with D,, = S} = Nﬁn as neutral element. -
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3.6. Representation theory of YW We can now apply Lemma with A =W,,
B=W; and e =S¥,

Thus
(111) rad *"W? = D,, x (rad*W,,) * D,,.

The irreducible representations of W,,, which are one-dimensional are parametrized
by set partitions of [n].

The g-Cartan matrices and quiver of W, have been determined in [32]:
(112) Ca5(q) = Capd" @O,

where [(7) is the number of blocks of a set partition 7, and the Cartan invariant ¢, s
is 0 if «v is not finer than (3, and otherwise

(113) Cap = [ J(mi — 1)\,
where for each block B; of 3, m; is the number of blocks of o into which B; has been
split.

For example, with a = 12|3|4|56|7 and § = 1234|567, we have: ¢, 3 = (3 — 1)!(2 —
D! =2, 1(a) =5, 1(8) = 2, so that c,5(q) = 2¢°.

Theorem 3.5. The q-Cartan matriz of W: is the restriction to rows and columns
indexed by non-unitary set partitions of [n] of (I13). In particular, the vertices of
the quiver of W are the non-unitary set partitions, and there is an arrow o — 3
whenever 3 is obtained from « by merging two blocks.

3.7. Analogue of D in W. Let V}” = W} and

(114) VI = @D Dog ¥ W s Dy
k=0

Then, as in the case of Sym, each V¥ is a unital subalgebra of W¥.

4. THE (1 — E)-TRANSFORM IN FQSym

4.1. Definition. Recall that FQSym is based on permutations, that in the mutually
dual bases F, = G,-1, the internal product is defined by

(115) F,«F, =F,, orequivalently G, *x G, = G,,,

and that Sym is embedded into FQSym by S, = Gis.,,. The transformation can
therefore be defined by

(116) F! = F, xo.

Since the splitting formula remains valid in FQSym when the right factor of the
internal product is in Sym [I0], this is again a Hopf algebra morphism.

As we shall see below, in FQSym, the idempotent D,, = S% as well as the other
D, \, defined in (79) admit an interesting interpretation.



22 F. HIVERT, J.-G. LUQUE, J.-C. NOVELLI, J.-Y. THIBON

4.2. The Tsetlin library (uniform case). The (1 — E)-transform in FQSym is
related to a classical problem in probability theory known as the Tsetlin library (see
e.g., [2]). This is a Markov chain on &,,, defined by a shelf of n books, which are
randomly picked by users and them put back at the left of the shelf after use. In the
uniform case (when all books are picked with the same probability), the determination
of the stationary distribution amounts to the diagonalisation of the linear operator

on CG,,

(117) ta(f) = fTa
where
(118) T, =12..n+2134.. . n+3124..n+---+nl2..n—-1€ CG,,.

This problem is also an ingredient of the proof of Hivert’s conjecture by Garsia and
Wallach [16]. It can be solved in many different ways. The following one is quite
natural in the context on Noncommutative Symmetric Functions.

We start with the observation that 7, is in the descent algebra ,. Indeed, 7, =
D¢y (the sum of permutations having at most a descent at the first position), so
that its representation as a noncommutative symmetric function is St"~1, a rather
well-understood element.

From this remark, we obtain immediately the eigenvalues of t,,. Indeed, according
to Proposition 3.12 of [19], these are the scalar products (h,_1h1,py) of ordinary
symmetric functions. Clearly, the scalar product evaluates to mj(A), so that the
spectrum is 0,1,2,...,n — 2, n.

Let us now construct the spectral projectors. To this aim, we shall need to evaluate
some polynomials in #,. Let us set T}, = S»"~! and consider the generating function

(119) T = Tn:Slcrl.

Since the internal products T, * 1), are (by definition) 0 for m # n, we have

(120) ST =17

n

and using iteratively the splitting formula ([19], Prop. 2.1)

(121) 7T = (5,00) # T = () © 0) % AT,
we get the expression

(122) T*" = B,(S1)01,

where B, (x) are the Bell polynomials (this is the obvious noncommutative analogue
of the classical formula for the Kronecker powers of the representation of &, by
permutation matrices).

Using the fact that the coefficients of B,, are the Stirling numbers of the second
kind S(n, k), we obtain in Sym

(123) T(T—-1)*(T—2)%-%(T—k+1)= 5%,
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and in particular, in degree n,

(124) Tox(T,— 1)« (T, —2)%---x (T, —n+1) =57
and as well

(125) Tox (T, — 1)« (T, —2)*---x(T,, —n+2) =57,

and since it is plain that S * T,, = nS7, so that S} * (7,, — n) = 0, the minimum
polynomial of T, is

(126) Py(z)=(z—n)[[(=—F).

This shows that T), is semisimple, and allows an easy construction of the spectral
projectors.
Let us start with the kernel. The projector is given by f +— f * D, where
(T, — )% (T, —2) % -~ x (T,, —n+ 2) * (T,, — n)
(1(-2)- 2~ m)(-)

but since T,, — n + 1 is invertible, one can take as well

(="
(128) Dy == (Tn = D

(127) D, =

where (), =x(x—1)--- (z —n+1), and the star means evaluation with the internal
product. This is a better choice, since we have now a simple generating series for all
these projectors,

(129) Y Dpa"=e "0, = 0,((1-E)A).
n>0
Indeed, we have (x — 1),, = (z), — n(x — 1),,_1, so that
(=D" _ =Sy (=) S

k=0

The same reasoning shows that the projectors D, ; on the eigenspaces of k are
given by the generating series

(131) D(t7 u) = Z Z tn_kuan,k = e(u_t)slo'l >

n>0 k=0

which is o1 (tA—(t—u)EA), so that these elements coincide with those defined by (79).

4.3. Characters of the associated modules. The Frobenius characteristic of the
left ideal of C&,, generated by the idempotents 6, corresponding to D, ; via the
identification o <> F, can now be calculated as follows (compare [32, Cor. 4.2]).
Since 0y, is an idempotent, its characteristic ch (9, ) coincides with its cycle index
Z(6n). By the Gessel-Reutenauer formula [I7], the coefficient of p, in Z(d,;) is
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equal to (D, k, L,), where F' means the commutative image of the noncommutative
symmetric function F', and for v = 1™2"2 ..,

1
(132) Ly = b, [0y [ta] -0 by = =D puld)pla.
din

1t denoting here the Moebius function. Hence, the generating function of all the cycle
indexes is

(133) Zy (t,u) = (D(t,u; X), L(X,Y))x = (D(t,u; X), L(Y, X)) x
by the symmetry formula [33]

(134) LX,Y) = LY, X) = Y Lu(X)pu(Y) = [ [ oy 0 [t (V)]

nw n>1
Plugging this last expression into the scalar product and dualizing, we obtain
o1((u—1)Y)
135 wt)E) [ln(Y)] = ————F—=
(135) Eapn(w( om) [a(Y)] = —— (V)

In particular, specializing at Y = [E gives that the dimension of C&,,9,, is d, x, the
number of permutations in &,, with exactly k fixed points.

It is also easy to obtain the expansion of Zy (¢, u) as a combination of the L, (Y").
Indeed, writing D(t, u; x) = o1 ((u—t)EX +tX), we have (D(t,u),p,) = u"™ [[~o t™,
where m; is the multiplicity of the part ¢ in u. Hence, -

(136) Z(6n)= > Ly
my(u)=k

We note that this is the quasi-symmetric generating function of the permutations
with exactly k fixed points. Note that Z(D(¢) is the commutative image of the
generating series of desarrangements (23)).

4.4. g-derangement numbers. From the above considerations, one can easily de-
rive a (known) closed formula for the g-derangement numbers (compare [32, Theorem
4.5])

(137) dulg) = 3 g™

o€Dn
Indeed,
dn(q) = < Y Fo > ¢t (T)GT>
(138) o€Dy, TEG, FQSym
= > > "D (Fog), Ri) :< > LmKn(Q)> :
0€Dn [I|=n ma (p)=0
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Hence,

am) :< A ,al( X

1 z \
1—ap 1—q >:)\_gC (1——(1) <1_1—_‘1)
g -
so that finally [35]
(140) dn(q) = [n]! ﬁkl]!)kq(‘;)

(141) h(Fs)= 3 L,

is also a consequence of the following type of expressions
(142) Dyx= Y Ei(n)
m1(\)=k

in the notation of [19, Theorem 3.16], for some sequence 7, of Lie idempotents in
descent algebras. Indeed, [19, Theorem 3.21], implies then that the character is given
by (I4I]). We have already seen one such expression with m, = (,, the Zassenhaus
idempotents. We can also write one involving the Hausdorff series. Writing as usual

(143) o = Z On = log oy
n>1
(the Solomon idempotents), we have
(144) Z Dn — 6_¢16<I> — eH(_¢17<D)
n>0

where H is the Hausdorff series. Taking m; = ¢y and m, = H,(—¢1, ®) for n > 2, we
obtain a sequence of Lie idempotents (see, e.g., [19], Theorem 3.1), from which it is
easy to build a decomposition of the identity

(145) o1 = €™ exp {Z Wn} ,
n>2
and more explicitely,

1 s
(146) Sn = Z @ Z 7T1 7J.
r4+s=

n T l()=r|J|=n—s,1&J
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This gives in particular the decomposition (I42)), with, for a partition A such that
ml()\) = 0,

(147) E\(m) = @ > o

I

where I | A means that the nondecreasing rearrangement of the composition [ is the
partition .

4.6. Eigenbases of t,,. From Proposition 7.4 of [11], we know the image a projector
of the type (I47). It is formed of weighted symmetrizations of Lie elements. With
the above m,, the distribution is uniform, so that the kernel consists in ordinary
symmetrized products of Lie elements. Concretely, a basis of Kert, in CG,, is for
example

(148) (710)\17 729>\27 e 777"0)\1”)

where (a,b,c) = abc + acb + bac + beca + cab + cba, and so on (symmetrized prod-
ucts), the 7, are the minimal representatives of the cycles of a derangement, 6, =
[[--[1,2],3],---n] is a Dynkin element, and A runs over partitions without part 1.

For example, a basis of Kert, of dimension d, = 9 is given by the elements
[[[1, a], b]c] with abc running over permutations of 234, for L4, and by the three sym-
metrized products ([1,2],[3,4]), ([1,3],[2,4]), and ([1,4],[2, 3]) for Las.

Bases of the other eigenspaces are obtained by the same process, using weighted
symmetrizations as indicated in [I1]. Indeed, Equation (I46]) shows that a basis of
the eigenspace with eigenvalue s is given by

(149) (719>\17720)\27 Tt 777’9%") ' (]1|—|—|j2|—|—| e LUJS)

where 7, are the minimal representatives of the cycles of length at least 2 a permu-
tation of cycle type (A, 1°) having s fixed points ji, ja, . . ., Js-

To continue with n = 4, a basis of the 1 eigenspace is [[, j], k] - 1 (i < j,k, ijkl a
permutation of 1234), dimension 8, and a basis of the 2-eigenspace is given by

i, 4] (kl+1k) i< j, k<l

where ijkl is a permutation of 1234 (dimension 6). Finally, the 4-eigenspace is one
dimensional and generated by the full symmetrizer.

Using the (, instead of the m,, we can replace symmetrized products by ordi-
nary products of homogeneous Lie polynomials taken in nondecreassing order of the
degrees.

The idempotents d,, have been first studied by M. Schocker [32] (apparently un-
aware of previous works on the subject and of their relation with the Tsetlin library).

4.7. A basis of FQSym®. We have seen that the (1 — E)-transform is a bialgebra
morphism in FQSym. Hence, its image FQSym® is a Hopf subalgebra. The &,,-
module A, ; can be identified with

(150) FQSym’ = FQSym,, * D, ,
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so that
(151) dim FQSym’, = d,,.

It is therefore desirable to find a basis of FQSym® labeled by derangements, or some
other set of permutations naturally in bijection with these. As we shall see, the
natural transformation involved here is simply a version of Foata’s first fundamental
transformation [14].

Let ~, be the cycle

(152) Yo =nl12...n—1,
so that
(153) S =T,=5S5,1=R,+Ri, 1= Z F,.

ocelW223..n

Since the g-transform is a morphism for the product of FQSym,

(154) S s ol = SISt | =
and, for any permutation ¢ € G,,,
(155) (Fy % S™)f =F, x 8" x ¢ = 0.

Recall that ¢ is a left-right minimum of o if
(156) o; > o; for all j <.

Let X, be the set of permutations of &,, such that ¢-0 does not have two consecutive

left-right minima (that is, o does not end by 1 and does not have two consecutive
LR-minima), and let Y,, = 6,\ X,,.

Lemma 4.1. For o €Y, write

(157) oc-0="---0;041"""

where © and i + 1 is the first pair of consecutive LR-minima, and let
(158) o =0;-000Gi0p

be the permutation obtained by moving o; at the first position, leaving the remaining
letters unchanged, and removing the zero in the end. Then

(159) F,+S" =F,+Y F,,
TeT
where the permutations of T are lexicographically smaller than o.

Proof — The expression

(160) F, %S = > O F,

TE€O; Woq...04...0n

contains F, and, since o; is a LR-minimum, ¢ is the maximal element of the previous
sum. .

For a permutation o with LR-minima iy, ..., 1,, let

(161) ¢(0) = (01...05,-1)(04y ... Oiy—1) ... (04, ... On),
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where each parenthesis represents a cycle. For example, with o = 62781453,
(162) ¢(0) = (6)(278)(1453) = 47153682.

This is Foata’s first fundamental transformation (up to reversing the order on the
integers), hence a bijection. Clearly, ¢(o) has fixed points whenever o € Y,,, so ¢
induces a bijection between X,, and derangements of &,,.

From Lemma [4.1] we see that the elements

(163) (F%)oex,
span FQSym? . Since |X,| = d, = dim FQSym®, we have finally
Theorem 4.2. The Ft. for o € X,, form a basis of FQSym®. -

The sets X,, have an interesting structure.

Theorem 4.3. The set X,, is an ideal of the left weak order on &,. Its maximal
elements are the left-shifted concatenations

(164) Wy = Wi, » ... P W,

where w; := lii—1,...,2, composition I has no part 1, and o » 3 = a[f] - 5 if
b e S,

Proof — To show that X, is an ideal, we will prove that if s; denotes the elementary
transposition (i,7 + 1), then o € Y,, and inv (s;0) = inv (o) + 1, implies s;0 € Y,,.

If o, =r > s = op41 are consecutive LR-minima of o, they will remain so for s;o,
unless © = r— 1, r, s — 1, or s. Since s;0 has one inversion more than o, we can
exclude the case i = r — 1: r being a LR-minimum, r — 1 cannot be to the left of r in
o. We can also exclude i = s — 1 for the same reason. If ¢ = r, then r is exchanged
with 7+ 1, which has to be to its right in o, so that again o, and o, are consecutive
LR-minima in s;o. The same reasoning applies with ¢« = s. Hence Y, is a coideal,
and consequently X, is an ideal.

Now, the elements w; are clearly in X,, when I has no part 1, and any exchange of
consecutive values creating an inversion in such a w; would create a pair of consecutive
LR-minima. So these w; are maximal elements of the ideal X,,.

Conversely, consider o € X,, maximal. Then consider the suffix s of ¢ beginning
with 1. The maximality condition of ¢ implies that if ¢ belongs to that suffix, then
t — 1 also belongs to it. So this prefix is a permutation of an &y, then should
be 1]s|...2. The same now works by induction on the permutation 7 defined by
o=TDHWMPS. =

For example, with n = 5, we get the following three maximal elements of X,:

(165) 15432, 35412, 45132,

The same proof can be adapted to the case of permutations that are images by ¢ of
permutations with at most k fixed points. Let X be the image by ¢ of permutations
with at most k£ fixed points. Then X is the set of permutations with at most k
consecutive LR-minima.
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Theorem 4.4. The set X\" is a ideal of the left weak order on G,,. Its mazximal
elements are the wy where I runs over compositions with

o cither k — 1 ones and the remaining parts equal to 2,
e or exactly k ones.

Proof — The fact that X is an ideal comes from the same idea as before: all
permutations greater than a given permutation o for the left weak order have LR-
minima at the same position.

By the same argument as in the previous theorem, the maximal elements must be
some wj, where [ has at most k& ones. Now, it is clear that

(166) wy <wy,

in the left weak order iff I can be obtained from J by gluing parts equal to 1 with
their next part. So the compositions described in the statement are definitely maximal
elements. And since all compositions with at most & ones can be obtained from these
ones by the gluing process, this ends the proof. -

Here is a table of the number of maximal elements of X,(lk)

(k0] 1]2]3[4[5[6]7[8]

1 [O0]1
2 111
3 11221

(167) 123331
5 |3]5]6|4]4]1
6 |5]9]9]10]55 |1
7 |8 |15|19|14[15] 6 |61
8 |13]27 31342021771

Note that the first column is obviously given by Fibonacci numbers since these
indeed count the number of compositions of n in parts at least 2. The other columns
are not known to [34] and neither is the sequence of row sums.

But there exists a simple formula giving the number of maximal elements, coming
directly from their characterization:

(165 - <(n +kk_—11)/2) N Hiu <£ Z k) (n — f:f — 1>7

with the convention that a binomial coefficient with entries not in the natural numbers
1S zero.

4.8. Other bases of FQSym?*.
Conjecture 4.5. Let <’ be the order on permutations defined by
(169) o <' 7<= ¢(0) <jex O(7).
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Then the matriz of S°* of the S basis is triangular. Moreover, the diagonal values
are 1 for the elements of X,, and 0 forY,.

For example, here are the matrices for n = 2, 3, and 4 (Figure 1) where the zero
entries have been represented by dots to enhance readability.
The permutations are ordered as follows:

(170) 21, 12, 321, 312, 231, 123, 132, 213].
[4321, 4312, 4231, 4123, 4132, 4213, 3421, 3412,
(171) 2341, 1234, 1243, 2314, 2431, 1423, 3241, 2134,
3142, 1324, 1432, 2413, 2143, 3214, 1342, 3124].
1/3 —1/3 2/3
R . |
. —1/2 S . .
(172) ( o1 ) 1 . 1
S 1 -1

5. OTHER COMBINATORIAL HOPF ALGEBRAS

5.1. The algebras PQSym and CQSym. There is an internal product on PQSym
extending that of WQSym™ [26]. The f-transform is defined in PQSym (it contains
Sym as a subalgebra), but PQSym * WQSym* C WQSym*, so that PQSym* =
W, and we get nothing new.

Similarly, the Catalan algebra CQSym [28], we have

(173) CQSym * Sym C Sym,
so that
(174) CQSym’ = Sym*.

5.2. The algebra of planar binary trees PBT. The Loday-Ronco algebra of
planar binary tree is not stable by the f-transform. Since PBT is the subalgebra of
FQSym generated by the S7 where o avoids the pattern 132 (see [I3]), we have, for
example :

(175) 2138 _ g123  gl32 G312 + 25321 ¢ PBT.

However, PBTY is a well-defined Hopf subalgebra of FQSym.

Conjecture 5.1. The algebra PBT? is free over the set PﬁT, where T runs over trees
with at least two nodes, and such that the right subtree of the root is empty.

In particular, the conjecture implies that the dimension of the homogeneous com-
ponents PBT?1 are given by the Fine numbers [8, 34], sequence A000957:

(176) 1,01261857186, 622. ..
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1
1/2
~1/2
~1/2
1)2
~1/2
1/2
~1/2

N
~
o
I

1/8
12

—1/4  3/8 1/2 —3/4
1

1 -1

1

~1/4
1/2
~1/2

1/2
~1/2

3/8
1
1/2
—-1/2
12

—1/4
1
1

1/8
~1/2

-3/8
1/2

1/4
1

-1/8
1/2
1

1/4
~1/2
12

FI1GURE 1. The matrix of § in the S basis of FQSym
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